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Executive summary

Acoustic modes in a duct with slowly varying impedance and
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non-uniform mean flow and temperature
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Problem area

Noise from the auxiliary power unit
(APU) is becoming an increasingly
important aircraft design constraint
because of the noise exposure
during ground operations (“ramp-
noise”). Reduction of noise may be
achieved by liners in the exhaust
duct. In this paper, we consider the
propagation of sound through the
APU exhaust duct, which is
typically straight with an axially
varying liner depth, a non-uniform
mean flow and strong temperature
gradients.

Description of work

We present a solution in the form of
slowly varying modes of WKB type
for the acoustic pressure field inside

UNCLASSIFIED

liner cavity

temperature
profile T'(r)

a duct with an impedance that is
continuously varying in the axial
direction. In cross-wise direction
each WKB mode is given by
eigenfunction-type solutions of the
Pridmore-Brown equation. A new
numerical approach based on a
standard implementation of a
collocation method supplemented
by a path-following procedure is
presented to solve this equation. We
compare the results of the slowly-
varying solution with a solution
based on mode-matching between
axial segments with constant
impedance.

Results and conclusions
In order to test the numerical
Pridmore-Brown solutions for non-
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trivial situations, favorable
comparisons have been made with
analytic approximate solutions of
WKB type (in radial direction, not
to be confused with the axial WKB
solutions of modes varying slowly
along the duct).

To demonstrate the value of our
slowly varying modal solution, a
number of tests have been made.
For a wall impedance that varies
slowly in axial direction — slow
enough to be within the range of
applicability of the WKB method —
the results agree well (depending on
the small parameter) with the
BAHAMAS reference solution
based on uniform flow and a
piecewise constant impedance. On
the other hand, the WKB solution
lacks to capture typical phenomena
associated with resonance that
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Acoustic modes in a duct with slowly varying impedance and non-uniform
mean flow and temperature

invariably occurs when the
impedance wall is of Helmholtz
resonator type. This is not
unexpected as the liner reactance
changes sign via “infinity” along a
short interval and therefore is
locally not slowly varying. In
reality we will observe intermodal
scattering, which is, by assumption,
excluded in a WKB solution.
Finally, a few typical results are
presented for non-uniform flow and
a strong temperature gradient.

Applicability

The method described in this paper
can be applied to study sound
propagation through a duct with
axially varying impedance, non-
uniform mean flow velocity and
non-uniform temperature, like for
example an APU exhaust duct.
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Acoustic modes in a duct with slowly varying impedance
and non-uniform mean flow and temperature

M. Oppeneer W.M.J.Lazerom§ S.W.Rienstrd R.M.M.Mattheif P. Sijtsmd
NLR/TUE TUE/KTH TUE TUE NLR

Noise from the auxiliary power unit (APU) is becoming an increasingly important aircraft design con-
straint because of the noise exposure during ground operains (“ramp-noise”). Reduction of noise may
be achieved by liners in the exhaust duct. In this paper, we Wiconsider the propagation of sound through
the APU exhaust duct, which is typically straight with an axally varying liner depth, a non-uniform mean
flow and strong temperature gradients. We present a solutiorin the form of slowly varying modes of
WKB type for the acoustic pressure field inside a duct with an impedance that is continuously varying
in the axial direction. In cross-wise direction each WKB moc is given by eigenfunction-type solutions
of the Pridmore-Brown equation. A new numerical approach baed on a standard implementation of a
collocation method supplemented by a path-following procgure is presented to solve this equation. We

compare the results of the slowly-varying solution with a stution based on mode-matching between axial
segments with constant impedance.

. Introduction

Over the past decades, aero-acoustic research for linedifiots was primarily aimed at reducing the noise
levels in inlet and exhaust ducts of turbo-fan engines. &siecently, however, the so-called “ramp-noise” due to
the auxiliary power unit (APU) is given attention as well,ialsas become a significant design constraint [1]. In
this paper, we will consider the propagation of sound thiaihg APU exhaust duct. This duct is typically straight
and circular-cylindrical, and carries a non-uniform meanvflvith strong temperature gradients. The acoustic
impedance at the wall is axially varying due to the varyimgfidepth (see Figure 1).

cool air inlet

hard wall resistive sheet

exhaust

liner cavity

mean flow velocity =~ temperature
profile @(r) profile T'(r)

Figure 1. APU exhaust duct geometry.

To compute the sound inside the duct, we formulate the pnoliheterms of acoustic duct modes. These
modes are solutions of the so-called Pridmore-Brown eqn#, 3]. Modes exist in configurations with properties
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independent of the axial coordinate, i.e. ducts of consteygs-section, mean flow and wall impedance. Modes
in a strict sense cease to exist if one of the problem parameteies with the axial coordinate. However, if
this variation is slow, it is possible to identify approxitaaolutions in the form of slowly varying “modes” by
employing the WKB method (hamed after Wentzel, Kramers atiltbBin [4]), or method of multiple scales. This

is in principle possible for any of the problem parameterslf, although its use is restricted by the availability
of the solution of the remaining equation. In this paper wespnt a slowly varying mode solution for a varying
impedance and otherwise constant duct and non-uniform fi@awelocity and temperature.

The cross-wise mode shape of a slowly varying mode is givehé&yridmore-Brown equation, which there-
fore has to be solved at each axial location. To this end wehes€OLNEW [13] code, which solves boundary
value problems (BVPs) in ordinary differential equatio®®Es) by collocation. By simply adding the axial wave
numberk to the solution vector and introducing the extra equakioa 0, our eigenvalue problem is easily made
fit to the code.

The infinitely many solutions correspond in general witHedi#nt (complex) values df = k,, known as
the modal spectrum (we neglect here the possibility of aiooous spectrum as this is acoustically of limited
importance). In order to find all (relevant) solutions, wedia path-following (or continuation) approach, where
we start from an “easy” solution (for example a hard-walledtdvith uniform flow) and trace the solution when
the relevant problem parameter(s) is/are varied to thee{g)wf interest.

Path-following has been used before for the case of unifoeamflow and a path in the impedance plane from
hard wall to the impedance considered [14]. We will take itoount, however, that not any path is suitable to
find all modes, as has been noted in [15]. In certain diresta@ithe complex impedance plane some modes will
be missed as they appear from or disappear to infinity. Int@ddiour path-following approach is refined by using
a prediction-correction scheme [16]. The prediction isfdby linear extrapolation of the previous solutions. The
correction step is then an updated solution by COLNEW, withgrediction as the starting value.

A numerical comparison will be made between some resultschas the WKB approach and some results
computed with a method based on mode-matching.

Il.  Problem formulation

We consider the following model for an Auxiliary Power UnARU) exhaust duct: a cylindrical, hollow,
acoustically lined duct with radiuR, see Figure 1. Inside the duct, we have an inviscid, non-teaducting,
ideal gas, described by the Euler equations

DD—f-I—me:O, (1a)
D
pﬁv—i—Vp:O, (1b)
%—i—(y—l)TVm:O, (1c)
where YDt := 9/dt 4+ v - V is the total derivative, and
p=pRT, (1d)

wheregR is the specific gas constant (for air: 286.73 J/kg K) anithe ratio of specific heats (for air 1.402) and
density, pressure, velocity and temperature are denoted by v and T, respectively. The wall is treated by a
locally reacting acoustic liner, which can be describedsfech frequency component by an impedarce

Based on a reference temperatiigeand densitypg, we make the problem dimensionless by scaling on duct
radiusR, densitypp and sound speeth = /¥y RTp. Note that this implies that the impedance is scaled on the
referencepgCo, rather than the more usual locaic) i -

The total field is a superposition of a steady, parallel meaw i = U(r)ex and time-harmonic acoustic
perturbations, in cylindrical coordinatés, r, 6) given by

[0, p, P, TIX,T,0,1) = [, 5, p, TI(r) + Re([f),,a, B, T]x, 1) exp(—iot +im0)), @)

wherew andm are the non-dimensional frequency and the circumferewdakenumber respectively. The mean
flow properties are taken to be independent ofvhich is possible because of the assumed inviscid and rat+-h
conducting medium. The wall impedance can depens,diut influences only the acoustic field. Consequently,
the mean flow quantities depend onlyran

1
T)

b= 0(r)ey, T=T(), . (3)

gell

1 _
=po=—, o) =
14



NLR-TP-2011-266 NLRS

>
Substituting (2) into (1) and linearizing yields the follmg system of equations for the perturbations

(—iw+u%)ﬁ+r}a(gfﬁ) +,6(i7mw+g—i) =0, (4a)
(—iw+u%)u+ﬁ$+%z—szo, (4b)
(—iw+a;fx)ﬁ+%%? —0, (4¢)
(-iw+u%)w+l—2ﬁ=o, (4d)
(—iw+u%)f+gaﬂy—lﬁ(%%(ra)ﬁ?m%) —o, (4e)
yp=5T +5T. (4

At the impedance wall, we use the Ingard-Myers [17, 18] bampdondition, which describes the effect of the
thin boundary layer on the impedance.
o . _d\/P
—iwd = (—m) + ua—x>(z), atr = 1. (5)

[ll. Pridmore-Brown equation for constant impedance

First, we consider a duct with a constant impedance alongvttle so the problem becomes invariant in the
axial direction. We introduce acoustic modes of the form

(0,9, w5, P, TIX,r)=[U,V,W, D, P, TI(r) exp(+ikx), (6)

wherek is the axial modal wavenumber, which is to be found togeth#r the modal shape function. When (6)
is substituted in (4), we have

. _ 1drpV) _/im i _
—i@— kDD + = —2 p(TW—HkU)_O, (7a)
Ciw—kau + vy Likp — o (7b)
dad  p
1dP
—i(@ —kO)V + =— =0, (7c)
o ar
. _ im
—i(w — kD)W + e P=0, (7d)
, _ dT _/1d im .
—|(w—ku)T+d—rV+(y—1)T(Fd—r(rV)+TW+|kU)_0, (7€)
yP =pT +DT. (7)

This system can be reduced further to a single ordinaryreiffigal equation for the pressure perturbation amplitude
P, yielding the Pridmore-Brown [2] equation

1 2k T (w — ki0)? m?
P’ +|= =[P +|———-K-—=|P=0 onO<r<1, 8
+[r+w—kU+T] +[ T rz] = ®)
where the prime is used to denote differentiation with resper. For uniform flowd = Mo and constant
temperaturd = 1, (8) reduces to Bessel's equation, with solution
P(r) = Adm(ar) + BYm(ar), o? = (o —kMg)? — k2.

The boundary condition (5) becomes

p’ — [M

wZT

Equation (8) has solutions that are singular at 0. To enforce regular solutions, we add the boundary caditi

]P:O atr = 1. (9a)

PP=0 atr=0, for m=#1, (9b)
P=0 atr=0, form=1 (9¢)
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Otherwise, P is determined up to a multiplicative constant. For each m, equation (8) has multiple solutions,
denoted by
P = Aymn(r). (10)

Each solution is characterized by the eigenfunction ymn (r) and the corresponding wavenumber® kpn. Left and
right-running waves will be distinguished by the sign of the imaginary part of kyn, or by taking the suitable limit
in Z if Im(kmn) = 0. In rare cases the mode may be an instability with ky, belonging to the other complex half
plane[15, 19], but we will not consider this here.

[11.A. A high-frequency approximation (radial WK B approximation of modes)

Since non-trivia solutions of (8) are unknown, or at least rare, it is useful to consider approximations. Following
the WK B-type method described in [ 3], we can find some approximate solutions for high frequency w. If wewrite

P" 4+ B, k)P +y(r, kP =0

and notethat 8 = O(1) and y = O(w?) when w — oo, we can make the WKB assumption
r
P(r) = A(r) exp(i f Er)dr’).
After sorting terms of equal order of magnitude, we find in the usual way the approximate equation

(y —EDA+I(EA+26A +EBA) +---=0.

This has solutions

w —ka
E=+/y, A=2"7
e A T

The resulting (not necessarily uniformly valid) solutions

w — ki
p= 2" T exp(:l:l/ J7 ds (12)

reveal the important information that acoustic solutions, wherek isreal or nearly real, are practically only impor-
tant along that part of ther -interval where y (r) > 0, and otherwise exponentially small. (Zeros of y are known as
turning points[5].) Generally, y isnegativenear r = 0 whenm # 0 (yielding the P oc r ™ behaviour nearr = 0),
with azero at say r1. Although not as general, this may also happen near r = 1, with azero at say r», depending
on details of the velocity and temperature profiles. If thisis the case and the solution is exponentially small near
r = 1, the effect of the boundary condition is negligible, and the solution is practically independent of the wall
impedance. The wave numbersk are then found from a“ quantization condition” [20] that requires that an integer
number of radial semi-wavelengths has to fit between the turning pointsr1 and rp, with on each side an extra %n
due tothe required matching through the turning point to the decaying field [5]. If m # 0 (and y has no more
zerosthanrq andry) thisconditionis

.
/i/y(r,k)dr:(n—%)n, n=12... (12)
r

If m = 0 with only one turning point, we have

/,/ r,kydr = (n—— n=12... (13)

IV.  Mode-matching for piecewise constant impedance

As areference case, we consider aduct that is divided in axial segments, each having a constant impedance.
For each segment, the acoustic pressure is governed by the Pridmore-Brown equation, as discussed previously. For
the segmented case, we assume uniform mean flow and constant temperature, so the Pridmore-Brown equation
reduces to Bessel’s equation, which has analytical solutions. To compute the field inside the entire duct, we
relate the modes in adjacent segments by continuity of pressure and axial velocity, the so-called mode-matching
method. We describe the approach that was implemented in the NLR code BAHAMAS, which is an extension of
the approach described in Reference 21 to multiple lined sections.

1The axial modal wavenumber knmpn is not the actual eigenvalue, but directly depends on it.
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Consider two segments | and |1, left and right of an interi@ee Fig- hard wall soft wall
ure 2), where segment | has a hard wall and segment Il has aadanpe Al A
wall. The total field for a given circumferential wavenumipein each min mn
segment is a superposition of all (in practice limitech§gx) modes
ad - o Bl BII
B0, 1) = 3 (A @iin () €% + Bl gy 1) €4m), - (14) @
n=1
oo _ L
rjl | X,r) = Z(AHn¢$n(r) elkmnx +Br!nlnwr;n(r) elkmnx)7 (15) T = x T =x T = X9
n=1

Figure 2. Mode matching geometry.

whereA and B are the amplitudes of the right and left running modes in sggment, respectively. In the hard-
walled sections the left and right running mode shapes @&sdme, s@;,, = ¢,,. Continuity of pressure and
axial velocity at each interface and the subsequent piojeon the set of hard-wall modes yields a linear system

for the amplitudes
¢t —a ||AlM] _at —c || A
dt —b=||B' | |[bt —d=|[|B"]|

In this system, the modal amplitude vectdrs andB!' for the outgoing waves are computed from the amplitude
vectorsA' andB'! of the incident waves. Theimax X Nmax Sized matrices, b, ¢, d are based on overlap integrals
of Bessel functions. The combined transmissions and raftexat all interfaces give the total field in the entire
duct.

V. Slowly varying modes for slowly varying impedance (axiaWKB approximation)

If the impedance varies in the axial direction, there arietbtrspeaking no modes possible anymore. However,
if we assume that the inherent length scalef typical variations ofZ(X/L) (whereX = Rx is the dimensional
axial coordinate) is large compared to the duct radRuse.

X R R
Z(I) - Z(Ex) =ZE0)=2Z(X). e=T <1 X=ex, (16)
we can use this small parameteto construct so-called slowly varying modes by a variantefWKB method.
Assuming that the modal wavenumbers are typically equalrger tharO(1), we approximate the acoustic field
by modes of which the amplitude, mode shape and modal waveerwary only slowly in the axial direction. We
assume modal solutions of the form

H X
[d, 3,9, 5, p, T1(r, X) = [U,V, W, D, P, T](r, X) exp(;—/O u(n)dn), 17)

wherew (X) is the axial wavenumber depending on the slow coordiKaf€his is the so-called WKB assumption.
Substituting (17) into (4) yields

—iAD+eu§+%%(rﬁv)+ﬁ(i7mw+e%+iuu):o, (18a)

—iAU +su%+$v+%(eg+mp) -0, (18b)

—iAV+EG%+%¥ -0, (18¢)

iAW + sug—V; + i—';P -0, (18d)

CiAT +£G% + gv - 1)T'[%%(rv) + ir—mW+e% + iuu] =0, (18e)
yP=5T +TD, (18f)

with A := w — pd. The corresponding boundary condition obtained from (5) is

. iA _od (P
—iwV = —?P + SUW(E) atr = 1. (189)
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Expand the amplitude functions inas follows
[U.V.W, D, P, TI(r. X; &) = [Uo, Vo, Wo, Do, Po, Tol(r, X) +&[U1, V1, Wi, D1, Pr, Tal(r, X) + O(e?). (19)

The leading order equations obtained after substitutidhisfexpansion in equations (18) are

. 10/ _ _/im .
—iADo + Fy(FpVo) + p(TWo + muo) —0, (20a)
. da i
—iAUg+ —Vo+ =Py =0, (20b)
dr p
10P
—iAvo+ =2 =0, (20c)
p ar
. im
—iAWp + 7 Py =0, (20d)
1)
. dT _rl1d im .
~iATo+ Vot (v l)T[Fa—r(rVo) +—Wo + muo] -0, (20€)
yPo= pTo+ TDo, (20f)
with the boundary condition
iA
—iwVo = —%Po, atr=1 (20g)

This system of equations has the same structure as (7), theliffierence being the dependence ¥n which
serves as a parameter. Therefore, we have effectively the sguation as (8) for the pressiig

92 1 23A T\ 9 A2 m?
LPpi=|—+(--—+=)—+(=-p?>—-—=)|Po=0, 21a
0 [8r2+(r A8r+T)ar+(T # r2)]° (212)

a regularity condition at = 0 and a boundary condition

APy  iA%p

——— — " Py=0, atr = 1. 21b

or wZ 0 ( )
For every fixedX, this problem is exactly the same as the constant impedaobéem described by (8) and (9).

The general solution will be of the form
Po(r, X) = NCX)¥mn (r, X), (22)

whereymn is again an eigenfunction, essentially the samggs of (10), this time parametrically depending on
X, andN(X) is a slowly varying amplitude function that is still unknowAs before, solving forym, includes
the axial wavenumberm, as a function ofX for any givenw andm.

To determineN (X), the first order equations obtained from (18) after the egjmemin (19) are needed. We
do not have to solve them, but we need minimal conditionsferexistence of the solution. These equations are

. 10, _ _/im . _0Dg _0Ug
—iAD+ o (rave) +A(Wa i) = —(052 +5557). (222)
. da i _dUg 10Pg
—iAU —Vi+ —P1=—(0—+—--—), 23b
Aot gt oh (uax ,5ax) (23b)
. 10P; _oVo
—iAVI+ —— = —-0—, 23c
1t S X (23¢)
. im _oWp
—iIAW  + —P1 = —0— 23d
1+r,6 1 IxX (23d)
, dT _rld im , _0To - dUop
—iAT + —V. —DT|=—(rV1) + —Wy +ipUs| = —|0— - DT — 23e
SR [rar< 1>+r b ] = | ax T ax]’ (23¢)
yP1=pT1+ TDx, (23f)
with regularity condition at = 0 and boundary condition
. iA _d /Po
—ioV14+ =P1=0—(—= atr =1 23
etz ax(z) (239)

2Note that the subscriptis not to be confused with the subscript for reference value.
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In a similar way as before, we can find a single equatiorFiowith a right-hand side that only contaifs. The
result after some laborious calculations is
2i6 0 10 AN\ 0Py VA 0 N AN
LPP=F =——|=In[=)—|-i=——|(=+ = )P, 24a
! Aax[ar (U)Br] POBX[<T+U) 0]’ (242)
with
AP iAZp apzZ 8 (AP
- 7 h= _—_<—2)
or wZ wPy dX\ Z
Instead of solving foPy, which would lead to yet another undetermined factor, weyaieg to derive a solvability
condition for (24) that only contains leading order infotioa. This is achieved by multiplying (24a) ByPo/ A2,
(21a) byT P1/A2, subtracting the two equations and integrating the re$tis gives

atr = 1. (24b)

17T 17T
T T
/O AZ(P0£P1 P1£Po)rdr=/0 5 PoFTar. (25)

One can show that the opera(mff/Az)£ is self-adjoint, so that the left-hand side of (25) can baiced to a
term containing only boundary data, i.e.

/01 1-\|:2<P0£P1 - P1£Po)rdr /Ol E%I:;\—E(Po% - P1%>]dr =

e e L

o uz o (APoz)
A2 ar ar A2 ar ar

=1 wA29X\ Z2

-t (26)

where we also used the boundary conditions (21b) and (24&ihguhis result together with (24a) in (25) then
leads to the following solvability condition for the firstdsar problem

2T _ 0o, ,A\OPp7 GT 8 /A p Gz 8 ,AP?

[T R [ 2 (2)2P] BT 2 (A e — §

/O{A3 9%x Lar (u)ar T AZax (T+u) wAZBX( 22)

The next step is to substitute the general solutioRgghown in (22) into (27). After working out and rearranging
terms, we arrive at a first order equation for the amplitugefion N

-0. (27

r=1

dN?2
905 = —F(X)NZ(X), (28a)

with (in principle known) functions

0= [ RegloT () 5] el 0 ) oo S ()

)

Yow 0 /ANy GA+uT G (280)
—i YV a7 iAW Ub+ul o) g - Y 2
g(x)_'/o IA3UT3r |n<u> ar T Az 4 ]rdr a)AZw r=1
This equation has the solution
X f(n)
2= N2 29
0° p( / gt @ 29)

whereNp is a normalization constant that can be determined fromdhecs, e.g. at the beginning of the duct.

In principle, (22) can now be computed, provided the pad&ivativesdu(X)/9X anddy (r, X)/dX are
known. Sinceuw(X) andy (r, X) are only known from the solution of the Pridmore-Brown eguatwhich has to
be solved numerically, th¥-derivatives have to be computed numerically as well.

The results can be simplified for some special cases. Foomumifean flow and arbitrary temperature we
have

da(X) [ oA, dZ]

FOO _ Tox " lwz?” dxdiz _/1_ -\ o A,
ax) a0 , where a(X) = A (uA—i—uT)w rar + [a)zw ]r=1’ (30)
such that (29) is reduced to
X h
2 (77) iaA  ,dz
N“( (X) p( f a() , where h(X) = [ ZZI/I ] " (31)
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For zero mean flow and arbitrary temperature, this can beceztleven further, to

1 _
N2(X) = Ng(p,fo T_wzrdr) g (32)

The result in (29) may be compared with the one given by [9lemstthe duct varies in diameter and the mean
flow includes swirl, but the impedance is taken constanth\tfie APU geometry in mind of a constant duct but
varying impedance, we could obtain a simpler result, thegletively easily applicable when numerical solutions
of the Pridmore-Brown equation are available.

VI.  Numerical approach: COLNEW and path-following

As discussed above, the Pridmore-Brown equation desaibegenvalue problem with infinitely many solu-
tions. In case of a hard wall, uniform mean flow and constanprature, the classical analytical solutions exist
in the form of Bessel functions (section Ill), while the eigalues are given through the easily found (because
real) zeros of the derivatives of the Bessel function. Fostmther cases solutions have to be found entirely
numerically.

Among realized methods to solve the BVP are the direct shgatiethod [22] and various collocation methods
[7-9,23,24]. The advantage of a shooting method is obwatsssimplicity, but care is required when the solution
is zero or very small at both ends of the interval. Therefalep here a collocation method is chosen, viz. the
standard implementation COLNEW [13, 25], which is freehaidable from Netlib [26]. This code is capable of
solving mixed-order systems of BVPs in ODEs. It is based diocation at Gaussian points using a Runge-Kutta
monomial basis representation, it uses a damped Newtoerdolgolve the system of non-linear equations and it
has automatic meshing.

We first put the eigenvalue problem in a form suitable for adéad BVP solver by adding the axial wave
numberk to the solution vector, introducing the extra equatidr= 0, adding a normalizing boundary condition
like P(1) = 1, and splitting the equations in real and imaginary parts.

Then we make sure to have suitable starting guesses. As anvalge problem, the system of equations
to be solved is non-linear. As with any non-linear problensitmportant to start with a good initial guess.
This is particularly important if we want to make sure to fidd(ae. all physically relevant) solutions (modes)
and corresponding eigenvalues (modal wave numbers). $hisalized by a path-following (or continuation)
approach, where we start from an “easy” solution (in our egsard-walled duct with uniform mean flow velocity
and temperature) and trace the solution when the relevailemn parameters are varied until they reach their
target values. Essentially, we embed the problem in a fatior with a continuation parameter Path-following
can thus be seen as an evolution problem [14, 16] with thel@mobvolving from a known solution for = 0 to
the target solution at = 1.

Apart from making sure that our calculation converges, t&tan find all solutions, and that we can investi-
gate the behaviour of a solution as a function of a paranéene is another advantage of path-following. When
we are interested in a series)olalues of the same continuation, for example when perfogrparameter scans,
it is very efficient to save intermediate solutions when theypassed along the way.

To compute the relevant solution with mean flow velodityr ), temperaturd (r) and impedanc& starting
from the analytical solution for uniform mean flow with MachmberMg, uniform temperature and an (almost)
hard-wall impedancé ., we use the embedding

a@r) = (L —A)Mg + AM(r),
Tr)=@1—-1)  +AT), (33)
Z=0A-WNZe +1Z.

(Other continuation parameterizations are also possihlethis was found to work generally well.) We vary
the impedance along a vertical trajectory in the complex@l@ip or downwards, depending on the mean flow
Mach number) in order to have certainty about finding all fmdessurface modes [15]. The impedance, mean
flow velocity and temperature are gradually changed to thesired non-uniform profiles in parallel, or one after
another.

Since each solution of the Pridmore-Brown equation is dtarized by an eigenfunction and an axial wavenum-
berk, we can trac&(2) as a curve in the complex plane. To determine the number@firegdiate solutions and
the corresponding values afwe use a prediction-correction scheme [16] (see Figure & u¥¢ linear extrapo-
lation of two previously computeki-values for the prediction step. In general, the predictihnot satisfy the
Pridmore-Brown equation. The prediction is therefore ected subsequently.

We trace the eigenvalde= k(1) and solution vectou = u(x) for A € [0, 1] using step#j := Aj — Aj_1.

10
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From two previous solutiong _» = k(1j_2) andk;j _1 = k(ij_1) we predict a value fdk; by linear extrapolation
- ki_1—ki_
Kj :kjfl—i—hj%. (34)
j—1

The prediction ol is performed similarly. By substituting; 1 andij_» in the Taylor series expansion kbf1)
aroundi = 1j we find expressions fd¢; _1 andkj_» that can be used with (34) to find

Izj:kj—%hj(hj—l—hj,l)k/j/—i----. (35)
Thus the erroe; between the exact and predicted value is
e = [kj —kj| =[3h;(hj + hj k] + - = chf, (36)

wherec (i.e. ~ k’j’) is assumed to be sufficiently smooth. Given thith step error, we can compute the next step

sizehj1 such that the error remains around some toleragpgce= chJZH. This leads to

hjt+1 ch?,; €tol
hit1=h;—= =h; Ity (22 37
j+1=h; h; j chJZ e (37)

This tolerance level is selected as follows. The left anttrignning hard-wall uniform-flow axial wavenumbers
k of circumferential ordem and radial orden are given by

—wMo + \/wZ — 02 (1— M)
1-M2

kmn -

s

with amn then-th zero j/,, of the derivative of Besselfunctiody. These zeros can be approximatedjy ~
n+ % m— %)n. Consequently, the differeneek = |I2j+1— IQ,- | between two adjacent axial wavenumbers that lie

away from the real axis is approximately constayit/1 — M2, whereas for modes that lie close to the real axis
Ak depends ow. This motivates the choice

€tol = €tol AKref,

whereAkyes := |I§,—+1 — R,— | depends on the mode considered agdis a parameter, equal for all modes, that has
to be chosen. We also add an upper limigx to the step size. We finally have:

. AKref €tol
hjy1= mml:hj‘/ ;7"[0, hmax] (38)
J

In some cases, a small changeiimesults in a big change in the solution. It is even possiblgurop’ to
another mode. Therefore, we restart from the former salutith a halved step size when the error is too large,
i.e, whene > emax.

There is some trade-off in choosing the parameigrsémax, hmax and the initial step sizby; we would like
to travel through the path quickly, while at the same timentzning a certain confidence that we do not ‘jump’
to another mode.

numerical solutions to BVP k(A2) = kpred
prediction

correction

prediction

correction

curve that satisfies BVP

€= ‘kpred - kcorr‘

Figure 3. Prediction-correction scheme.
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Numerical results

VII.A. Exponentially decaying eigenfunctions

Our numerical solution has obviously been thoroughly tbétethe cases of a uniform mean flow and mean
temperature, where analytic solutions are available topaomwith.

For non-trivial cases of non-uniform mean flow it is much teartb find suitable test cases. A possible
configuration is a strongly non-uniform (parabolic) meamfleith upstream running modes of sufficiently high
frequency. The modes will refract to the part of the mediunhlie lowest (effective) sound speed [27], which
is in this case the duct center. The wave becomes exporgrstiadll near the wall, which may be challenging
for numerical methods like shooting. However, the WKB siolutof section (I11.A) is very applicable and will
therefore be used here for making a comparison.

Consider the case whese= 25,m = 5, Z = 2 — i, the mean flow temperature is unity, and the mean flow
velocity isM(r) = %(1 — %rz). The first 6 upstream running eigenfunctions, decaying e&ptally towards the
wall, are depicted in Figure 4. A comparison of the axial wawabers found by COLNEW with the wavenumbers
determined by the quantization condition (12) shows anlexteagreement, see Table 1. As there is little or no
influence of the impedance wall, the wave numbers are pedigticeal. Only for the higher order modes the
damping of the wall becomes little by little effective as thraginary parts of the wave numbers become negative
(note: left-running modes with expiwt) convention).
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0.4 06 08 1 0 0.2 0.4 0.6 0.8 1
r r

(e)n=5 fHHn=6

Figure 4. Upstream-running modes in non-uniform mean flow, efracting away from the duct wall.

n kaccording to radial WKB k found by COLNEW
1 -60.470050 -60.4392

2 -55.761477 -55.7281

3 -51.134220 -51.0980 - 0.0000i
4 -46.605341 -46.5659 - 0.0003i
5 -42.195806 -42.1422 - 0.0212i

6 -37.931062

-37.5622 - 0.3254i

Table 1. Modal wave numbersk, corresponding to

figures (4), found from WKB's quantization condition and by COLNEW.
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VII.B. APU exhaust duct with slowly varying impedance

In this section we show some numerical results for test camgivated by a realistic APU exhaust duct, having
a length of 1 m and a radius of 0.15 m. We choose the referengeemturely = 700 K and the mean density
po = 0.5 kg3, corresponding to a reference sound speem) ef 549 msL. We consider cases where Fix)
varies linearly with fixed R& = 1.5, and cases where the liner is modeled as a Helmholtz resd2&]. To
assess the applicability of the WKB method and estimatertirecation error in the WKB expansion (which is
O(e), see (19)), we need to estimateThis can be done by noting that4f varies typically over a length scalg

we have
Rd RZ'(x/L)

Zx D=3

since by assumptiod’/Z = O(1). We plot contour lines of the pressure field, with enth order radial mode as
input atx = 0 (usually,n = 1). For cases of uniform mean flow velocity and temperatureovepare the (axial)
WAKB results with the BAHAMAS results. The eigenfunctiong aormalized according to

1
/O lwlPrdr =1, v’ (1) e RT, (40)

which is the convention used in BAHAMAS.

For the WKB results we first compute the eigenfunctions ana ssavenumbers for 208-values in the range
from 0 to 1 by using our mode solver. (Note that the small patana only acts as a bookkeeping parameter since
we can write everything as a function of slow variale Subsequently, the amplitudé&(X) are computed
using (29) or using the special cases (32) and (31). Theraitegvery are computed by using a trapezoidal rule,
which enables us to use all computed eigenfunctions (foX-alalues) for the field plot. We use a higher number
of X-values than necessary to achieve the required accuracgén t have smooth contour plots. The integrals
overr in (28b), (30) and (32) are computed by using the QUADPACK [@8le (which is based on an adaptive
Gauss-Kronrod rule), the accuracy of which actually comsnesites with the other integral rule. We motivate this
choice by noting that the eigenfunction (and hence the iategjin the radial direction) can be oscillatory, while
the integrands in the axial direction are slowly varyingr Ron-uniform mean flow we need to compuitéX).
Working out (28b) yields

(Y 2wyTdap, 9%y _dudyl Y= _,du i} - Y
f(X) _|f {— = d_r[AaraX “d_xa_r] + F[(T — 0 ¥ + 204 +MT)8—X]}rdr
ayr v _du dz
- onezE| 25y~ (g v )v] L @
The X derivatives (which are not available analytically) are pated by using second order finite differences.

To test the WKB approach we first I&(x) vary linearly from 15 — i to 1.5 + i, which corresponds to an
estimateds = 0.2. Figure 5 shows the piecewise impedance for the segmeaitath used in BAHAMAS.
From Figure 6(a) and Figure 6(b) it is clear that the diffeebetween constant impedance and axially varying
impedance is significant, so tikedependency of has to be taken into account. Figure 6(b) shows that the WKB
and the BAHAMAS results agree reasonably well for this nayv@nall choice ok. From Figure 6(c), with the
same parameter values and mean flow mass flux as before bualzofi@mean flow profile, we conclude that
the effect of a non-uniform mean flow is not to be neglectece plesent difference is explained by the fact that
downstream running sound waves are refracted towardstbe Wall [27], resulting in more damping.

05t
:o
& or
g
E -0.5

— — — WKB
-1 BAHAMAS
0 0.2 0.4 0.6 0.8 1

x (m)

Figure 5. Z varies linearly from 1.5—ito 1.5+, ~ 0.2.
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In the next configuration, we I&&(x) vary linearly from 15 — 2i to 1.5 4 2i along the same interval, which
corresponds to a higher estimatedf 0.4. The truncation error in the WKB approximation is now larged we
may expect a bigger difference between the WKB and the BAHAWbIutions. This is indeed the case, as is
shown in Figure 7. Neat = 0.7 m, some signs of intermodal scattering are visible, wrgaxplicitly not taken
into account by the WKB method.

constant impedance

WNROE

! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PRI

“Y§XV\\ L

0 0.1 0.4 0.9 1
(b) Same as Flgure 6(a), excepivaries Ilnearly from 15 —ito1l5 + i 508 ~ 0. 2

PR

1

(c) Same as Figure 6(b), except mean flow velobityr) = Mog(l — lr2) with Mg = 0.3.

Figure6. o« =10m=2,n=1

BAHAMAS
\i

A L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7. @ = 10, m = 2, n = 1, uniform mean flow velocity Mg = 0.3, Z varies linearly from 1.5 — 2i to 1.5+ 2i soe ~ 0.4.

To evaluate the applicability of the WKB method for a red@igtPU exhaust duct geometry, we now consider
a locally reacting liner with a cell deptti(x) that is axially varying from 7 cm to 1 cm along the duct. The

14
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dimensional impedance is modeled as a Helmholtz resortscribed (witle~ 't convention) as
Z = Zo + ipoCo cot(@d/co), (42)
whered is the dimensional frequency ai is the face sheet impedance
Z0= R —iom. (43)

We choose a facing sheet resistancdgf= 400 kgnm2s~1, and a mass reactanceraf= 0.001 kgnT2. We
remark that this is only a model and the reference sound speedy be different from the sound speed at the
wall for non-uniform temperature profiles. Figure 8 showsithaginary part of the impedance as a function of
for two different frequencies. Note that far= 10 resonance occurs; closexo= 0.4 m the liner behaves as a

hard wall.
0f—=r— ‘ =
=~ 0Or = 7 -
® P | |7
< 4 e 1 e
S ) [ BAHAMAS
£ € |
T -2t = -10} ‘ I
/ — — — WKB |
-3F BAHAMAS 1 15l ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X (m) X (m)

Figure 8. Z modeled as Helmholtz resonator with liner depth that varieslinearly from 7 cmto 1 cm. Left: » = 6 (¢ ~ 0.3), right: » = 10 (resonance
occurs).

Figure 9 show the acoustic field fer= 6. On the interval considered, there is no location wheréigdeholtz
resonator is in resonancgjx) is slowly varying with an estimated = 0.3. The WKB and BAHAMAS results
show rather good agreement, about what can be expectedhiswatue ofs.

BAHAMAS
0.15 T T \) T
0.1 \>) w 1
0.05 |
0 ! \ ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WKB
0.15 \3_) T~ T
0.1 \) \) |
0.05 B
0 ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9. w = 6, m = 2, n = 1, uniform mean flow velocity Mg = 0.3, Z modeled as Helmholtz resonator with liner depth that variedinearly from 7 cm
tolcm.

However, whenn = 10 we do have resonance near= 0.4 so the assumption of a slowly varyirfyx)
is, at least near this point, not valid anymore. Indeed, ¢his be identified from Figure 10, where the region
of resonance seems to excite the second radial mode, amefiedh cannot be described by (straight-forward)
application of the WKB method.

With a realistic APU exhaust duct, cool air is let in ngae 0 along the wall (see Figure 1). This produces a
strong radial temperature gradient. We modeled this by latgpme profile, given in Figure 11. The effect of this
temperature gradient is that it creates effectively twocemtric ducts, each with its own propagation properties.
These duct fields are not completely independent of eachr.o8mind waves from the center region (with the
highest sound speed) will refract (by a form of Snell's law)the colder annular region. However, sound in
the annular region refract only if the angle between ducs$ axid their propagation direction is not too small.
Otherwise, the annular region will act as a duct on its own.

This is illustrated in Figure 12, where the fields are ploftedhe first two right-running radial modes. In case
of the first mode, the field is virtually only existent in thelder outer region. The field of the second mode exists
in both, but such that the sound waves refract from insidaitside.
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Figure 10. w = 10, m = 2, n = 1, uniform mean flow velocity My = 0.3, Z modeled as Helmholtz resonator with liner depth that variesinearly from 7
cmtolcm.

1.6

14+

12

1t

0.8

0.6

0.4+

0.2

0 0.2 0.4 0.6 0.8 1

Figure 11. Temperature profile T (r) = 711 + %[1+tanr(50(% -n)].

VIIl. Conclusions

The WKB method for slowly varying modes was applied to a tapgeometry of an APU exhaust.

The numerical evaluation of the mode shape functions (solsibf the Pridmore-Brown equation) is realized
by application of the freely available, standard impleratinh COLNEW, a code based on a general collocation
method for non-linear boundary value problems. In orderrid &ll modes, the modal solver is embedded in a
path-following (or continuation) procedure with autonsatdaptation of the step size.

In order to test the numerical Pridmore-Brown solutiongion-trivial situations, favorable comparisons have
been made with analytic approximate solutions of WKB typeé#dial direction, not to be confused with the axial
WKB solutions of modes varying slowly along the duct).

To demonstrate the value of our slowly varying modal soluteonumber of tests have been made. For a wall
impedance that varies slowly in axial direction - slow enotmbe within the range of applicability of the WKB
method - the results agree well (depending on the small peteairwith the BAHAMAS reference solution based
on uniform flow and a piecewise constant impedance. On ther ¢thnd, the WKB solution lacks to capture
typical phenomena associated with resonance that invprisdeurs when the impedance wall is of Helmholtz
resonator type. This is not unexpected as the liner reaetamenges sign via “infinity” along a short interval and
therefore is locally not slowly varying. In reality we wilbserve intermodal scattering, which is, by assumption,
excluded in a WKB solution.

Finally, a few typical results are presented for non-umfdlow and a strong temperature gradient.
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