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Summary

This paper studies performance metrics that are of use in the evaluation of conflict detection and
resolution in air traffic management. The metrics studied are conflict probability and incrossing
probability, both of which are closely related to the safety criteria used by the civil aviation
community. The main contribution of this paper is to develop mathematical characterisations for
these metrics, and to show typical differences in their behaviour through numerical evaluations
of these metrics for some simple examples.
This research has been performed with support of the European Commission through the
HYBRIDGE project.
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Abbreviations

ATM Air Traffic Management
CD&R Conflict Detection and Resolution
ICAO International Civil Aviation Organization
Nm Nautical mile
deg degrees
kts knots
min minutes
NLR Nationaal Lucht- en Ruimtevaartlaboratorium
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1 Introduction

In a recent survey, Kuchar and Yang (2000) have shown that there is a large variety of methods
that have been proposed in literature to automate Conflict Detection and Resolution (CD&R) in
Air Traffic Management (ATM). The survey covered over 60 different CD&R methods, some
of which are currently in use under operational evaluation. These methods have been
categorised according to a taxonomy that includes: dimension of state information (vertical,
horizontal or both); prediction basis (nominal, worst case or probabilistic); conflict detection
threshold; conflict resolution method (prescribed, optimised, force field, or manual);
manoeuvring dimensions (speed change, lateral, vertical, or combinations); and conflict
management (pairwise or global).
Kuchar and Yang (2000) characterise this CD&R development for ATM as one in which a
given solution approach to the problem is proposed and exercised, typically through a set of
constrained and simplified examples; there has been little crosscutting comparison or synthesis
between methods. To improve this situation Kuchar and Yang (2000) recommend the adoption
and development of performance-based CD&R design approaches, in which well defined
performance metrics allow to make relevant comparisons of a design against the design
objectives and against other designs. In support of this approach, the aim of this paper is to
contribute to the mathematical characterisation of two performance metrics: conflict probability
and incrossing probability. In addition to this we characterise the related metric of overlap
probability.

Of these metrics, conflict probability has received most of the attention in literature  (e.g. Paielli
and Erzberger, 1997, 1999; Prandini et al., 2000). Conflict probability is the probability that the
distance between a pair of aircraft becomes smaller than some specified minimum separation
value. Paielli and Erzberger’s  emphasis was on the development of algorithms to numerically
evaluate approximations of conflict probabilities. Prandini et al. (2000) emphasized analysis of
the problem and clearly distinguished three sub-problems of evaluating conflict probability: 1)
to predict the joint density of the aircraft pair considered, 2) to evaluate the instantaneous
conflict probability by integrating over the joint density, and 3) to identify the moment in time
at which the instantaneous conflict probability reaches its maximum. On this basis, Prandini et
al. (2000) developed a randomized optimisation approach for horizontal conflicts, and explained
under which type of situations this yields a more accurate assessment than the Paielli and
Erzberger (1997) approach does.

The strong point of conflict probability is its clear relation to a well known safety criterion in
civil aviation: the separation minimum, which puts a requirement on the air traffic management
system not to let aircraft come closer to each other than a certain minimum distance. Depending
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of the type of airspace and air traffic management, different separation minimum apply (e.g.
ICAO, 1998). Moreover such a minimum may come in two forms:
- a minimum on the actual separation
- a minimum on the predicted miss distance
An example of the latter is the 1000 feet minimum difference between flight levels that are
allowed to en-route aircraft at the same horizontal position. An example of the former is a 5 Nm
minimum horizontal separation between radar controlled en-route aircraft that do not satisfy the
vertical separation minimum. Most work on conflict probability has been directed to the latter
type of minimum separation.

The overlap probability is the probability that the predicted aircraft physical volumes overlap.
Thus, if we would reduce the minimum distance value in conflict probability to about the size of
an aircraft, then we arrive approximately at overlap probability.

In addition to minimum separation values, ICAO has also defined limiting criteria for
acceptable levels of fatal accident risk, and in particular for the risk of mid air collision (e.g.
ICAO, 1998). The allowed probability values for such events are in the order of one mid-air
collision or physical incrossing per 109 flight hour. The civil aviation community has also
developed a mathematical model to predict these risk values for some basic types of air traffic
management. This model is known as the Reich collision model (Reich, 1964). Hsu (1981) has
shown that this ICAO adopted Reich model actually keeps on counting any incrossings that
follow the first incrossing, which is the collision. Hence it would be better  to refer to the Reich
incrossing model. In Bakker & Blom (1993) a generalized Reich incrossing model has been
developed in order to cover a much larger variety of air traffic situations. For the use of this
towards the prediction of incrossings between two aircraft three sub-problems need to be
addressed: 1) Prediction of joint probability density functions, 2) Assessment of the incrossing
rate, and 3) Integration of the incrossing rate over the time interval considered, and from this the
incrossing probability.

The aim of this paper is to develop mathematical characterisations for conflict probability and
incrossing probability. In Section 2 the probability density prediction problem is formulated as
one of evaluating a weighted sum of Gaussian densities in time. In Section 3, the Incrossing
probability is characterised for a Gaussian and a sum of Gaussian densities. In Section 4, the
conflict probability is characterised for a Gaussian and a sum of Gaussian densities. In Section 5
another metric, overlap probability, is defined. In Section 6, we compare the metrics through
some numerical evaluations for the example considered by Paielli and Erzberger (1997).
Section 7 presents concluding remarks.
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2 Gaussian sum density

We consider an N-aircraft evolution model that is represented by stochastic differential
equations, one for each of the N aircraft, i.e. for Ni ,,13=

i
ttt

i
tt

ii
t dwtxgdttxfdx ),,(),,( θθ += (1)

with { }N
ttt xxx ,,Col 1 3≡ , { }N

ttt θθθ ,,Col 1 3≡ , { }N
ttt www ,,Col 1 3≡ , }{ i

tw  an n-dimensional
standard Brownian motion, ix  assumes values in IRn and i

tθ  a finite state process such that
},{ ttx θ is a Markov process. The mappings f and g may represent planning and control

strategies. Some elements of i
tx  form the 3D position of aircraft i, i.e. i

t
i
t xHs = , with H a 3 × n

matrix.
To avoid Brownian motion behaviour in position, we adopt the assumption

A.1 0),,( =txgH tt
i θ  for Ni ,,13=

Under assumption A.1, we get for Ni ,,13=

dtvds i
t

i
t =  with ( )txfHv tt

ii
t ,,θ≡ .

Next, with st
i and st

j representing the positions of the centers of aircraft pair (i, j), the relative 3D
position is represented by the process j

t
i
tt sss −≡ , and the relative velocity is represented by the

process j
t

i
tt vvv −≡ . Hence

dtvds tt = (2)

On the basis of the above model and a given prior joint density ( )θθ ,
00 , xp

ttx , it is possible to

predict the joint density of  st  and  vt

),(, vsp
tt vs ,  s ∈  IR3, v ∈  IR3,  t ∈  (t0, t1].

In general, this density is not Gaussian, even when it was at t0. A well known approach from
non-linear filtering theory, is to develop an appropriate characterisation of a predicted density

)(xp
tx  as a Guassian sum density, i.e.
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l
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with ɓ l(t) > 0 for all l and t, such that ( )ä =
l

l t 1β

and ( )Q,,µ⋅ N  denoting a Gaussian density with mean µ and covariance Q. Similarly, the
density ),(, vsp

tt vs  can be represented as a sum of Gaussian densities, i.e.
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v , )(, tQl
vs  the means, covariances and cross-covariance of st and

vt given the l-th Gaussian in the sum applies.

In view of this Gaussian sum joint density model, the incrossing probability and conflict
probability metrics are now characterised for Gaussian and Gaussian sum densities.

3 Incrossing probability Pin

One of the safety metrics adopted within the civil aviation community is referred to as the risk
of collision between aircraft (e.g. ICAO, 1998). In mathematical terms this metric assumes that
the physical shape of each aircraft is a box, and that the incrossing rate of the boxes around
these aircraft is integrated over the time period considered (Hsu, 1981).

Generalized Reich model
For processes satisfying (2), Bakker and Blom (1993) have studied the frequency at which the
relative position enters a closed area D around the origin, where D consists of a fixed box, the
sizes of which add the sizes of two individual aircraft, i.e.

321 DDDD ××≡

with [ ]kkk mmD ,−≡ , 0>km , 3,2,1=k , where mk denotes the size of one aircraft in k-th

direction (for simplicity only mk  is assumed to be aircraft invariant).
If the relative position st enters D at time t, i.e. if Dst ∉∆−  and Dst ∈  for 0↓∆ , then we say an

incrossing event occurred. For the model we assume that D is transient (non-absorbing). Hence,
different from reality, in the model multiple incrossings between aircraft i and j may occur. The
incrossing rate at time t is defined as the expected number of incrossings at time t per unit time.

{ }
∆

∉∈≡ ∆−

↓∆

DsDsPt tt ,lim)(
0

ϕ (3)
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and the incrossing integral or incrossing risk ),( 10 ttIin  between two aircraft as the integration of

the incrossing rate over a time period (t0, t1]:

( )ñ=
1

0

),( 10

t

t
in dttttI ϕ (4a)

Next, the incrossing probability is defined by

)},(exp{1),( 1010 ttIttP inin −−≡ (4b)

Substitution of (4a) into (4b) yields one equation:
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Under assumption A.1 and some additional technical conditions, in (Bakker and Blom, 1993,
Theorem 1) the following characterisation for incrossing rate has been developed:
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where

( ) ( ) ( )213312321

213312321

,,,,,
,,

sssssssss
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≡≡≡
×≡×≡×≡

Remark 1: Bakker and Blom (1993) verified that similar equations have been derived by
Leadbetter (1966, 1973) and by Marcus (1977) for a one-dimensional process, and by Belyaev
(1968) for a multi-dimensional process.

Remark 2: Bakker and Blom (1993; Section 3.4) have shown that under two additional
conditions, i.e. if 1) st and vt are independent, and 2) )(xp

tx  is constant within D, then eqs. (4a)

and (6) are equivalent to the Reich model. Implicitly the Reich model also assumes that D is
non-absorbing, and that the orientation of D is not changing dynamically in time.

Remark 3: In reality the first incrossing event is a collision. Hence, the incrossing probability
forms an upper bound for the collision probability
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),(),( 1010collision ttPttP in≤

In applications this difference should be kept sufficiently small through an appropriate
modelling of aircraft evolution (1).

Gaussian sum case
If the relative position and velocity satisfy a joint Gaussian
density, then (6) can be simplified. This is formulated in
Theorem 1.

Theorem 1
If conditions hold true under which (6) is satisfied, and {st, vt} is Gaussian with means µs(t),
µv(t) and  covariances Qs(t), Qv(t) and Qs,v(t), then the incrossing rate satisfies:
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kvµ  is the k-th element of )( tvµ , )(tQ

kv  is the k-th diagonal element of )(tQv , and
)(, tQ
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Proof: See appendix A.

Corollary 1: If at time t the relative position and velocity satisfy a Gaussian sum density with
weights ɓ l(t), then

( ) ( ) ( )ä=
l

ll ttt ϕβϕ
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where ϕ l(t)  satisfies Theorem 1 for each l.

Remark 4: For many applications, numerical evaluations of the incrossing probability need a
limited precision (e.g. 1%). Then it is often sufficient to adopt a first order approximation for
the integrals in (5) and (7):
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4 Conflict Probability Pc

In (Prandini et al., 2000) the instantaneous probability of a horizontal conflict at time t is
defined as the probability that at time t two aircraft that fly at the same vertical position (i.e.

0, =⊥ ts ), will be within a conflict distance d from one another. If we introduce a diagonal
matrix { }⊥= α,1,1diagS , with 1≥⊥α  an appropriate relative vertical position scaling factor,
then the instantaneous probability of conflict, ( )tPic , at time t is given by:

{ } ñ ñ
≤

=≤≡
d||||

)(d||||Prob)(
sS

stic dsspsStP
t (8)

where ( )sp
ts  is the predicted probability density function of the relative position st at time t.

The probability of conflict in time interval (t0,t1] is then given by

].,[for     0  if),max),( 10,],[10
10

ttts(tPttP tictttc ∈=≡ ⊥∈

Gaussian sum case
If the predicted relative horizontal position 'ts is Gaussian and if the predicted relative vertical
position 0, =⊥ ts and we make use of the error function

dzex
x

zñ −≡
0

22)(Erf
π

 then ( )tPic  can be characterised as follows.
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Theorem 2
When the predicted relative vertical position 0, =⊥ ts , and the predicted relative horizontal

position 'ts  is Gaussian, with mean )(' tsµ  and positive definite covariance )(' tQs , then ( )tPic

satisfies:
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Proof: See appendix B.

Corollary 2: If at time t the relative position and velocity satisfy a sum of Gaussian densities
with weights ɓ l(t) then

( ) ( ) ( )ä=
l

l
ic

l
ic tPttP β

where ( )tPl
ic  satisfies Theorem 2 for each l.

5 Overlap probability Po

The overlap probability over the interval (to, t1] is defined
in terms of the closed area D as follows

)max),(
],[10

10

(tPttP iottto ∈
≡

with Pio(t) the instantaneous overlap probability satisfying
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( )ñ=∈≡
D

stio dsspDsPtP
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)()( (10)

Although the overlap probability considers the same closed area D as the incrossing integral
does, there is a significant difference between incrossing integral and overlap probability. In
Appendix C it is shown that

),(),()),), 1001010 tItI(tPt(tPt(tI inoutiooin ττ ++−=

with )maxarg
],[ 10

(tPio
ttt∈

≡τ , and with ),( 0 τtIout  the D- outcrossing integral over (t0, τ].

In words this means: if two aircraft are separated at t0, then the incrossing integral over (t0, t1] is
equal to the sum of the following three non-negative terms
1. The overlap probability ), 10 t(tPo  over (t0, t1].
2. The incrossing integral ),( 1tIin τ  over (τ, t1].
3. The outcrossing integral ),( 0 τtIout  over (t0, τ].

6 Numerical example

In the sequel, the incrossing probability, the conflict probability and the overlap probability
metrics are numerically evaluated and compared by applying them to the linear Gaussian
example considered by Paielli and Erzberger (1997). In this example two aircraft paths cross
each other at the same flight level. Four scenarios (see  Table 1) are evaluated on Pin , Pc , Po

and the conflict probability approach of Paielli & Erzberger (1997). The results are shown in
Figures 1 through 3.

Table 1 Scenarios 1-4 and their parameter values. The scenario variables are:(a.) predicted
miss distance, (b.) path crossing angle, (c.) predicted ground speeds, (d.) time before predicted
miss, (e.) growth-rate of along-track standard deviation (s.d.), (f) across-track standard
deviation. The along-track s.d. at predicted miss follows from the product of d. and e.

Parameter Scen 1 Scen 2 Scen 3 Scen 4
  a.  [Nm] 6 4 6 6
  b.  [deg] 90 90 10-180 10-180
  c.  [kts] 480 480 480 behind 420 480 before 420
  d.  [min] 1-40 1-40 4 4
  e.  [kts] 15 15 10 10
  f.  [Nm] 1 1 1 1
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Figure 1 Conflict probability, overlap probability and incrossing probability for scenario 11.
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Figure 2 Conflict probability, overlap probability and incrossing probability for scenario 21.

                                                     
1 Because of computer coding error correction, the numerical results differ from those in
Bakker et al. (2001)
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Figure 3 Difference between scenarios 3 and 4; faster aircraft crosses behind and before slower
aircraft1.

Paielli & Erzberger versus conflict probability Pc

Figures 1 and 2 clearly show that in general the P&E algorithm does not provide an accurate
assessment of conflict probability. In figures 1 and 2 the error increases with increasing
uncertainty, up to a factor 4. Paielli & Erzberger (1997) already concluded that for this example
conflict probabilities for predicted miss distances below 5 Nm behave differently than for
predicted miss distances above 5 Nm. If the predicted miss distance is larger than 5 Nm, Figure
1 illustrates the typical behavior of the conflict probabilities; first with increasing along-track
position uncertainty from zero, the conflict probability increases from zero to a maximum and
then it decreases again.

Overlap probability Po versus conflict probability Pc

In Figure 1 it can be seen that for large uncertainties in the along-track position the conflict
probability and the overlap probability are approximately equally sensitive to changes in the
uncertainty. Thus for situations in which large uncertainties are common, both probabilistic
approaches can be used. A good example, is flow management. However, if the uncertainties in
along-track position become smaller, overlap probability is much more sensitive to changes in
along-track uncertainty than conflict probability. When in Figure 1 the uncertainty in the along-
track position decreases, the overlap probability values decrease very fast to very small values,
where conflict probability values hardly decrease. So in this example, when aircraft get closer to
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the point of predicted miss, the more sensitive overlap probability becomes in comparison to
conflict probability. For small uncertainties this means overlap probability better allows to
distinguish between safe and unsafe situations than conflict probability. If the predicted miss
distance is smaller than 5 Nm, with increasing along-track position uncertainty from zero, the
conflict probability steadily decreases from its maximum towards zero. For incrossing
probability and overlap probability such a distinction is not necessary as can be seen from
Figures 1 and 2. For a predicted miss distance of 4 Nm and 6 Nm, with decreasing along-track
position uncertainties, the incrossing probability and overlap probability slowly increase to a
certain maximum and then decrease to very small values. This means that conflict probability
can give no information with regard to the possible modifications of separation minima, where
incrossing probability can.

Incrossing probability Pin versus overlap probability Po

The faster the aircraft fly, the shorter the encounter or period of potential conflict will be, while
the larger relative speed enlarges the incrossing rate during the period of encounter or possible
conflict. The consequence of the smaller time period is a potential reduction of incrossing
probability, where the larger speed difference increases the incrossing probability. Thus
incrossing probability always shows a trade-off between these two effects, while overlap
probability (and conflict probability) won't. In Figures 1 through 3 the ratio between Pin and Po

varies from a factor 55 up to a factor 830. Hence it can be concluded that in this example, the
above trade-off is such that the two consequences do not balance. A clear advantage of
incrossing probability over overlap probability is that the former is an ICAO adopted ATM
safety metric, and the latter is not.

7 Concluding remarks

For the development of performance-based CD&R design approaches in ATM, well defined
performance metrics are needed to make relevant comparison of a design against the design
objectives and against other designs. In support of such approach, this paper has studied the
safety related performance metrics: conflict probability, incrossing probability and overlap
probability. For these metrics novel mathematical characterisations have been developed and the
relation with previous work has been explained. Subsequently, the novel characterisations have
been used to numerically evaluate some simple aircraft crossing scenarios and to compare the
results obtained for the different metrics. For the scenarios considered the overlap and
incrossing probability metrics appeared to respond most meaningful to changes in the conflict
scenario parameters. The specific advantage of incrossing probability over overlap probability is
that the former an ICAO adopted ATM safety metric. A disadvantage is that the numerical
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evaluation of incrossing probability is more demanding. For performance evaluation purposes,
however, this is not a critical issue. For other illustrative applications of the incrossing
probability metric see:
•  Accident risk assessment of air traffic operations  (Blom et al., 2001a, 2001b).
•  Modelling of conflict detection in CD&R (Van Doorn et al, 2001).

Acknowledgements: The authors would like to thank John Lygeros (Univ. of Cambridge, UK),
Xanthi Papageorgiou (PhD student at National Technical Univ. of Athens) and an anonymous
reviewer for valuable comments.
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Appendix A Proof of Theorem 1

The proof of Theorem 1 is based on Kremer and Bakker (1997). First two Lemma's are
introduced.

Lemma 1
For a>0:
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and
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On the basis of this we prove Theorem 1.
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Proof of Theorem 1
From Bakker and Blom (1993; Theorem 1), the incrossing rate satisfies:
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Appendix B Proof of Theorem 2

First two Lemma’s are introduced.

Lemma 3
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Lemma 4
If a matrix Q is real, symmetric and positive definite then the eigenvalues of Q are positive and
Q is diagonalizable through a rotation matrix i.e. ( )( ) Λ≡= QRQR T seigenvaluediag , with R a

rotation matrix (i.e. RT=R-1), Q-1= RT ȿ-1 R and Det (Q) = Det (ȿ).

Proof  This is well known from Linear Algebra (see for example Strang, 1980). Ǐ

Next, we continue with the proof of Theorem 2 for 0, =⊥ ts . By definition:
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Since Lemma 4 applies to the 2×2 matrix 'sQ (t), we have a rotation matrix R(t) such that
)(ȿ)(),(diag)()(')( 21 t)tt(tRtQtR T

s ≡= λλ  with R(t)T=R(t)-1 and ɚ1(t),ɚ2(t) both positive. Hence,

|Det(R(t))|=1 , Det(ȿ(t))=Det(Qsǋ(t))=ɚ1(t) ɚ2(t) (B.2)
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Next define the transformation
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Further evaluation of (B.1) through integration w.r.t. y and using (B.2-B.7), we get
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Further evaluation yields
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Appendix C Overlap probability

Proposition 1
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with )(tϕ the incrossing rate defined in (4), and with )(tψ  the outcrossing rate

∆
∈∉

≡ ∆−
↓∆

),(
lim)(

0

DsDsP
t ttψ (C.1)

Proof:  By definition we have
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Proposition 2
For ],[ 10 tt∈∀ τ :
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Proof:  For any τ assuming values in (t0, t1] we have:
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Corollary 4:
If we define )maxarg
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