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Problem area 
Noise from the auxiliary power unit 
(APU) is becoming an increasingly 
important aircraft design constraint 
because of the noise exposure 
during ground operations (“ramp-
noise”). Reduction of noise may be 
achieved by liners in the exhaust 
duct. In this paper, we consider the 
propagation of sound through the 
APU exhaust duct, which is 
typically straight with an axially 
varying liner depth, a non-uniform 
mean flow and strong temperature 
gradients. 
 
Description of work 
We present a solution in the form of 
slowly varying modes of WKB type 
for the acoustic pressure field inside 

a duct with an impedance that is 
continuously varying in the axial 
direction. In cross-wise direction 
each WKB mode is given by 
eigenfunction-type solutions of the 
Pridmore-Brown equation. A new 
numerical approach based on a 
standard implementation of a 
collocation method supplemented 
by a path-following procedure is 
presented to solve this equation. We 
compare the results of the slowly-
varying solution with a solution 
based on mode-matching between 
axial segments with constant 
impedance. 
 
Results and conclusions 
In order to test the numerical 
Pridmore-Brown solutions for non-
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trivial situations, favorable 
comparisons have been made with 
analytic approximate solutions of 
WKB type (in radial direction, not 
to be confused with the axial WKB 
solutions of modes varying slowly 
along the duct).  
To demonstrate the value of our 
slowly varying modal solution, a 
number of tests have been made. 
For a wall impedance that varies 
slowly in axial direction – slow 
enough to be within the range of 
applicability of the WKB method – 
the results agree well (depending on 
the small parameter) with the 
BAHAMAS reference solution 
based on uniform flow and a 
piecewise constant impedance. On 
the other hand, the WKB solution 
lacks to capture typical phenomena 
associated with resonance that  

invariably occurs when the 
impedance wall is of Helmholtz 
resonator type. This is not 
unexpected as the liner reactance 
changes sign via “infinity” along a 
short interval and therefore is 
locally not slowly varying. In 
reality we will observe intermodal 
scattering, which is, by assumption, 
excluded in a WKB solution. 
Finally, a few typical results are 
presented for non-uniform flow and 
a strong temperature gradient. 
 
Applicability 
The method described in this paper 
can be applied to study sound 
propagation through a duct with 
axially varying impedance, non-
uniform mean flow velocity and 
non-uniform temperature, like for 
example an APU exhaust duct. 
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I. Introduction 

 

 

Acoustic modes in a duct with slowly varying impedance
and non-uniform mean flow and temperature

M. Oppeneer∗

NLR/TUE

W.M.J. Lazeroms†

TUE/KTH

S.W. Rienstra‡

TUE

R.M.M. Mattheij§

TUE

P. Sijtsma¶

NLR

Noise from the auxiliary power unit (APU) is becoming an increasingly important aircraft design con-
straint because of the noise exposure during ground operations (“ramp-noise”). Reduction of noise may
be achieved by liners in the exhaust duct. In this paper, we will consider the propagation of sound through
the APU exhaust duct, which is typically straight with an axially varying liner depth, a non-uniform mean
flow and strong temperature gradients. We present a solutionin the form of slowly varying modes of
WKB type for the acoustic pressure field inside a duct with an impedance that is continuously varying
in the axial direction. In cross-wise direction each WKB mode is given by eigenfunction-type solutions
of the Pridmore-Brown equation. A new numerical approach based on a standard implementation of a
collocation method supplemented by a path-following procedure is presented to solve this equation. We
compare the results of the slowly-varying solution with a solution based on mode-matching between axial
segments with constant impedance.

I. Introduction

Over the past decades, aero-acoustic research for lined flowducts was primarily aimed at reducing the noise
levels in inlet and exhaust ducts of turbo-fan engines. Since recently, however, the so-called “ramp-noise” due to
the auxiliary power unit (APU) is given attention as well, asit has become a significant design constraint [1]. In
this paper, we will consider the propagation of sound through the APU exhaust duct. This duct is typically straight
and circular-cylindrical, and carries a non-uniform mean flow with strong temperature gradients. The acoustic
impedance at the wall is axially varying due to the varying liner depth (see Figure 1).

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature

profile T̄ (r)
mean flow velocity

profile ū(r)

Figure 1. APU exhaust duct geometry.

To compute the sound inside the duct, we formulate the problem in terms of acoustic duct modes. These
modes are solutions of the so-called Pridmore-Brown equation [2,3]. Modes exist in configurations with properties
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II. Problem formulation 

independent of the axial coordinate, i.e. ducts of constantcross-section, mean flow and wall impedance. Modes
in a strict sense cease to exist if one of the problem parameters varies with the axial coordinate. However, if
this variation is slow, it is possible to identify approximate solutions in the form of slowly varying “modes” by
employing the WKB method (named after Wentzel, Kramers and Brillouin [4]), or method of multiple scales. This
is in principle possible for any of the problem parameters [5–12], although its use is restricted by the availability
of the solution of the remaining equation. In this paper we present a slowly varying mode solution for a varying
impedance and otherwise constant duct and non-uniform meanflow velocity and temperature.

The cross-wise mode shape of a slowly varying mode is given bythe Pridmore-Brown equation, which there-
fore has to be solved at each axial location. To this end we usethe COLNEW [13] code, which solves boundary
value problems (BVPs) in ordinary differential equations (ODEs) by collocation. By simply adding the axial wave
numberk to the solution vector and introducing the extra equationk ′ = 0, our eigenvalue problem is easily made
fit to the code.

The infinitely many solutions correspond in general with different (complex) values ofk = kn, known as
the modal spectrum (we neglect here the possibility of a continuous spectrum as this is acoustically of limited
importance). In order to find all (relevant) solutions, we used a path-following (or continuation) approach, where
we start from an “easy” solution (for example a hard-walled duct with uniform flow) and trace the solution when
the relevant problem parameter(s) is/are varied to the value(s) of interest.

Path-following has been used before for the case of uniform mean flow and a path in the impedance plane from
hard wall to the impedance considered [14]. We will take intoaccount, however, that not any path is suitable to
find all modes, as has been noted in [15]. In certain directions of the complex impedance plane some modes will
be missed as they appear from or disappear to infinity. In addition, our path-following approach is refined by using
a prediction-correction scheme [16]. The prediction is found by linear extrapolation of the previous solutions. The
correction step is then an updated solution by COLNEW, with the prediction as the starting value.

A numerical comparison will be made between some results based on the WKB approach and some results
computed with a method based on mode-matching.

II. Problem formulation

We consider the following model for an Auxiliary Power Unit (APU) exhaust duct: a cylindrical, hollow,
acoustically lined duct with radiusR, see Figure 1. Inside the duct, we have an inviscid, non-heat-conducting,
ideal gas, described by the Euler equations

Dρ

Dt
+ ρ∇ · v = 0, (1a)

ρ
D

Dt
v + ∇ p = 0, (1b)

DT

Dt
+ (γ − 1)T∇ · v = 0, (1c)

where D/Dt := ∂/∂ t + v · ∇ is the total derivative, and

p = ρRT, (1d)

whereR is the specific gas constant (for air: 286.73 J/kg K) andγ the ratio of specific heats (for air 1.402) and
density, pressure, velocity and temperature are denoted byρ, p, v andT , respectively. The wall is treated by a
locally reacting acoustic liner, which can be described foreach frequency component by an impedanceZ .

Based on a reference temperatureT0 and densityρ0, we make the problem dimensionless by scaling on duct
radiusR, densityρ0 and sound speedc0 = √

γRT0. Note that this implies that the impedance is scaled on the
referenceρ0c0, rather than the more usual local(ρc)wall.

The total field is a superposition of a steady, parallel mean flow v̄ = ū(r)ex and time-harmonic acoustic
perturbations, in cylindrical coordinates(x, r, θ) given by

[v, ρ, p, T ](x, r, θ, t) = [v̄, ρ̄, p̄, T̄ ](r)+ Re
(

[

ṽ, ρ̃, p̃, T̃
]

(x, r) exp(−iωt + imθ)
)

, (2)

whereω andm are the non-dimensional frequency and the circumferentialwavenumber respectively. The mean
flow properties are taken to be independent ofx , which is possible because of the assumed inviscid and non-heat-
conducting medium. The wall impedance can depend onx , but influences only the acoustic field. Consequently,
the mean flow quantities depend only onr :

v̄ = ū(r)ex , T̄ = T̄ (r), p̄ = p0 = 1

γ
, ρ̄(r) = 1

T̄ (r)
. (3)
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III. Pridmore-Brown equation for constant impedance 

Substituting (2) into (1) and linearizing yields the following system of equations for the perturbations

(

−iω + ū
∂

∂x

)

ρ̃ + 1

r

∂(r ρ̄ṽ)

∂r
+ ρ̄

( im

r
w̃ + ∂ ũ

∂x

)

= 0, (4a)

(

−iω + ū
∂

∂x

)

ũ + ṽ
dū

dr
+ 1

ρ̄

∂ p̃

∂x
= 0, (4b)

(

−iω + ū
∂

∂x

)

ṽ + 1

ρ̄

∂ p̃

∂r
= 0, (4c)

(

−iω + ū
∂

∂x

)

w̃ + im

r ρ̄
p̃ = 0, (4d)

(

−iω + ū
∂

∂x

)

T̃ + dT̄

dr
ṽ + (γ − 1)T̄

(1

r

∂

∂r
(r ṽ)+ im

r
w̃ + ∂ ũ

∂x

)

= 0, (4e)

γ p̃ = ρ̄T̃ + ρ̃ T̄ . (4f)

At the impedance wall, we use the Ingard-Myers [17, 18] boundary condition, which describes the effect of the
thin boundary layer on the impedance.

− iωṽ =
(

−iω + ū
∂

∂x

)( p̃

Z

)

, atr = 1. (5)

III. Pridmore-Brown equation for constant impedance

First, we consider a duct with a constant impedance along thewall, so the problem becomes invariant in the
axial direction. We introduce acoustic modes of the form

[ũ, ṽ, w̃, ρ̃, p̃, T̃ ](x, r) = [U, V ,W, D, P, T ](r) exp(+ikx), (6)

wherek is the axial modal wavenumber, which is to be found together with the modal shape function. When (6)
is substituted in (4), we have

−i(ω − kū)D + 1

r

d(r ρ̄V )

dr
+ ρ̄

( im

r
W + ikU

)

= 0, (7a)

−i(ω − kū)U + V
dū

dr
+ 1

ρ̄
ik P = 0, (7b)

−i(ω − kū)V + 1

ρ̄

dP

dr
= 0, (7c)

−i(ω − kū)W + im

r ρ̄
P = 0, (7d)

−i(ω − kū)T + dT̄

dr
V + (γ − 1)T̄

(1

r

d

dr
(r V )+ im

r
W + ikU

)

= 0, (7e)

γ P = ρ̄T + DT̄ . (7f)

This system can be reduced further to a single ordinary differential equation for the pressure perturbation amplitude
P, yielding the Pridmore-Brown [2] equation

P ′′ +
[1

r
+ 2kū′

ω − kū
+ T̄ ′

T̄

]

P ′ +
[ (ω − kū)2

T̄
− k2 − m2

r2

]

P = 0 on 0< r 6 1, (8)

where the prime is used to denote differentiation with respect to r . For uniform flow ū = M0 and constant
temperaturēT = 1, (8) reduces to Bessel’s equation, with solution

P(r) = AJm(αr)+ BYm(αr), α2 = (ω − kM0)
2 − k2.

The boundary condition (5) becomes

P ′ −
[ i(ω − kū)2

ωZ T̄

]

P = 0 at r = 1. (9a)

Equation (8) has solutions that are singular atr = 0. To enforce regular solutions, we add the boundary condition

P ′ = 0 at r = 0, for m 6= 1, (9b)

P = 0 at r = 0, for m = 1. (9c)
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III.A A high-frequency approximation (radial WKB approximation of modes) 

 

 

 
IV. Mode-matching for piecewise constant impedance 

Otherwise, P is determined up to a multiplicative constant. For each m, equation (8) has multiple solutions,
denoted by

P = Aψmn(r). (10)

Each solution is characterized by the eigenfunction ψmn(r) and the corresponding wavenumber1 kmn. Left and
right-running waves will be distinguished by the sign of the imaginary part of kmn, or by taking the suitable limit
in Z if Im(kmn) = 0. In rare cases the mode may be an instability with kmn belonging to the other complex half
plane [15,19], but we will not consider thishere.

I I I .A. A high-frequency approximation (radial WK B approximation of modes)

Since non-trivial solutionsof (8) are unknown, or at least rare, it is useful to consider approximations. Following
theWKB-typemethod described in [3], wecan find someapproximatesolutionsfor high frequencyω. If wewrite

P ′′ + β(r, k)P ′ + γ (r, k)P = 0

and note that β = O(1) and γ = O(ω2) whenω → ∞, wecan make theWKB assumption

P(r) ≃ A(r) exp
(

i
∫ r

ξ(r ′) dr ′).

After sorting termsof equal order of magnitude, wefind in theusual way theapproximateequation

(γ − ξ2)A + i
(

ξ ′ A + 2ξ A′ + ξβA
)

+ · · · = 0.

Thishassolutions

ξ = ±√
γ , A = ω − kū

γ 1/4
√

r T̄
.

The resulting (not necessarily uniformly valid) solutions

P = ω − kū

γ 1/4
√

r T̄
exp

(

±i
∫ r

√

γ (s) ds
)

(11)

reveal the important information that acoustic solutions, wherek is real or nearly real, arepractically only impor-
tant along that part of ther -interval whereγ (r) > 0, and otherwiseexponentially small. (Zerosof γ areknown as
turning points [5].) Generally, γ is negativenear r = 0 when m 6= 0 (yielding the P ∝ rm behaviour near r = 0),
with a zero at say r1. Although not as general, this may also happen near r = 1, with a zero at say r2, depending
on details of the velocity and temperatureprofiles. If this is the case and the solution is exponentially small near
r = 1, the effect of the boundary condition is negligible, and the solution is practically independent of the wall
impedance. Thewavenumbersk are then found from a“quantization condition” [20] that requires that an integer
number of radial semi-wavelengthshas to fit between the turning pointsr1 and r2, with on each side an extra 1

4π

due tothe required matching through the turning point to the decaying field [5]. If m 6= 0 (and γ has no more
zeros than r1 and r2) this condition is

∫ r2

r1

√

γ (r, k) dr = (n − 1
2)π, n = 1,2, . . . (12)

If m = 0 with only oneturning point, we have
∫ r2

0

√

γ (r, k) dr = (n − 1
4)π, n = 1,2, . . . (13)

IV. Mode-matching for piecewiseconstant impedance

As a reference case, we consider a duct that is divided in axial segments, each having a constant impedance.
For each segment, theacousticpressureisgovernedby thePridmore-Brownequation, asdiscussed previously. For
the segmented case, we assume uniform mean flow and constant temperature, so the Pridmore-Brown equation
reduces to Bessel’s equation, which has analytical solutions. To compute the field inside the entire duct, we
relate the modes in adjacent segments by continuity of pressure and axial velocity, the so-called mode-matching
method. We describe the approach that was implemented in the NLR codeBAHAMAS, which isan extension of
theapproach described in Reference21 to multiple lined sections.

1Theaxial modal wavenumber kmn is not the actual eigenvalue, but directly depends on it.
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V. Slowly varying modes for slowly varying impedance  
 (axial WKB approximation) 

A
I

mn

B
I

mn

A
II

mn

B
II

mn

x = x0 x = x1 x = x2

hard wall soft wall

Figure 2. Mode matching geometry.

Consider two segments I and II, left and right of an interface(see Fig-
ure 2), where segment I has a hard wall and segment II has an impedance
wall. The total field for a given circumferential wavenumberm in each
segment is a superposition of all (in practice limited tonmax) modes

p̃ I (x, r) =
∞
∑

n=1

(

AI
mnϕ

+
mn(r) eiκ+

mn x +B I
mnϕ

−
mn(r) eiκ−

mn x
)

, (14)

p̃ I I (x, r) =
∞
∑

n=1

(

AI I
mnψ

+
mn(r) eik+

mn x +B I I
mnψ

−
mn(r) eik−

mn x
)

, (15)

whereA andB are the amplitudes of the right and left running modes in eachsegment, respectively. In the hard-
walled sections the left and right running mode shapes are the same, soϕ+

mn = ϕ−
mn. Continuity of pressure and

axial velocity at each interface and the subsequent projection on the set of hard-wall modes yields a linear system
for the amplitudes

[

c+ −a−

d+ −b−

][

A I I

BI

]

=
[

a+ −c−

b+ −d−

][

A I

BI I

]

.

In this system, the modal amplitude vectorsA I I andBI for the outgoing waves are computed from the amplitude
vectorsA I andBI I of the incident waves. Thenmax × nmax sized matricesa,b, c,d are based on overlap integrals
of Bessel functions. The combined transmissions and reflections at all interfaces give the total field in the entire
duct.

V. Slowly varying modes for slowly varying impedance (axialWKB approximation)

If the impedance varies in the axial direction, there are strictly speaking no modes possible anymore. However,
if we assume that the inherent length scaleL of typical variations ofZ(x̂/L) (wherex̂ = Rx is the dimensional
axial coordinate) is large compared to the duct radiusR, i.e.

Z
( x̂

L

)

= Z
( R

L
x
)

= Z(εx) = Z(X), ε = R

L
≪ 1, X = εx, (16)

we can use this small parameterε to construct so-called slowly varying modes by a variant of the WKB method.
Assuming that the modal wavenumbers are typically equal or larger thanO(1), we approximate the acoustic field
by modes of which the amplitude, mode shape and modal wavenumber vary only slowly in the axial direction. We
assume modal solutions of the form

[ũ, ṽ, w̃, ρ̃, p̃, T̃ ](r, X) = [U, V ,W, D, P, T ](r, X) exp
( i

ε

∫ X

0
µ(η)dη

)

, (17)

whereµ(X) is the axial wavenumber depending on the slow coordinateX . This is the so-called WKB assumption.
Substituting (17) into (4) yields

−i3D + εū
∂D

∂X
+ 1

r

∂

∂r

(

r ρ̄V
)

+ ρ̄
( im

r
W + ε

∂U

∂X
+ iµU

)

= 0, (18a)

−i3U + εū
∂U

∂X
+ dū

dr
V + 1

ρ̄

(

ε
∂P

∂X
+ iµP

)

= 0, (18b)

−i3V + εū
∂V

∂X
+ 1

ρ̄

∂P

∂r
= 0, (18c)

−i3W + εū
∂W

∂X
+ im

r ρ̄
P = 0, (18d)

−i3T + εū
∂T

∂X
+ dT̄

dr
V + (γ − 1)T̄

[1

r

∂

∂r

(

r V
)

+ im

r
W + ε

∂U

∂X
+ iµU

]

= 0, (18e)

γ P = ρ̄T + T̄ D, (18f)

with 3 := ω − µū. The corresponding boundary condition obtained from (5) is

−iωV = − i3

Z
P + εū

∂

∂X

( P

Z

)

, atr = 1. (18g)
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Expand the amplitude functions inε as follows2

[U, V ,W, D, P, T ](r, X; ε) = [U0, V0,W0, D0, P0, T0](r, X)+ ε[U1, V1,W1, D1, P1, T1](r, X)+ O(ε2). (19)

The leading order equations obtained after substitution ofthis expansion in equations (18) are

−i3D0 + 1

r

∂

∂r

(

r ρ̄V0

)

+ ρ̄
( im

r
W0 + iµU0

)

= 0, (20a)

−i3U0 + dū

dr
V0 + iµ

ρ̄
P0 = 0, (20b)

−i3V0 + 1

ρ̄

∂P0

∂r
= 0, (20c)

−i3W0 + im

r ρ̄
P0 = 0, (20d)

−i3T0 + dT̄

dr
V0 + (γ − 1)T̄

[1

r

∂

∂r

(

r V0

)

+ im

r
W0 + iµU0

]

= 0, (20e)

γ P0 = ρ̄T0 + T̄ D0, (20f)

with the boundary condition

− iωV0 = − i3

Z
P0, at r = 1. (20g)

This system of equations has the same structure as (7), the only difference being the dependence onX , which
serves as a parameter. Therefore, we have effectively the same equation as (8) for the pressureP0

LP0 :=
[

∂2

∂r2 +
(1

r
− 2

3

∂3

∂r
+ T̄ ′

T̄

) ∂

∂r
+

(32

T̄
− µ2 − m2

r2

)

]

P0 = 0, (21a)

a regularity condition atr = 0 and a boundary condition

∂P0

∂r
− i32ρ̄

ωZ
P0 = 0, atr = 1. (21b)

For every fixedX , this problem is exactly the same as the constant impedance problem described by (8) and (9).
The general solution will be of the form

P0(r, X) = N(X)ψmn (r, X), (22)

whereψmn is again an eigenfunction, essentially the same asψmn of (10), this time parametrically depending on
X , andN(X) is a slowly varying amplitude function that is still unknown. As before, solving forψmn includes
the axial wavenumberµmn as a function ofX for any givenω andm.

To determineN(X), the first order equations obtained from (18) after the expansion in (19) are needed. We
do not have to solve them, but we need minimal conditions for the existence of the solution. These equations are

−i3D1 + 1

r

∂

∂r

(

r ρ̄V1

)

+ ρ̄
( im

r
W1 + iµU1

)

= −
(

ū
∂D0

∂X
+ ρ̄

∂U0

∂X

)

, (23a)

−i3U1 + dū

dr
V1 + iµ

ρ̄
P1 = −

(

ū
∂U0

∂X
+ 1

ρ̄

∂P0

∂X

)

, (23b)

−i3V1 + 1

ρ̄

∂P1

∂r
= −ū

∂V0

∂X
, (23c)

−i3W1 + im

r ρ̄
P1 = −ū

∂W0

∂X
, (23d)

−i3T1 + dT̄

dr
V1 + (γ − 1)T̄

[1

r

∂

∂r

(

r V1

)

+ im

r
W1 + iµU1

]

= −
[

ū
∂T0

∂X
+ (γ − 1)T̄

∂U0

∂X

]

, (23e)

γ P1 = ρ̄T1 + T̄ D1, (23f)

with regularity condition atr = 0 and boundary condition

− iωV1 + i3

Z
P1 = ū

∂

∂X

( P0

Z

)

at r = 1. (23g)

2Note that the subscript0 is not to be confused with the subscript for reference value.
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In a similar way as before, we can find a single equation forP1 with a right-hand side that only containsP0. The
result after some laborious calculations is

LP1 = F := −2iū

3

∂

∂X

[ ∂

∂r
ln

(3

ū

)∂P0

∂r

]

− i
ū

P0

∂

∂X

[(3

T̄
+ µ

ū

)

P2
0

]

, (24a)

with
∂P1

∂r
− i32ρ̄

ωZ
P1 = − ūρ̄Z

ωP0

∂

∂X

(3P2
0

Z2

)

, atr = 1. (24b)

Instead of solving forP1, which would lead to yet another undetermined factor, we aregoing to derive a solvability
condition for (24) that only contains leading order information. This is achieved by multiplying (24a) bȳT P0/3

2,
(21a) byT̄ P1/3

2, subtracting the two equations and integrating the result.This gives

∫ 1

0

T̄

32

(

P0LP1 − P1LP0

)

rdr =
∫ 1

0

T̄

32 P0F rdr. (25)

One can show that the operator
(

r T̄ /32
)

L is self-adjoint, so that the left-hand side of (25) can be reduced to a
term containing only boundary data, i.e.

∫ 1

0

T̄

32

(

P0LP1 − P1LP0

)

rdr =
∫ 1

0

∂

∂r

[r T̄

32

(

P0
∂P1

∂r
− P1

∂P0

∂r

)]

dr =
[r T̄

32

(

P0
∂P1

∂r
− P1

∂P0

∂r

)]r=1

r=0
= T̄

32

(

P0
∂P1

∂r
− P1

∂P0

∂r

)
∣

∣

∣

r=1
= − ū Z

ω32

∂

∂X

(3P2
0

Z2

)
∣

∣

∣

r=1
, (26)

where we also used the boundary conditions (21b) and (24b). Using this result together with (24a) in (25) then
leads to the following solvability condition for the first order problem

i
∫ 1

0

{2ūT̄

33
P0

∂

∂X

[ ∂

∂r
ln

(3

ū

)∂P0

∂r

]

+ ūT̄

32

∂

∂X

[(3

T̄
+ µ

ū

)

P2
0

]}

rdr − ū Z

ω32

∂

∂X

(3P2
0

Z2

)
∣

∣

∣

r=1
= 0. (27)

The next step is to substitute the general solution ofP0 shown in (22) into (27). After working out and rearranging
terms, we arrive at a first order equation for the amplitude function N

g(X)
dN2

dX
= − f (X)N2(X), (28a)

with (in principle known) functions

f (X) = i
∫ 1

0

{2ψ

33

∂

∂X

[

ūT̄
∂

∂r
ln

(3

ū

)∂ψ

∂r

]

+ 1

32

∂

∂X

[(

ū3+ µT̄
)

ψ2
]}

rdr − ū Z

ω32

∂

∂X

(3ψ2

Z2

)
∣

∣

∣

r=1
,

g(X) = i
∫ 1

0

{ ψ

33
ūT̄

∂

∂r
ln

(3

ū

)∂ψ

∂r
+ ū3+ µT̄

32
ψ2

}

rdr − ū

ω3Z
ψ2

∣

∣

∣

r=1
.

(28b)

This equation has the solution

N2 = N2
0 exp

(

−
∫ X

0

f (η)

g(η)
dη

)

, (29)

whereN0 is a normalization constant that can be determined from the source, e.g. at the beginning of the duct.
In principle, (22) can now be computed, provided the partialderivatives∂µ(X)/∂X and∂ψ(r, X)/∂X are

known. Sinceµ(X) andψ(r, X) are only known from the solution of the Pridmore-Brown equation, which has to
be solved numerically, theX-derivatives have to be computed numerically as well.

The results can be simplified for some special cases. For uniform mean flow and arbitrary temperature we
have

f (X)

g(X)
=
∂a(X)

∂X
−

[ iū3

ωZ2ψ
2 dZ

dX

]

r=1

a(X)
, where a(X) =

∫ 1

0

(

ū3+ µT̄
)

ψ2rdr +
[ iū3

ωZ
ψ2

]

r=1
, (30)

such that (29) is reduced to

N2(X) =
N2

0

a(X)
exp

(

−
∫ X h(η)

a(η)
dη

)

, where h(X) =
[ iū3

ωZ2
ψ2 dZ

dX

]

r=1
. (31)
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VI. Numerical approach: COLNEW and path-following 

For zero mean flow and arbitrary temperature, this can be reduced even further, to

N2(X) = N2
0

(

µ

∫ 1

0
T̄ψ2rdr

)−1
. (32)

The result in (29) may be compared with the one given by [9], where the duct varies in diameter and the mean
flow includes swirl, but the impedance is taken constant. With the APU geometry in mind of a constant duct but
varying impedance, we could obtain a simpler result, that isrelatively easily applicable when numerical solutions
of the Pridmore-Brown equation are available.

VI. Numerical approach: COLNEW and path-following

As discussed above, the Pridmore-Brown equation describesan eigenvalue problem with infinitely many solu-
tions. In case of a hard wall, uniform mean flow and constant temperature, the classical analytical solutions exist
in the form of Bessel functions (section III), while the eigenvalues are given through the easily found (because
real) zeros of the derivatives of the Bessel function. For most other cases solutions have to be found entirely
numerically.

Among realized methods to solve the BVP are the direct shooting method [22] and various collocation methods
[7–9,23,24]. The advantage of a shooting method is obviously its simplicity, but care is required when the solution
is zero or very small at both ends of the interval. Therefore,also here a collocation method is chosen, viz. the
standard implementation COLNEW [13, 25], which is freely available from Netlib [26]. This code is capable of
solving mixed-order systems of BVPs in ODEs. It is based on collocation at Gaussian points using a Runge-Kutta
monomial basis representation, it uses a damped Newton solver to solve the system of non-linear equations and it
has automatic meshing.

We first put the eigenvalue problem in a form suitable for a standard BVP solver by adding the axial wave
numberk to the solution vector, introducing the extra equationk ′ = 0, adding a normalizing boundary condition
like P(1) = 1, and splitting the equations in real and imaginary parts.

Then we make sure to have suitable starting guesses. As an eigenvalue problem, the system of equations
to be solved is non-linear. As with any non-linear problem itis important to start with a good initial guess.
This is particularly important if we want to make sure to find all (i.e. all physically relevant) solutions (modes)
and corresponding eigenvalues (modal wave numbers). This is realized by a path-following (or continuation)
approach, where we start from an “easy” solution (in our casea hard-walled duct with uniform mean flow velocity
and temperature) and trace the solution when the relevant problem parameters are varied until they reach their
target values. Essentially, we embed the problem in a formulation with a continuation parameterλ. Path-following
can thus be seen as an evolution problem [14, 16] with the problem evolving from a known solution forλ = 0 to
the target solution atλ = 1.

Apart from making sure that our calculation converges, thatwe can find all solutions, and that we can investi-
gate the behaviour of a solution as a function of a parameter,there is another advantage of path-following. When
we are interested in a series ofλ-values of the same continuation, for example when performing parameter scans,
it is very efficient to save intermediate solutions when theyare passed along the way.

To compute the relevant solution with mean flow velocityM(r), temperatureT (r) and impedanceZ starting
from the analytical solution for uniform mean flow with Mach numberM0, uniform temperature and an (almost)
hard-wall impedanceZ∞ we use the embedding

ū(r) = (1 − λ)M0 + λM(r),

T̄ (r) = (1 − λ) + λT (r), (33)

Z = (1 − λ)Z∞ + λZ .

(Other continuation parameterizations are also possible,but this was found to work generally well.) We vary
the impedance along a vertical trajectory in the complex plane (up or downwards, depending on the mean flow
Mach number) in order to have certainty about finding all possible surface modes [15]. The impedance, mean
flow velocity and temperature are gradually changed to theirdesired non-uniform profiles in parallel, or one after
another.

Since each solution of the Pridmore-Brown equation is characterized by an eigenfunction and an axial wavenum-
berk, we can tracek(λ) as a curve in the complex plane. To determine the number of intermediate solutions and
the corresponding values ofλ we use a prediction-correction scheme [16] (see Figure 3). We use linear extrapo-
lation of two previously computedk-values for the prediction step. In general, the predictionwill not satisfy the
Pridmore-Brown equation. The prediction is therefore corrected subsequently.

We trace the eigenvaluek = k(λ) and solution vectoru = u(λ) for λ ∈ [0,1] using stepsh j := λ j − λ j−1.
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From two previous solutionsk j−2 = k(λ j−2) andk j−1 = k(λ j−1)we predict a value fork j by linear extrapolation

k̃ j = k j−1 + h j
k j−1 − k j−2

h j−1
. (34)

The prediction ofu is performed similarly. By substitutingλ j−1 andλ j−2 in the Taylor series expansion ofk(λ)
aroundλ = λ j we find expressions fork j−1 andk j−2 that can be used with (34) to find

k̃ j = k j − 1
2h j (h j + h j−1)k

′′
j + · · · . (35)

Thus the errorǫ j between the exact and predicted value is

ǫ j =
∣

∣k j − k̃ j
∣

∣ =
∣

∣

1
2h j (h j + h j−1)k

′′
j + · · ·

∣

∣ = ch2
j , (36)

wherec (i.e.∼ k ′′
j ) is assumed to be sufficiently smooth. Given thisj -th step error, we can compute the next step

sizeh j+1 such that the error remains around some toleranceǫtol = ch2
j+1. This leads to

h j+1 = h j
h j+1

h j
= h j

√

√

√

√

ch2
j+1

ch2
j

= h j

√

ǫtol

ǫ j
. (37)

This tolerance level is selected as follows. The left and right running hard-wall uniform-flow axial wavenumbers
k̂ of circumferential orderm and radial ordern are given by

k̂mn =
−ωM0 ±

√

ω2 − α2
mn(1 − M2

0)

1 − M2
0

,

with αmn then-th zero j ′
mn of the derivative of BesselfunctionJm . These zeros can be approximated byj ′

mn ≃
(n + 1

2 m − 3
4)π . Consequently, the difference1k = |k̂ j+1− k̂ j | between two adjacent axial wavenumbers that lie

away from the real axis is approximately constantπ/
√

1 − M2, whereas for modes that lie close to the real axis
1k depends onω. This motivates the choice

ǫtol = ǫ̃tol1kref,

where1kref := |k̂ j+1 − k̂ j | depends on the mode considered andǫ̃tol is a parameter, equal for all modes, that has
to be chosen. We also add an upper limithmax to the step size. We finally have:

h j+1 = min
[

h j

√

1kref ǫ̃tol

ǫ j
, hmax

]

(38)

In some cases, a small change inλ results in a big change in the solution. It is even possible to‘jump’ to
another mode. Therefore, we restart from the former solution with a halved step size when the error is too large,
i.e, whenǫ > ǫmax.

There is some trade-off in choosing the parametersǫ̃tol, ǫ̃max, hmax and the initial step sizeh1; we would like
to travel through the path quickly, while at the same time maintaining a certain confidence that we do not ‘jump’
to another mode.

prediction
correction

prediction

correctionk(λ0)

k(λ1)

k̃(λ2) = kpred

curve that satisfies BVP

numerical solutions to BVP

k(λ2) = kcorr

ǫ = |kpred − kcorr|

Figure 3. Prediction-correction scheme.
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VII. Numerical results 

VII.A Exponentially decaying eigenfunctions 

VII. Numerical results

VII.A. Exponentially decaying eigenfunctions

Our numerical solution has obviously been thoroughly tested in the cases of a uniform mean flow and mean
temperature, where analytic solutions are available to compare with.

For non-trivial cases of non-uniform mean flow it is much harder to find suitable test cases. A possible
configuration is a strongly non-uniform (parabolic) mean flow with upstream running modes of sufficiently high
frequency. The modes will refract to the part of the medium with the lowest (effective) sound speed [27], which
is in this case the duct center. The wave becomes exponentially small near the wall, which may be challenging
for numerical methods like shooting. However, the WKB solution of section (III.A) is very applicable and will
therefore be used here for making a comparison.

Consider the case whereω = 25, m = 5, Z = 2 − i, the mean flow temperature is unity, and the mean flow
velocity is M(r) = 2

3(1 − 1
2r2). The first 6 upstream running eigenfunctions, decaying exponentially towards the

wall, are depicted in Figure 4. A comparison of the axial wavenumbers found by COLNEW with the wavenumbers
determined by the quantization condition (12) shows an excellent agreement, see Table 1. As there is little or no
influence of the impedance wall, the wave numbers are practically real. Only for the higher order modes the
damping of the wall becomes little by little effective as theimaginary parts of the wave numbers become negative
(note: left-running modes with exp(−iωt) convention).
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(f) n = 6

Figure 4. Upstream-running modes in non-uniform mean flow, refracting away from the duct wall.

n k according to radial WKB k found by COLNEW

1 -60.470050 -60.4392

2 -55.761477 -55.7281

3 -51.134220 -51.0980 - 0.0000i

4 -46.605341 -46.5659 - 0.0003i

5 -42.195806 -42.1422 - 0.0212i

6 -37.931062 -37.5622 - 0.3254i

Table 1. Modal wave numbersk, corresponding to figures (4), found from WKB’s quantization condition and by COLNEW.
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VII.B APU exhaust duct with slowly varying impedance 

VII.B. APU exhaust duct with slowly varying impedance

In this section we show some numerical results for test casesmotivated by a realistic APU exhaust duct, having
a length of 1 m and a radius of 0.15 m. We choose the reference temperatureT0 = 700 K and the mean density
ρ0 = 0.5 kgm−3, corresponding to a reference sound speed ofc0 = 549 ms−1. We consider cases where ImZ(x)
varies linearly with fixed ReZ = 1.5, and cases where the liner is modeled as a Helmholtz resonator [28]. To
assess the applicability of the WKB method and estimate the truncation error in the WKB expansion (which is
O(ε), see (19)), we need to estimateε. This can be done by noting that ifZ varies typically over a length scaleL,
we have

R

Z

d

dx
Z(x/L) = R

L

Z ′(x/L)

Z
= O(ε), (39)

since by assumptionZ ′/Z = O(1). We plot contour lines of the pressure field, with onen-th order radial mode as
input atx = 0 (usually,n = 1). For cases of uniform mean flow velocity and temperature wecompare the (axial)
WKB results with the BAHAMAS results. The eigenfunctions are normalized according to

∫ 1

0
|ψ|2rdr = 1, ψ ′(1) ∈ R

+, (40)

which is the convention used in BAHAMAS.
For the WKB results we first compute the eigenfunctions and axial wavenumbers for 200x-values in the range

from 0 to 1 by using our mode solver. (Note that the small parameterε only acts as a bookkeeping parameter since
we can write everything as a function of slow variableX .) Subsequently, the amplitudesN(X) are computed
using (29) or using the special cases (32) and (31). The integrals overη are computed by using a trapezoidal rule,
which enables us to use all computed eigenfunctions (for allX-values) for the field plot. We use a higher number
of X-values than necessary to achieve the required accuracy in order to have smooth contour plots. The integrals
overr in (28b), (30) and (32) are computed by using the QUADPACK [29] code (which is based on an adaptive
Gauss-Kronrod rule), the accuracy of which actually commensurates with the other integral rule. We motivate this
choice by noting that the eigenfunction (and hence the integrand in the radial direction) can be oscillatory, while
the integrands in the axial direction are slowly varying. For non-uniform mean flow we need to computef (X).
Working out (28b) yields

f (X) = i
∫ 1

0

{

−2ωψ T̄

35

dū

dr

[

3
∂2ψ

∂r∂X
+ ū

dµ

dX

∂ψ

∂r

]

+ ψ

32

[

(T̄ − ū2)
dµ

dX
ψ + 2(ū3+ µT̄ )

∂ψ

∂X

]

}

rdr

− ūψ

ω32Z2

[

23Z
∂ψ

∂X
−

(

Zū
dµ

dX
+ 23

dZ

dX

)

ψ
]

r=1
. (41)

The X derivatives (which are not available analytically) are computed by using second order finite differences.
To test the WKB approach we first letZ(x) vary linearly from 1.5 − i to 1.5 + i, which corresponds to an

estimatedε = 0.2. Figure 5 shows the piecewise impedance for the segments that are used in BAHAMAS.
From Figure 6(a) and Figure 6(b) it is clear that the difference between constant impedance and axially varying
impedance is significant, so thex-dependency ofZ has to be taken into account. Figure 6(b) shows that the WKB
and the BAHAMAS results agree reasonably well for this not very small choice ofε. From Figure 6(c), with the
same parameter values and mean flow mass flux as before but a parabolic mean flow profile, we conclude that
the effect of a non-uniform mean flow is not to be neglected. The present difference is explained by the fact that
downstream running sound waves are refracted towards the lined wall [27], resulting in more damping.

0 0.2 0.4 0.6 0.8 1
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−0.5
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0.5

x (m)

Im
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ρ 0 c

0))

 

 

WKB

BAHAMAS

Figure 5. Z varies linearly from 1.5− i to 1.5 + i, ε ≈ 0.2.
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In the next configuration, we letZ(x) vary linearly from 1.5 − 2i to 1.5 + 2i along the same interval, which
corresponds to a higher estimatedε of 0.4. The truncation error in the WKB approximation is now larger and we
may expect a bigger difference between the WKB and the BAHAMAS solutions. This is indeed the case, as is
shown in Figure 7. Nearx = 0.7 m, some signs of intermodal scattering are visible, which is explicitly not taken
into account by the WKB method.

constant impedance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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(a) Z = 1.5 − i, uniform mean flow velocityM0 = 0.3.

BAHAMAS
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WKB
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(b) Same as Figure 6(a), exceptZ varies linearly from 1.5 − i to 1.5 + i soε ≈ 0.2.

WKB
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(c) Same as Figure 6(b), except mean flow velocityM(r) = M0
4
3 (1− 1

2r2) with M0 = 0.3.

Figure 6. ω = 10, m = 2, n = 1

BAHAMAS
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Figure 7. ω = 10, m = 2, n = 1, uniform mean flow velocity M0 = 0.3, Z varies linearly from 1.5− 2i to 1.5 + 2i soε ≈ 0.4.

To evaluate the applicability of the WKB method for a realistic APU exhaust duct geometry, we now consider
a locally reacting liner with a cell depthd(x) that is axially varying from 7 cm to 1 cm along the duct. The
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dimensional impedance is modeled as a Helmholtz resonator,described (withe−iωt convention) as

Ẑ = Ẑ0 + iρ0c0 cot(ω̂d/c0), (42)

whereω̂ is the dimensional frequency and̂Z0 is the face sheet impedance

Ẑ0 = R̂0 − iω̂m̃. (43)

We choose a facing sheet resistance ofR̂0 = 400 kgm−2s−1, and a mass reactance ofm̃ = 0.001 kgm−2. We
remark that this is only a model and the reference sound speedc0 may be different from the sound speed at the
wall for non-uniform temperature profiles. Figure 8 shows the imaginary part of the impedance as a function ofx
for two different frequencies. Note that forω = 10 resonance occurs; close tox = 0.4 m the liner behaves as a
hard wall.
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Figure 8. Z modeled as Helmholtz resonator with liner depth that varieslinearly from 7 cm to 1 cm. Left: ω = 6 (ε ≈ 0.3), right: ω = 10 (resonance
occurs).

Figure 9 show the acoustic field forω = 6. On the interval considered, there is no location where theHelmholtz
resonator is in resonance;Z(x) is slowly varying with an estimatedε = 0.3. The WKB and BAHAMAS results
show rather good agreement, about what can be expected from this value ofε.
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Figure 9. ω = 6, m = 2, n = 1, uniform mean flow velocity M0 = 0.3, Z modeled as Helmholtz resonator with liner depth that varieslinearly from 7 cm
to 1 cm.

However, whenω = 10 we do have resonance nearx = 0.4 so the assumption of a slowly varyingZ(x)
is, at least near this point, not valid anymore. Indeed, thiscan be identified from Figure 10, where the region
of resonance seems to excite the second radial mode, an effect which cannot be described by (straight-forward)
application of the WKB method.

With a realistic APU exhaust duct, cool air is let in nearx = 0 along the wall (see Figure 1). This produces a
strong radial temperature gradient. We modeled this by a tanh-type profile, given in Figure 11. The effect of this
temperature gradient is that it creates effectively two concentric ducts, each with its own propagation properties.
These duct fields are not completely independent of each other. Sound waves from the center region (with the
highest sound speed) will refract (by a form of Snell’s law) to the colder annular region. However, sound in
the annular region refract only if the angle between duct axis and their propagation direction is not too small.
Otherwise, the annular region will act as a duct on its own.

This is illustrated in Figure 12, where the fields are plottedfor the first two right-running radial modes. In case
of the first mode, the field is virtually only existent in the colder outer region. The field of the second mode exists
in both, but such that the sound waves refract from inside to outside.
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Figure 10. ω = 10, m = 2, n = 1, uniform mean flow velocity M0 = 0.3, Z modeled as Helmholtz resonator with liner depth that varieslinearly from 7
cm to 1 cm.
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VIII. Conclusions

The WKB method for slowly varying modes was applied to a typical geometry of an APU exhaust.
The numerical evaluation of the mode shape functions (solutions of the Pridmore-Brown equation) is realized

by application of the freely available, standard implementation COLNEW, a code based on a general collocation
method for non-linear boundary value problems. In order to find all modes, the modal solver is embedded in a
path-following (or continuation) procedure with automatic adaptation of the step size.

In order to test the numerical Pridmore-Brown solutions fornon-trivial situations, favorable comparisons have
been made with analytic approximate solutions of WKB type (in radial direction, not to be confused with the axial
WKB solutions of modes varying slowly along the duct).

To demonstrate the value of our slowly varying modal solution, a number of tests have been made. For a wall
impedance that varies slowly in axial direction - slow enough to be within the range of applicability of the WKB
method - the results agree well (depending on the small parameter) with the BAHAMAS reference solution based
on uniform flow and a piecewise constant impedance. On the other hand, the WKB solution lacks to capture
typical phenomena associated with resonance that invariably occurs when the impedance wall is of Helmholtz
resonator type. This is not unexpected as the liner reactance changes sign via “infinity” along a short interval and
therefore is locally not slowly varying. In reality we will observe intermodal scattering, which is, by assumption,
excluded in a WKB solution.

Finally, a few typical results are presented for non-uniform flow and a strong temperature gradient.
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