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ABSTRACT
Consider a linear accelerometer on a moving frame in a gravity field. Its geometry is described by
the location of the seismic point on the frame, R, and the direction of its sensitive axis s. Ideal
measurements give the ambient field component s. The field strength, a vector quantity, at the
seismic point is represented by a + A.R, where the components of vector a (3) and of matrix
A (9) vary with time. Quantities a and A can be related to vector and tensor properties of the
frame dynamics and the gravity field. The field on a free-floating rigid body under no forces can
be described analytically, as a function of inertial properties and angular momentum.
Measurements of this field can be used to resolve unknowns in the parameters that occur in its
description. Equations are presented that relate the field to the geometrical properties of the
accelerometer. Suggestions for applications, including uses on ISS, are given. Desirable is a
portable instrument with high-quality accelerometers (gradiometers), and a free-float volume on
ISS.
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IDENTIFICATION OF THE GEOMETRY
OF ACCELEROMETERS IN AN ARRANGEMENT

J.P.B. Vreeburg, NLR, PB 90502, NL-1006 BM Amsterdam; vreeburg@nlr.nl

Consider a linear accelerometer on a moving frame in a gravity field. Its geometry is described by the location of the
seismic point on the frame, R, and the direction of its sensitive axis s . Ideal measurements give the ambient field
component along s . The field strength, a vector quantity, at the seismic point is represented by  a + A.R , where the
components of vector a (3) and of matrix A (9) vary with time. Quantities a and A can be related to vector and tensor
properties of the frame dynamics and the gravity field. The field on a free-floating rigid body under no forces can be
described analytically, as a function of inertial properties and angular momentum. Measurements of this field can be
used to resolve unknowns in the parameters that occur in its description. Equations are presented that relate the field to
the geometrical properties of the accelerometer. Suggestions for applications, including uses on ISS, are given.
Desirable is a portable instrument with high-quality accelerometers (gradiometer), and a free-float volume on ISS.

1. Introduction

The Wet Satellite Model test article that was launched
with the MASER 5 sounding rocket carried a motion
sensing instrument named 'ballistometer' 1. It is an
arrangement of 9 linear accelerometers the output of
which can be processed to yield the linear and angular
accelerations, and the angular rate of the arrangement.
Similar instruments are used on earth for the diagnosis
of motion, e.g. in biodynamics.
Other arrangements of accelerometers constitute a
gradiometer, an instrument for the determination of  a
gravity field 2. Although the accelerometers (sensitivity
in pg) in a gradiometer are very different from those in
a motion sensing instrument, the basic theory is the
same. The field that is measured can be represented by
a vector  v + [N]R , where R , a location, is different
for the sensors in the arrangement. The anti-symmetric
part of  3 x 3 matrix [N] is the skew-symmetric matrix
formed from the angular acceleration of the
arrangement; the symmetric part consists of terms with
components of the gravity field gradient and the
angular rate of the arrangement. The geometry of a
single linear accelerometer is given by the three
components of its location R, plus two that specify its
sensitive direction. The output from an ideal
accelerometer is then a function of  12 + 5 = 17
quantities. If the field is known, a sequence of
different measurements can be processed to recover the
geometric parameters. Evidently, field knowledge is
relative; the data of interest in gravity field
measurements are often orders of magnitude smaller
than those in motion studies (and then neglected).


Copyright © 2000 by NLR. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. Released to
IAF/IAA/AIAA to publish in all forms.

Either type of data may need to be determined on the
International Space Station (ISS). With high
performance accelerometers3 available, one may
envisage use of such to help determine the field that is
to be measured by sensors of lower quality for
calibration purposes, including the identification of
their geometry. Generation of a motion field can be
accomplished by any method; the difficulty is to
achieve accuracy. The tidal base field on the ISS
structure is expected to be of µg order 4 and higher
magnitudes occur at higher frequencies. Rejection of
the high frequency disturbances is accomplished by an
isolation mount, essentially a free-floating rigid frame
maintained at a central position in its enclosure. If the
enclosure were large, the frame motion would not be
restrained so much and, for extended periods, it could
be under gravity forces only. Analytical solutions exist
for the field at any location on the frame as a function
of inertial properties and angular momentum. Now
measurement data can be used to determine the
geometry of the sensors on the body, (some of) its
inertial properties5 , or the angular momentum,
depending on apriori information.
Conversely, if the geometry of an arrangement of
accelerometers were known, as in a gradiometer, its
data can be processed to recover the field parameters.
The paper presents the equations that result from an
arbitrary arrangement, not just the highly regular

configurations that are so expensive to realise. It will
be shown that the core of the problem becomes the
determination of a vector from the values of three
quadratic forms with this vector. Questions of
sensitivity and accuracy, although crucial for viable
instrumentation, have not been addressed.
On ISS there will be several systems of  accurate
accelerometers. The proper combination of data from
these systems may already yield useful information on
ISS  field, motion and inertial properties.
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2. Nomenclature

bold character, e.g. εεεε = [ ε1 ε2 ε3 ]T = column vector,
also specifies a diagonal matrix, e.g. diag(1) = [1] =
identity matrix

 [A] =  A11  A12  A13  = symmetric matrix
       A12  A22  A23 
       A13  A23  A33 

R = Rr location vector
r, s, t = unit vectors
ρρρρ = reference location
σσσσ = acceleration field vector
ΩΩΩΩ = rotation rate vector
φ = body force field potential

∆ψ = ψ0 – ψ = true ψ – known ψ

!ψ =  ψxx  ψxy  ψxz  , symmetric
       ψxy  ψyy  ψyz 
       ψxz  ψyz  ψzz 

{ΩΩΩΩ}=   0  –Ω3  Ω2   , skew-symmetric
       Ω3  0  –Ω1 
      –Ω2  Ω1   0 

du/dt = u′ + {ΩΩΩΩ}u = u′ + ΩΩΩΩ x u
u′ = rate of change of u in a system rotating with ΩΩΩΩ

3. Acceleration field on a moving base

In space gravity is represented by a potential field φ
that can be expanded about a reference location ρρρρ via
the Taylor expansion formula, viz.

  φ(ρρρρ+R) = φ(ρρρρ) + (R.∇ )φ/ρρρρ + ½ (R.∇ )² φ/ρρρρ +  - - -  ( 1 )

If φ has considerable amplitude only for spatial
wavelengths  > R  the higher terms in the expansion
can be neglected. In the sequel this assumption is made
in order to reduce the complexity of the formulas. The
subscript /ρρρρ means that the value is to be taken at
location ρρρρ. The second-order term in the expansion can
be written as a quadratic form with the tensor of second
derivatives of φ at location ρρρρ, i.e.

  (R.∇ )² φ/ρρρρ  = R. !φ/ρρρρ  R

Note that for harmonic fields the trace of  !φ is zero,
and for point mass gravity potential, two eigenvalues
are equal.
The field strength at location R is obtained by taking
the gradient (in R) of ( 1 ) :

 ∇  φ(ρρρρ+R) = ∇φ /ρρρρ+R =  ∇φ /ρρρρ  + !φ/ρρρρ  R                  ( 2 )

i.e. a linear vector function of R . It is observed that the
/ρρρρ terms number nine (eight when accounting for the
zero trace) different scalar coefficients, time-dependent
in general. The determination of their values is the
objective of (space) gravimetry.

Take location ρρρρ as the origin of a co-ordinate system
that has rotation rate ΩΩΩΩ. The acceleration at location R
in this co-ordinate system is composed of the body
force field and the field induced by the motion6 :

  σσσσ(R) = d²ρρρρ/dt² +  ∇φ /ρρρρ  +  ( !φ/ρρρρ + {ΩΩΩΩ′} + {ΩΩΩΩ}² )R +

            + 2{ΩΩΩΩ} R′ + R′′                                          ( 3 )

The last two terms, the Coriolis and the relative
accelerations, are zero at locations that move with the
system and so,  σσσσ(0) = d²ρρρρ/dt² +∇φ /ρρρρ . If the reference
location is at the center of mass of a physical system
that moves freely in the body force field :  σσσσ(0) = 0 .

4. Accelerometer data

A linear acceleration sensor measures at its seismic
point R the component of the field along the sensitive
direction s , i.e. the ideal output is po =  s . σσσσ(R) . Real
sensors modify the ideal output by scale factor (sf) ,
bias and noise terms, and have an actual output pa :

  pa = sf. po  + bias + noise

The determination and modeling of sf, bias and noise is
a discipline all by itself and will not be addressed. In
the sequel pa is taken po . The type of accelerometer is
relevant for the terms that contribute to po . For
rebalanced types, the location of the proof mass (the
'seismic' point) is held stationary by a control circuit.
Consequently, with the reference point fixed with
respect to the accelerometer housing,  the Coriolis and
the relative acceleration terms can be neglected to
noise. Other types use (vibration) control to create
known values of R′ and R′′  .

The quantities that make up  po are only known
approximately. In the sequel, the true value of each will
be indicated by subscript 0 , e.g. R0  represents the true
location of the seismic point while  R  gives the known
location. So, the output of an ideal, rebalanced linear
accelerometer could be given by an equation

   po = s0 . σσσσ0(R0) = s0 . σσσσ(0)0 +  s0 . ( [A]0+ {ΩΩΩΩ′}0 ) R0

   where [A] =  !φ/ρρρρ + {ΩΩΩΩ}² , a symmetric matrix.

The predicted output of this accelerometer, based on
the knowledge of fields and vectors R and s , is :

  p = s . σσσσ(0) +  s . ( [A] +{ΩΩΩΩ′} ) R                         ( 4 )
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5. Error equations

The error terms for an ideal accelerometer are obtained
from ∆ [s . σσσσ(R)] = s0 . σσσσ0(R0) −  s . σσσσ(R) =
                (s + ∆s).[σσσσ(R + ∆R ) + ∆ σσσσ(R0)]  −  s .σσσσ(R)

  ∆σσσσ(0) = ∆d²ρρρρ/dt² + ∆∇φ /ρρρρ0  +  !φ/ρρρρ  ∆ρρρρ

  ∆[A] = {ΩΩΩΩ} {∆ΩΩΩΩ} + {∆ΩΩΩΩ}{ΩΩΩΩ}

  ∆ σσσσ(R0)  = ∆σσσσ(0) + ( ∆[A] + {∆ΩΩΩΩ′}) R0 +
                    + 2{∆ΩΩΩΩ}R0′ + 2{ΩΩΩΩ} ∆R0′  + ∆ R0′′

for rebalanced type sensors the last three terms in the
expression for ∆ σσσσ(R0)  should be negligible.

One finds  for accelerometers of the rebalanced type :

  po = s0 . σσσσ0(R0) = s . σσσσ(R) + ∆ [s . σσσσ(R)] =

p + ∆s.[σσσσ(0) + ([A]+{ΩΩΩΩ′})R] + s.[([A]+{ΩΩΩΩ′})∆R + ∆f]

      =  s0. σσσσ(0)  +  s0. ([A] + {ΩΩΩΩ′}) R0  +  s. ∆f       ( 5 )

  ∆f = ∆σσσσ(0) + (∆[A] + {∆ΩΩΩΩ′})R + 2{ΩΩΩΩ}R′ + R′′    ( 6 )

The field errors are collected in ∆f , and include the
Coriolis and relative accelerations. The equation is
accurate down to errors not much smaller than the
magnitude of  !φ/ρρρρ  ∆ρρρρ (or higher order field terms
must be considered).

6. Sensor geometry components

Suppose that the field is known exactly, or, which
comes to the same, much more accurately than the
geometry of the accelerometer, or:  ∆f  = 0 in ( 5 ). A
candidate would be the field from the free (tumbling)
motion of an invariable body with precisely known
inertial properties and angular momentum. It is then
possible to recover the geometrical data R0 and s0 by
processing the sensor output po . The procedure is
shown for a rebalanced accelerometer and it is assumed
that a reasonable initial estimate of the geometry is
available.

For a suitable choice of origin one can make r and  s
not nearly parallel, and define a vector: t sinϕ = { s } r
The orthogonal triad s , t  and {s} t  is used to make
orthogonal matrix [Q] , viz.

   [Q] = [ s    t    {s} t ]                                           ( 7 )

Similarly, [Q0] = [ s0    t0    {s0} t0 ]  = [Q] [U] , where
orthogonal matrix  [U] = [1] − {εεεε} + {εεεε}² /(1+cosα)
≈ [1] − {εεεε} , for sinα =√ εεεε. εεεε , and   εεεε. εεεε  << 1 from the
assumption of approximate knowledge. Then,

s0 . σσσσ(0) =[1  0  0] [Q0]T σσσσ(0) =[1  0  0] [U]T [Q]T σσσσ(0)

  ≈  s . σσσσ(0) − ε3 t . σσσσ(0) + ε2 s . {t} σσσσ(0)  =

  =  σ(0)1  − ε3  σ(0)2   +  ε2  σ(0)3                         ( 8 )

The subscripts 1, 2 and 3 on σ(0) refer to components
along  s , t , and  {s} t  respectively

Term  s0 . ( [A] + {ΩΩΩΩ′} ) R0  is treated likewise, and the
result from ( 5 ) becomes, to first order :

  ∆p = po − p = [ ∆R   ∆ϕ   ε1   ε2   ε3  ] .

   −sinϕ (Ω′2 + A13)  + cosϕ A11                             
                                                                          
   −R{cosϕ (Ω′2  + A13) + sinϕ A11}                 
                                                                          
      Rsinϕ (Ω′3 − A12 )                                           ( 9 )
                                                                          
      σ(0)3  + R{2cosϕ A13  + sinϕ (A11 −A33 )}  
                                                                          
   −σ(0)2 − R{ sinϕ (Ω′1 − A23 ) + 2cosϕ A12} 

If the column vector in ( 9 ) is denoted V, a number of
measurements 1,2,….,N  yields the system:

  [∆p1  ∆p2  - - -   ∆pN ] =

  [ ∆R   ∆ϕ   ε1   ε2   ε3  ] . [ V1   V2   - - -  VN  ]

to be solved for the five geometrical error terms7 . The
analysis can be expanded to include other error terms
with fixed value, e.g. parameters for bias or noise.

7. Field determination

The output of a sufficient number of accelerometers in
a known configuration allows to determine the field
components. A proposed algorithm requires [A] to be
written as  ± {a}² + diag(d) . Particulars of this
decomposition are explained in the Appendix. Any
orientation of the base vectors of [A] can be chosen,
i.e. write ( 4 ) :

  p = s.[V]T[V]σσσσ(0) + s.[V]T[V]([A]+{ΩΩΩΩ′})[V]T[V]R

where  [V]  is an orthogonal matrix. Selection of  [V],
to achieve a desired [V][A][V]T , requires that at least
an approximate value of [A] is known. E.g. [V] could
be selected such that the components of a after
transformation have a certain magnitude. If [A] is
calculated in a sequence, each new value allows to
reset [V]. Evidently, the basis for the accelerometer
geometry vectors s and R rotates with [V]. For
convenience of notation [V] will not be shown
explicitly; the transformation is assumed performed.
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With vector  1sR defined as [ s1 R1   s2 R2   s3 R3 ]T  :

                                                            σσσσ(0)
  p ± s .{a}² R = [ sT   R.{s}   1sR

T ]  .     ΩΩΩΩ′         ( 10 )
                                                               d   

i.e. the right hand side is written as the inner product of
a  9-component sensor geometry vector with a field
vector of  9 components. It is noted that for s . R = 0
a base vector along s or R will null 1sR which makes
possible (3-D) arrangements that cannot measure d and
that reduce the vectors to 6 components. Opportunities
for reduction exist also in the fact that  the angular
acceleration  ΩΩΩΩ′ can be integrated to the angular rate ΩΩΩΩ,
but these issues will not be addressed.

  2 s .{a}² R = a. ( {s}{R} + {R}{s} ) a , a quadratic
form in a and so N of ( 10 ) can be assembled into :

 p1  ±  ½a. ( {s}{R} + {R}{s} )1  a   
 p2  ±  ½a. ( {s}{R} + {R}{s} )2  a   
                 |                                          =
                 |                                      
 pN  ±  ½a. ( {s}{R} + {R}{s} )N  a    N x 1

             s1
T   R.{s}1   1sR 1

T               σσσσ(0)
             s2

T   R.{s}2   1sR 2
T                  ΩΩΩΩ′ 

    =         |          |           |                     d     9 x 1

               |          |           |       
             sN

T   R.{s}N   1sR N
T    N x 9                       ( 11 )

Via singular value decomposition of the N x 9 array of
geometry vectors,  the system can be reduced to N − 9
equations for a only, each like a. [M] a = P  with [M]
and P linear combinations of  ( {s}{R} + {R}{s} )i  and
pi  respectively. If N−9 ≥ 3 , a solution for a can be
calculated but particular difficulties appear7 . The
singular value decomposition works for any geometry
array and so it is not necessary to align the sensors
precisely; it suffices that the geometry is known.
Observe that unless all R.{s}i = 0 , [M] is not simply
transformed with [V] because of the vectors 1sR .

Various special cases can be defined and analyzed
using ( 10 ). For example consider two accelerometers
with parallel sensitive directions, i.e. s1 = s2 . Then, if
the origin of the system is chosen at the midpoint
between the seismic points, one has  R1 =  − R2 , and
addition of output gives:  p1   +  p2  =  2 s1. σσσσ(0) . Two
aligned tri-axial sensors furnish all components of σσσσ(0)
and via (anti-) parallel displacement of a single tri-axial
accelerometer the same result can be achieved.  Such
data are generated also by putting R = 0 , so the only
advantage appears to be that the measurement location
is not occupied by the instrument. On ISS, a portable
instrument with this performance could be used to map
the field  σσσσ(0) 4.      

8. The  σσσσ(0) field

Denote by C0 the origin ρρρρ = 0 of the co-ordinate system
for location vector ρρρρ . If C0 is the location where σσσσ(0) =
0  then  d²ρρρρ/dt²/ρρρρ=0  + ∇φ /ρρρρ=0  = 0 . Suppose that such C0
is a certain point on ISS and define co-ordinate axes
that move with ISS. Considering that ISS is not rigid, a
point ρρρρ on the ISS structure will vary periodically with
time, typically with an ISS eigenfrequency. If one
defines  δδδδg  =  ∇φ /ρρρρ − ∇φ /ρρρρ=0 , the gravity gradient term,
then :

  σσσσ(0)/ρρρρ = ρρρρ′′  + 2{ϖϖϖϖ} ρρρρ′ + ( {ϖϖϖϖ′} + {ϖϖϖϖ}² )ρρρρ + δδδδg   ( 12 )

where ϖϖϖϖ is the angular rate of the ISS coordinate frame

If σσσσ(0) is measured as a time series, ( 12 ) can become
a fully known differential equation for ρρρρ if the δδδδg term
is taken to be constant and the rate ϖϖϖϖ is known. If three
locations ρρρρ can be solved, C0 can be constructed.

9. Applications

An all-accelerometer motion sensing system as the
ballistometer has lower performance than an equally
expensive system that includes gyroscopes. However
the specific features of a ballistometer are attractive for
back-up applications. Accelerometers of sufficient
quality are available in chip technology and so can be
accommodated with little impact on any system. On a
spacecraft, distributed accelerometer packages would
need to be provided with power and data connections.
During nominal spacecraft operations the spacecraft
motion can be reconstituted and processed for the
identification of the geometry of the back-up
ballistometer. After this has been accomplished, the
instrument output gives intelligible motion information,
useful when the regular system fails, or as an
independent safety provision. The latter feature is
relevant for service vehicles about ISS in order to
diagnose inadvertent hazardous momentum build-up.

On ISS, accurate accelerometers will be installed at
various locations. Selected (Fourier) components of the
field are considered known and may thus serve to
identify the geometry of the arrangement of  these
accelerometers. Then the ISS center of mass can be
determined and tracked. Investment in a portable
instrument opens wider options. The ambient ISS field
could be mapped but also constructed motion fields can
be diagnosed. Such constructed field, e.g. on a rotary
device, serves to calibrate accelerometers for ISS or
spacecraft use. Fields on a free-floating rigid frame
have desirable properties, and a portable instrument
carried by the frame can identify disturbances from
airdrag and ambient gravity field. The dynamic range
of a sensor is limited, therefore the motion field
magnitude will be, for given sensitivity. Nevertheless, a
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gravity laboratory on ISS, being a reference enclosure
with a floating gradiometer, could become a viable
facility.

Already mentioned as a desirable service is calibration
of accelerometers. Another could be the measurement
of inertial properties of satellites, i.e. mass, center of
mass location, and inertia tensor. It may be convenient
to conduct such measurements in free-float and a
portable instrument would be indispensable. The non-
scalar inertial properties of an astronaut, constrained in
a suitable reference posture, provide a valuable means
to monitor this person's physical state.

10. Conclusions

Arrangements of accelerometers have been used to
measure acceleration fields of very different
magnitudes. The compensation of the 1-g terrestrial
component by the orbital velocity of ISS results in an
enormous increase in the useful dynamic range of the
accelerometers. As a consequence, new sensors ,
optimized for space use, can provide various field data
of important practical value. Theory to support the use
of arrangements that do not need precision engineering
is being developed.
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Appendix

Credited to  Kelvin8 is the decomposition of certain
symmetric matrices as  aa  + diag (d) = {a}² + a.a [1] +
diag (d) . The eigenvalues λ are solved from :

a1² /( λ  − d1 ) + a2² /( λ  − d2 ) + a3² /( λ  − d3)  = 1

and determine the eigenvectors :

[a1 /( λ  − d1 )   a2 /( λ  − d2 )   a3 /( λ  − d3) ]T

which is easily verified by substitution. Observe that
the sign of the components of a do not affect λ .
If two of  λ  are equal,   d1 = d2 = d3 , and a is an
eigenvector, as follows immediately from the dyadic
decomposition of a symmetric matrix. The eigenvectors
normal to a are undetermined.

The orthogonal transformation of a diagonal matrix
results in a symmetric matrix, hence if diag(d) ≠ [1] :

[Q] diag(d) [Q]T  =  {b([Q])}² + diag(µµµµ([Q]))     ( A1 )

where [Q] [Q]T = [1] , b([1]) = 0 , and  µµµµ([1]) = d ,

for the matrices considered by Kelvin.

Conversely, a  symmetric matrix with nonzero off-
diagonal terms Aij of which two or zero have negative
values, can be written as ( A1 ). The condition on Aij is
to be met either by the matrix or by its negative value,
and so matrix [V][A][V]T ≠ [1] , with a free choice of
[V], can generally be decomposed to have nonzero
±{b}²  terms at off-diagonal.


