
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laborator y NLR

NLR-TP-97669

Safety and commercial realities
in an avionics application

E. Kesseler and E. van de Sluis



DOCUMENT CONTROL SHEET

ORIGINATOR’S REF. SECURITY CLASS.
TP 97669 U Unclassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Safety and commercial realities in an avionics application.

PRESENTED AT
the Second World Congress on Safety of Transportation, Delft, The
Netherlands, 18-10 February, 1998

AUTHORS DATE pp ref
E. Kesseler and E. van de Sluis Jan. 1998 20 10

DESCRIPTORS
Aerospace safety Program verification (computers)
Avionics Quality control
Certification Real time operation
Computer programming Software engineering
Maintainability Software reliability

ABSTRACT
To fly aircraft under all (adverse) conditions, pilots must rely fully on the data
presented to them, and on the reliable and timely forwarding of their commands to relevant
aircraft subsystems. The avionics application, Flight Control Display Module (FCDM),
connects these subsystems with the aircraft flight deck by means of modern digital data
buses. It combines, controls, processes and forwards the data between the subsystems and
the flight deck. High reliability of these functions is required to ensure the safety of
the aircraft. The experiences with the software development methods to meet these
requirements are presented.

For air transport the safety requirements are stated in DO-178b: software considerations in
airborne systems and equipment certification. The main part of the FCDM software is subject
to the most severe classification of DA-178B. Compliance to DA-178B is assessed by an
independent, government authorised, third party. This third party issues a certificate
releasing the product for operational use. The influence of these safety requirements and
the independent DO-178B compliance assessment on the software development and verification
methods are described. The black box has a successful application in air transport. The
extension of the black box approach in FCDM is discussed.

The development of aircraft is a commercial venture. In order to meet the market demands,
permanent changes occur during the sofware development proces. Many different versions of
and/or extensions to the product for the various customers are required. The reliability,
maintainability, safety and certifiability of the product may not be compromised. The
impact of all these customisations on the development and verification methods is assessed.

General standards for safety critical software are emerging. Some differences and
similarities with DO-178B are highlighted. These standards provide opportunities for
general purpose products. Their possible impact on airworthy equipment is assessed using
the FCDM case.

217-02



-3-
TP 97669

Abstract

To fly aircraft under all (adverse) conditions, pilots must rely fully on the data presented to

them, and on the reliable and timely forwarding of their commands to the relevant aircraft

subsystems. The avionics application, Flight Control Display Module (FCDM), connects these

subsystems with the aircraft flight deck by means of modern digital data buses. It combines,

controls, processes and forwards the data between the subsystems and the flight deck. High

reliability of these functions is required to ensure the safety of the aircraft. The experiences with

the software development methods to meet these requirements are presented.

For air transport the safety requirements are stated in DO-178B: software considerations in

airborne systems and equipment certification. The main part of the FCDM software is subject

to the most severe classification of DO-178B. Compliance to DO-178B is assessed by an

independent, government authorised, third party. This third party issues a certificate releasing

the product for operational use. The influence of these safety requirements and the independent

DO-178B compliance assessment on the software development and verification methods are

described. The black box has a successful application in air transport. The extension of the black

box approach in FCDM is discussed.

The development of aircraft is a commercial venture. In order to meet the market demands,

permanent changes occur during the software development process. Many different versions of

and/or extensions to the product for the various customers are required. The reliability,

maintainability, safety and certifiability of the product may not be compromised. The impact of

all these customisations on the development and verification methods is assessed.

General standards for safety critical software are emerging. Some differences and similarities

with DO-178B are highlighted. These standards provide opportunities for general purpose

products. Their possible impact on airworthy equipment is assessed using the FCDM case.



-4-
TP 97669

Contents

1 Introduction 5

2 Air transport software safety requirements 6

3 Experience gained with safety critical software development 9

4 Overview of the avionics application 10

5 Experience gained with safety critical software development methods 13

6 Commercial realities versus safety critical application development 15

7 Comparison of standards for safety critical systems 17

8 Conclusion 19

References 20

1 figure

(20 pages in total)



-5-
TP 97669

1 Introduction

To fly aircraft under all (adverse) conditions, pilots must rely fully on the data presented to

them, and on the reliable and timely forwarding of their commands to the relevant aircraft

subsystems. An avionics application which is currently being developed by NLR, the Flight

Control Display Module (FCDM), connects these subsystems with the aircraft flight deck by

means of modern digital data buses. It combines, controls, processes and forwards the data

between the subsystems and the flight deck. High reliability of these functions is required to

ensure the safety of the aircraft. In this paper the experience with the software development

methods to meet these requirements in a commercial environment are presented. The final

section highlights some differences and similarities between the emerging general standards for

safety critical software.



-6-
TP 97669

2 Air transport software safety requirements

For air transport, apart from the normal customer-supplier relation relating to the functional

requirements, the safety requirements are stated in DO-178B: software considerations in airborne

systems and equipment certification [ref 1]. The aim of this document is to provide guidance to

both the software developers and the certification authorities. Usually acceptance of software is

based on an agreement between the developer and the customer. In civil avionics an independent

third party, the certification authority, performs the ultimate system (aircraft) acceptance by

certifying the aircraft. It is only then that the software is airworthy and can be considered ready

for use in the aircraft concerned. DO-178B provides a world wide "level playing field" for the

competing industries as well as a world wide protection of the air traveler, which are important

due to the international character of the industry. The certification authority is a national

governmental institution which in our case delegated some of its technical activities to a

specialised company.

Based on the impact of the system failure the software failure can contribute to, the software is

classified into 5 levels. The following is a verbatim copy of the DO-178B text. The failure

probability in flight hours (i.e. actual operating hours) according to the Federal Aviation

Requirements/Joint Aviation Requirements FAR/JAR-25 [ref 2] has been added.

Level A: Catastrophic failure

Failure conditions which would prevent continued safe flight and landing

FAR/JAR-25 extremely improbable, < 1x10-9

Level B: Hazardous/Severe-Major

Failure conditions which would reduce the capability of the aircraft or the ability of the crew

to cope with adverse operating conditions to the extent that there would be:

- a large reduction in safety margins or functional capabilities

- physical distress or higher workload such that the flight crew could not be relied on to

perform their tasks accurately or completely

- adverse effect on occupants including serious or potentially fatal injuries to a small

number of those occupants

FAR/JAR-25 extremely remote, 1x10-9 < hazardous failure < 1x10-7

Level C: Major

Failure conditions which would reduce the capability of the aircraft or the ability of the crew

to cope with adverse operating conditions to the extent that there would be, for example,

- a significant reduction in safety margins or functional capabilities



-7-
TP 97669

- a significant increase in crew workload or in conditions impairing crew efficiency or

- discomfort to occupants, possibly including injuries

FAR/JAR-25 remote, 1x10-7 < major failure < 1x10-5

Level D: Minor

Failure conditions which would not significantly reduce aircraft safety and which would

involve crew actions that are well within their capabilities. Minor failure conditions may

include for example,

- a slight reduction in safety margins or functional capabilities

- a slight increase in crew workload, such as, routine flight plan changes, or

- some inconvenience to occupants

FAR/JAR-25 probable, minor failure > 1x10-5

Level E: No Effect

Failure conditions which do not affect the operational capability of the aircraft or increase

crew workload.

The following text will only consider the part of the application which is classified as level A.

DO-178B on purpose refrains from making a statement about an appropriate software life cycle.

The life cycle is described rather abstract as a number of processes that are categorised as

follows:

- software planning process

The software planning process entails the production of the following documents

- Plan for Software Aspects of Certification. The main purpose of this document is to define

the compliance of the software development process to DO-178B for the certification

authorities. This document contains many references to the project documentation

generated as part of the life cycle model used.

- Software development plan, which defines the chosen software life cycle and the software

development environment, including all tools used

- software verification plan, which defines the means by which the verification objectives

will be met

- Software configuration management plan and software quality assurance plan

- software development processes consisting of

- software requirement process

- software design process



-8-
TP 97669

- software coding process

- integration process

Each software development process has to be traceable, verifiable and consistent.

Transition criteria need to be defined by the developer to determine whether the next process

may be started. In case the inputs of a process are incomplete, e.g. the previous process has

not been completed, transition can be allowed when the transition criteria are satisfied.

Special attention needs to be paid to the verification of process inputs which become

available after the subsequent process is started.

- integral processes

The integral processes are divided into

- software verification process

- software configuration management process

- software quality assurance process

- certification liaison process

The integral processes are a result of the criticality of the software. Consequently the integral

processes are performed concurrently with the software development processes throughout the

entire software life cycle.

Verification is defined as "the evaluation of the results of a process to ensure correctness and

consistency with respect to the inputs and standards to that process". Verification can be

accomplished by review, analysis, test or any combination of these 3 activities. Review provides

a qualitative assessment of correctness. Analysis is a detailed examination of a software

component. It is a repeatable process that can be supported by tools. DO-178B recognises two

types of tool

- software development tools, which can introduce errors

- software verification tools, which can fail to detect errors.

The FCDM project has only developed software verification tools. Every tool needs to be

verified against the Tool Operational Requirements (TOR), the contents of which is prescribed

in DO-178B. Software development tools need to be tested using normal and abnormal

conditions. Software verification tools need only be tested using normal conditions. For software

tools the same documentation and configuration control procedures apply as for the airborne

software. Every software tool needs approval of the certification authority. Testing is "the

process of exercising a system or system components to verify that it satisfies specified

requirements and to detect errors". By definition the actual testing of deliverable software forms

only part of the verification of the coding and integration processes.



-9-
TP 97669

3 Experience gained with safety critical software development

Usually the software development process is agreed between the customer and the supplier. For

certifiable software a third party is involved, adding a stage in the approval process. The

organisational independence improves the position of the assessors. In the our case the customer

had ample experience with DO-178B certification and decided, after approving the process

documentation, to postpone the review with the certification authorities until the completion of

the coding process. Only minor modifications were needed in the process documents, implying

that DO-178B can be adhered to without prior knowledge of certification.

The project team was set up consisting of 2 separate groups, a development group and a

verification group. The verification group was headed by a team member with sufficient

authority to report, at his own discretion, to the company management outside of the project

hierarchy.

To ensure a strict traceability from requirements to design, to code and to integration a review

was planned after completion of each process. Experience with previous mission critical software

development suggested variability of detailed system requirements, so analysis is used wherever

possible. Part of the analysis can be strictly defined and subsequently implemented in a

customised tool. Tool support reduces the costs for repeated analysis. The software verification

tools performed according to expectations to reduce the impact (both in time and costs) of the

many late requirements changes.

The customer required use of the C programming language was considered a potential risk for

the successful application development. The C language contains numerous constructs that are

unspecified, undefined or left to be defined by the compiler supplier [ref 3] This risk was

reduced by choosing an ANSI-C compliant compiler complemented by a project coding standard

defining, amongst others, a safe subset of C. Compliance to this project coding standard can be

checked automatically by customising a commercial tool. During verification of this tool the

version management by the tool supplier turned out to be inadequate. The tool was already sold

at least 5 years to hundreds of customers. This illustrates the rigour of the applied verification

processes.



-10-
TP 97669

4 Overview of the avionics application

The flight display subsystem is designed to operate in both Visual Meteorological Conditions

(VMC) and Instrument Meteorological Conditions (IMC). Under visual meteorological conditions

the displays aid the pilot during flight, under instrument meteorological conditions the

instruments are necessary for the pilot to be able to fly, consequently the correct functioning of

the instruments is safety critical. The latter conditions imply that a number of equipment items

needs to be duplicated to achieve the required failure probability.

When configured for instrument meteorological conditions the display subsystem consists of the

following equipment:

- 2 Flight Control Display Modules,

- 4 Smart Multifunction Displays,

- 2 Instrument Control Panels,

- 1 Reconfiguration Control Unit.

Fig. 1 Overview flight control display module environment



-11-
TP 97669

The FCDM is the interface between the on-board sensors and the displays. The sensors and some

aircraft subsystems send flight parameters via digital buses to the FCDM, which validates the

parameters and sends them to the displays. A number of parameters is also computed within

FCDM itself.

In case of failure of an equipment item or a discrepancy between two sensors, the

Reconfiguration Control Unit permits the crew to choose between different configurations. When

a sensor is reconfigured, it is logically switched-off. This illustrates how software and a

multiplied hardware device reduce the failure rate to to the required level. Consequently the

software becomes safety critical.

During normal operation FCDM processes about 100 different flight parameters, coming from

10 different sensors. Each parameter is classified as:

- critical: loss or undetected error could lead to a catastrophic failure condition. Examples of

critical parameters are the attitude parameters: pitch, roll, and heading. The software that

handles these parameters is classified as level A.

- essential: loss or undetected error could lead to a major failure condition. An example of an

essential parameter is the VOR (VHF Omnibearing Range for position determination). The

software that handles these parameters is classified as level B.

- non-essential: loss or undetected error could lead to a minor failure condition. Examples of

these parameters are the long term navigation parameters, like the flight plan. The software

that handles these parameters is classified as level D.

Depending on the criticality of the data, validation is performed in four different ways:

- coherency test: a check on correct length and parity of the data,

- reception test: a check on the timely arrival of the data,

- sensor discrepancy test: a comparison between two parameters produced by the two

independent redundant sensors,

- module discrepancy test: a comparison between two parameter values produced by the same

sensor; one value directly read by FCDM from the sensor, and one obtained from the

redundant FCDM via a cross-talk bus.

FCDM itself does not have a black box capability. However, since FCDM is a spider in the web

of the avionics subsystems, it is made responsible for monitoring the health of these subsystems.

Any discrepancy between multiplied equipment and abnormal behaviour is logged into



-12-
TP 97669

non-volatile FCDM memory and also send to the on-board maintenance device. The logged

errors can be downloaded from FCDM during on-ground maintenance. This log allows an early

warning system to prevent possible future malfunctions leading to accidents.



-13-
TP 97669

5 Experience gained with safety critical software development methods

The definition of the FCDM software development method has been guided by previous

experience with mission critical software. In spacecraft the software on which success of a

mission depends is classified as mission critical. The Attitude and Orbit Control System (AOCS)

software for the Italian- Dutch SAX (Astronomical X-ray Satellite) [ref 4] has been developed

using the following software development method

- customer supplied specifications provided in plain English

- use of ESA PSS-05 life cycle model [ref 5]

- software analysis using Structured Analysis with Hatley and Pirbhai Real Time extensions

(SA/RT) supported by the Teamwork tool. The process-specifications are written in plain

English, including a copy of the relevant requirement number(s)

- software design using Yourdon Structured Design (SD) supported by the Teamwork tool. The

module-specifications are written in pseudo code and include a copy of the relevant

requirement number(s)

- coding in the customer prescribed C-language. A proprietary C-coding standard was used,

enhanced for this specific project. The entire module-specification was included as comment

in the code

- module testing and integration testing with a self imposed 100% code coverage requirement.

After validation and delivery the resulting system contained 1 error in 20,000 lines of

non-comment source-code. This error was found during the SAX satellite integration tests plus

the entire operational life of the satellite. The resulting error density is 0.05 error per 1,000 lines

of code. This can be categorised as an extremely low value, refer also to [ref 6]. This error

density was achieved even though the first delivery consisted of 16,000 lines of code and

subsequently about 8,000 lines of code were added/modified resulting in a total size of 20,000

lines of code.

For FCDM the customer prescribed the use of the DOD-STD-2167A [ref 7] life cycle model and

the use of the C-language.

Based on the successful SAX AOCS development the following elements of the SAX AOCS

software development method are retained

- customer supplied specifications provided in plain English

- software analysis using Structured Analysis/Real Time supported by the Teamwork tool

- software design using structured design supported by the Teamwork tool

- use of NLR proprietary C-coding standard, with project specific enhancements



-14-
TP 97669

Based on the SAX-AOCS experience of a very substantial amount of changes during and after

the implementation phase, even more emphasis is placed on tools to support the development

activities. Added to the software development method are

- automated test tool to aid the construction and cost effective repetition of module tests and

as many of the integration tests as practical

- a mandatory 100% code coverage for level A software. This code coverage consists of

statement coverage (every statement executed) plus decision coverage (every decision

executed for pass and fail) plus the modified condition/decision coverage (mc/dc). Mc/dc

requires that for every operator in an expression, its independent effect on the outcome of the

expression is demonstrated

- execution of all module tests and the integration tests on the target system with a hardware

emulator with instrumented code. Subsequently repetition of all these tests with

non-instrumented code to check whether the same results are obtained as with the

instrumented code. An emulator considerably expedites the analysis of unexpected results.



-15-
TP 97669

6 Commercial realities versus safety critical application development

Due to the commercially defined short time to market, the customer definition of the system

requirements was performed concurrently with the software requirements process. The resulting

analysis was subjected to a number of informal technical assessments, but no formal verification

was performed.

The commercial nature of the aircraft development even resulted in concurrent updates of the

system requirements during the design, coding and integration processes. Consequently the

planned deployment of separate development and integration teams turned out to be infeasible.

To aid the integration of the FCDM in the customer developed displays and subsequently in the

existing aircraft, a first version of the software with very limited functionality was delivered.

This version was produced based on a successive completion of the documented software

development processes. However none of the formal reviews with the customer or the

certification authority had been performed. The first version served its purpose well. A lot of

feed-back was obtained, resulting in many changes to and clarifications of the system

requirements.

Due to the success in eliminating system level problems by the informal co-development of the

first version of the FCDM and the displays, the customer requested to continue the informal

co-development and allocate all project resources to it. The personnel resources of both teams

were combined, however the 2 separate team managers with their complementary responsibilities

remained. All activities were executed for only one of the teams. The respective team leader

ensured that the relevant procedures are strictly enforced.

From a functional point of view this concentrated development effort resulting in 4 pre-releases

of the software, has been very successful. Up to date the software contains nearly all functions

while at the same time around 150 changes to the system requirements have been

accommodated. Valuable feed back from the user (pilot) has been obtained. Also the

development of the displays and especially its integration with FCDM and the aircraft have been

expedited considerably.

This informal co-development has only been possible because the documented software

requirement process and software design process had been completed before the coding of the

first software version started. The available Teamwork models also aided in assessing the

consequences of proposed changes. The drawback of the informal co-development is that a very

considerable amount of documentation work remains, as based on the software size it was



-16-
TP 97669

impossible to enlarge the team. Also all verification and the exhaustive mc/dc testing still needs

to be performed. It is inevitable that the verification will result in a new version of the software,

which will be submitted to the certification authorities. The reverse side of the early and

successful delivery of the co-development versions is the risk of the invalidating some already

completed flight trials of the aircraft.

An important lesson learned from the informal co-development is to try to keep the verification

process up with the actual implementation to comply with the commercial time to market. The

many system requirement changes require a cheap and easily repeatable verification process. This

can only be achieved by using strictly defined development methods which allow strictly defined

analysis. The well defined analysis should be executed by automated tools. These tools should

be sufficiently user-friendly and efficient to allow the analysis, design and testing to be updated

concurrently with the code modifications resulting in a spiral development model. As a complete

integrated suite of development tools is not commercially available, the best option is to use as

much available tools as possible. For some simple unsupported (verification) tasks proprietary

tools can be produced cost-effectively. Only the tool for checking compliance to the coding

standard was sufficiently user-friendly to be used during the co-development. The Teamwork

tool is too labour intensive to keep the analysis and design up to date.

Independent personnel is required for the verification of the coding and integration processes.

This requirement combined with the outdated status of the analysis and design, means that the

verification can not keep up with the co-development. After the last pre-release delivery costly

re-work needs to be done, which also delays the certification schedule. It is unclear how much

of the schedule time gained during the co-development is lost due to the resulting delay of the

certification. At least co-development saves re-certification effort as well as the generation of

much documentation describing pre-releases.



-17-
TP 97669

7 Comparison of standards for safety critical systems

This section will highlight some differences between several standards for safety critical systems,

based on the avionics application experience.

DO-178B has been specifically constructed for airborne systems and pre-dates the other

standards. Currently other standards for safety critical systems are available, ISO/DIS 15026

[ref 8] and IEC 1508 [ref 9]. Like DO-178B also ISO/DIS 15026 recognises an "integrity

assurance authority" besides the customer and supplier. This authority issues a certificate of

compliance. The number of software integrity levels and their criteria are to be negotiated with

the integrity assurance authority. As an example the IEC 300-3-9 [ref 10] is included in the

standard. JAR/FAR-25 requires a catastrophic failure to occur less then once during 10-9 flight

hours. IEC 300-3-9 classifies a system exhibiting a failure with catastrophic consequence and

an incredible frequency (defined at < 10-6 per year, which at a commercial utilisation rate of

1000 flight hours per year for the aircraft involved, equals 10-9 per flight hour) only as

intermediate. Like DO-178B ISO/DIS 15026 does not recommend a life cycle. An example life

cycle with methods to achieve confidence are included. This example life cycle defines 8 phases

based on the waterfall model and consequently does not accommodate the commercial necessities

of co-development and short time to market.

IEC 1508 classifies the failure frequency in 4 levels, the most severe allowing between 10-6 and

10-4 dangerous failures per year. This is more frequent then DO-178B combined with

JAR/FAR-25. IEC 1508 declares itself unapplicable for lower failure rates. IEC 1508 defines a

safety life cycle with 16 phases which include modifications after delivery, retrofit and

decommissioning. The inputs and outputs per phase are specified. Highly recommended

techniques are prescribed. Not using these requires a mandatory justification. As a minimum

ISO 9000 quality assurance is required. Although the need for iteration is mentioned, the

software life cycles and the recommended techniques do not seem to accommodate this

commercial necessity. DO-178B is based on independent execution of the verification by the

supplier combined with the organisationally independent certification authority. IEC 1508

prescribes the independence of the assessors per safety level for a number of activities. The

options are independent person, independent department and independent organisation. For

systems with the highest integrity level IEC 1508 states a structured method supported by a tool

as "highly recommended". C is classified as "positively not recommended" and IEC 1508 is

impartial for C with subset and coding standard.



-18-
TP 97669

The emergence of these standards means market opportunities for tools which support the

development of safety critical systems. This may benefit the development of safety safety critical

systems in various ways:

- tools may be qualified once by the vendor, reducing considerable project qualification effort,

- tool checks may become more comprehensive reducing (re-)verification effort,

- tool operations may improve allowing to support the commercially necessary co-development,

- commercial tools should significantly lower the effort needed to produce safety critical

systems and hence their price, making those systems affordable for many more applications.



-19-
TP 97669

8 Conclusion

For software development in air transport the safety requirements are stated in DO-178B. This

document is sufficiently clear to allow a first-time developer to define, without external support,

a compliant development process. This document is used by both software producers and by the

independent certification authority which ensures compliance. Developing software according

to the traditional waterfall model allows compliance to be achieved.

Producing aircraft is a commercial venture which means that the various aircraft subsystems need

to be co-developed in order to achieve the commercially determined time to market. The spiral

model is more appropriate then the waterfall model. An integrated tool set is needed which

supports the co-development i.e. which allows when a change occurs to concurrently update

analysis, design, code, integration and verification (including traceability information). Currently

available tools do not provide this capability. To minimise the effort of the recurring verification,

analysis is the preferred method, supported by tools wherever available. For simple verification

tasks customised tools can be developed cost-effectively. Emerging general purpose safety

standards suggest that safety critical systems will also have to be build for other application

areas. This could make the required tools commercially attractive for tool vendors, which in turn,

could reduce the costs associated with safety critical system development.

The need to deploy all human resources to development has significantly reduced the

development time as well as allowed co-development of the avionics application with several

other aircraft subsystems. It can not be assessed whether this time reduction is offset by the

resulting delay in updating the documentation and certification. By performing these iterations

before certification at least the re-certification costs of the intermediate versions have been

avoided.



-20-
TP 97669

References

[ref 1] DO-178B, Software Considerations in Airborne Systems and Equipment

Certification (December 1992)

[ref 2] Federal Aviation Requirements/Joint Aviation Requirements FAR/JAR-25

[ref 3] Safer C, L. Hatton (1995). Mc Graw-Hill

[ref 4] Development procedures of the on-board attitude control software for the SAX

satellite, G.J. Dekker, NLR Technical Publication TP 96573 L (1996)

[ref 5] ESA Software Engineering Standards, ESA-PSS-05 (1991)

[ref 6] Software faults: the avoidable and the unavoidable: Lessons from real systems,

L. Hatton, Proceedings of the ESA 1996 product assurance symposium and

software product assurance workshop (ESA SP-377), Noordwijk, March 1996,

page 271-275

[ref 7] DOD-STD-2176A Department of Defense (DoD) Defense System Software

Development (February 1988)

[ref 8] ISO/DIS 15026 Information technology - System and software integrity levels

(1996)

[ref 9] IEC 1508 Functional safety:safety related systems, 7 parts, (June 1995)

[ref 10] IEC 300-3-9 Dependability management - Part 3: Application guide -

Section 9: Risk analysis of technological systems (1995-12)


