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Summary 

In Delaunay-based grid generation algorithms the in-sphere criterion plays a central role. An 

accurate and robust algorithm for employing the in-sphere criterion is proposed. In the derivation 

of the circumcentre and radius of the circumscribing sphere of a tetrahedral element needed for the 

in-sphere criterion round-off errors and propagation errors are introduced. The new algorithm is 

designed such that these errors are minimised. Furthermore, it is shown that thein-sphere criterion 

can be made invariant for scaling transformations. 



1 Introduction 

Currently, much effort is devoted towards the development of automatic tetrahedral grid genera- 

tion algorithms. Tetrahedral grid generation algorithms can be categorised into Ulree approaches: 

the advancing front approach (Refs. 1, 2, 3, 4), the Delaunay node insertion approach (Refs. 

5, 6,7,8,9) and the quadtreeloctree approach (Refs. 10, 11). 

The present paper focusses on the in-sphere criterion which is used in the Delaunay-based node 

insertion approach. The objective of the paper is to develop a more accurate and robust algorithm 

for the in-sphere criterion. The in-sphere criterion decides whether a node is inside or outside the 

circumscribing sphere associated to a given tetrahedral element. 

Advantageous property of using the in-sphere criterion in the Delaunay-based node insertion 

approach is that the resulting tetrahedral grid is non-overlapping and that all tetrahedral elements 

have a positive volume. Disadvantage, however, is that current implementations of the in-sphere 

criterion lack accuracy and robustness. 

Dl-conditioned tetrahedral elements appear in each stage of the Delaunay-based node insertion 

algorithm, particularly in the initial stages of the grid generation algorithm when the nodes of 

an input surface triangulation are inserted into an existing tetrahedral grid. The derivation of the 

circumcentre and radius for an ill-conditioned matrix can be inaccurate. 

Furthermore, a degeneracy occurs in case a node is exactly located on the circumscribing sphere 

of a tetrahedral element. In case this nodeis c o ~ e c t e d  to the grid the uniqueness of the tetrahedral 

gridis lost. This situationis handled by rejecting a node whichis located onthesphere withinsome 

specified tolerance. The degeneracy cannot be circumvented and provides an inherent difficulty 

of the in-sphere criterion. To ensure that all surface nodes of an input surface triangulation (rep- 

resenting the flow domain) are inseaed into the tetrahedral grid a rejected surface node is moved 

over a small distance. As a result the input surface triangulation has been changed on termination 

of the tetrahedral grid generation algorithm which is clearly undesirable. By designing a more 

accurate and robust algorithm for handling the in-sphere criterion the movement of surface nodes 

can be alleviated. 

In Refs. 13, 14, 15 it is proposed to use integer arithmetic to exactly compute the circum- 

centre and the radius. To this purpose the physical coordinates of the nodes in the tetrahedral grid 

need to be scaled, so that they can be modelled by an integer representation. 

In the present paper it is shown that the in-sphere criterion can be handled with the same ac- 



curacy as an integer arithmetic approach. The crux of the new algorithm is that the nodes of a 

tetrahedral element (for which one derives the circumscribing sphere) and the coordinates of these 

nodes can be permuted in such a way that round-off errors and propagated errors (amplified due 

to matrix decomposition) are minimised. As a result of the approach the volume of the tetrahedral 

element under consideration is computed with the best attainable accuracy (under the assumptio=n 

that the physical coordinates of the nodes are specified in floating point format). 



2 Circumscribing sphere of a tetrahedral element 

The in-sphere criterion decides wether a node z is located inside, on or outside the sphere which 

passes through the four nodes of a tetrahedral element. The construction of the circumscribing 

sphere is explained here. 

Consider a tetrahedral element which is defined by four nodes with physical coordinates zp, z,, 

z,. and 2,; the nodes are ordered so that the volume of the tetrahedral element is positive. The 

circumcentre and the radius of the circumscribing sphere for a tetrahedral element are derived by 

requiring that the distance between each node of the tetrahedral element and the circumcentre are 

equal to the radius. This leads to 4 (quadratic) equations with 4 unknowns (the 3 coordinates of 

the circumcentre and the radius) which can be written as 

where the circumcentre of the sphere is g,, the radius is L and (, ) denotes the innerproduct. 

The radius L can be eliminated by for instance selecting the fist  equation and substracting this 

equation from the second, third and fourth equation. This operation can be expressed by means 

of the permutation matrix 

By pre-multiplying system (1) with the permutation matrix (2) shown a system of three equations 

in the three unknowns (physical coordinates of the circumcentre z,) remains 

The permutation matrix (2) represents a tree which spans the four nodes of the tetrahedral element. 

This can be seen by forming edges between the two nodes of a tetrahedral element which have 

non-zero entries in the permutation matrix. It is well-known that a graph having n nodes has nn-2 



trees, hence for a tetrahedral element 16 different permutation matrices exist. 

The three equations (3) form a linear system which can be written as 

The determinant of the 3 x 3 matrix A (on the left hand-side) equals two times the volume of the 

tetrahedral element: det(A) = 2 V .  The inverse of matrix A exists only if the volume of the 

tetrahedral elementis non-zero. The physical coordinates of the circumcentre are then obtained by 

solving equation (4). The radius of the circumscribing sphere is calculated from the inner product 

The circumcentre obtained by solving system (4) is rotation, translation and scaling invariant. Let 

the operator R; be a rotation of 0 radians around the x-axis (for they- and z-axis a similar operator 

is defined), the operator T, - is the translation T,+ - = + - g and the operator S6 is a scaling with 

Sag = 6 +. Transform the physical coordinates of the tetrahedral element as 

The physical coordinates of the circumcentre are then 

which satisfy system (4) for the transformed coordinates. The circumcentre is invariant with 

respect to any sequence of the above listed operations. By adopting these tranformations the 

di-hedral angles of the initial tetrahedral element are preserved. 



3 Model tetrahedral element 

A tetrahedral element defined by 4 nodes has 12 degrees of freedom. Without loss of generality 

the construction of the circumscribing sphere can be analysed for a tetrahedral element which 

has only 5 degrees of freedom. This is accomplished by transforming the tetrahedral element 

according to (6). 

Let the nodes of the tetrahedral element be ordered in such a way that the distance between nodes 

p  and q is the largest in the element, viz: 

- x i -  with ( i , j ) # ( p , q )  and i , j ~ { p , q , r , s ) .  

The tetrahedral element is transformed according to (6) by taking 6 = 111 lxp - :cq I I and g = xp. 
The rotation angles 8, and 8, are defined so that node q coincides with [I, 0, 0IT and the rotation 

angle 8, is defined so that node T or s  is located in the z = 0 plane. 

The initial tetrahedral element is then transformed into a model tetrahedral element which has 

only 5 degrees of freedom: 

with Rz, R3 E [O, 11 and a E [O, n], /3 E [-?r, ?r] and y E [0, ?r]. In Figure 1 the model tetrahedral 

element is shown. Substitution of the transformed coordinates in the 3 x 3 system (4) yields the 

Fig. I The model tetrahedral element 



system 

The determinant of the matrix is 

The condition number of the 3 x 3 matrix is: 

It can be seen that the matrix is ill-conditionedin case k(A) > > 1 which holds if the determinant 

det(A) equals zero or in other words the tetrahedral element has a volume near zero. Matrix A 

is ill-conditioned for the cases Rz i 0, R3 i 0, a i 0 or y i 0. The condition number of 

matrix A satisfies k(A)  2 1. The condition number equals k(A) = 1 for a tetrahedral element 
1 1 with Rz = 1, R3 = 1,  a = ZK, y = ~ ? r  (p arbitrary) 

The circumcentre of the sphere can explicitly be derived by inverting matrix A  which yields the 

analytical solution 

From this expression it can be observed that the location of the circumcentre is very sensitive to 

small disturbances in case the angles cu or y are close to zero. In fact the location of the circum- 

centte becomes unboundedly large for sin(a) i 0 or sin(y) i 0 (provided that Rz, R3 # 1. 

Starting point for the derivation of the circumcentre and radius of the circumscribing sphere 

are the physical coordinates of the four nodes zp, :,, zT and 2, defined in floating point format. 

In the numerical solution of system (4) two kinds of errors can be made, these are: 

1. Round-off errors which are introduced in the formation of matrix A 

2. Propagation errors which can be made in the decompositioning of matrix A  since the matrix 

is ill-conditioned. 



In order to compute an accurate estimate of the circumcentre and radius (needed for the in-sphere 

criterion) these errors should be minimised. 



4 Minimising theinfluence of the round-off error on the location of the circumcentre 

In this section it is shown that the round-off errors arising in the formation of matrix A can 

be minimised by adopting an algorithm stemming from graph theory, namely the algorithm of 

Kruskal. 

To illustrate the effect of round-off in the formation of matrix A consider the x-coordinates of the 

nodes and let 

with lxql, lxrl, = O(1). Following the floating point notation of (Ref.' 12) the x-components 

of matrix A equal 

with 1&,,1, 1&,,1, IE,,~ = O ( l o d ~ ) .  In an integer arithmetic approach the non-significant part of a 

coordinate would be approximated by zeros so that a round-off error of approximately the same 

size would be introduced. 

By taking a different ordering in the construction of matrix A the influence of round-off can be 

reduced. Consider for instance the permutation matrix 

The elements in the first column of matrix A are then equal to 

with = O(lOd&) and 1&,,1,1&,,1 = O(E). This illustrates that the round-off error can be 

minimised. 



The problem of minimising the round-off error in the system (4) boils down to the minimisa- 

tion of the global round-off error 

71 = k=1,16. min x lai,j,kl, with = nks 
t=1,3 j=1,3 

where s is the vector (1) and n is the permutation matrix (2). Since the L1-norm and L2-norm are 

equivalent in an N-dimensional Euclidean space (N = 9 matrix elements exist) the minimisation 

can be restated as 

This expression also minimised the round-off error occuring in the right-hand side vector of system 

(4) which can be proven by employing Schwarz' inequality. 

The extremum in the minimisation (16) is obtained by deriving the minimal tree spanning the 

four nodes of the tetrahedral element. Assign to each edge of the tetrahedral element a weight 

which equals the square of the distance between the two nodes on the edge. The minimum tree is 

defined as the tree of minimal weight spaMing the tetrahedral clement. In order to compute this 

minimum tree efficiently the algorithm of Kruskal (Ref. 16) is adopted which has a computational 

cost of MLogM where M is the total number of edges in the tree. For a tetrahedral element the 

computational cost amounts to 6Log6. 



5 Minimising the influence of the propagated error 

Since the condition number (1 1) is large for an ill-conditioned tetrahedral element care should 

be taken in the numerical inversion of matrix A. It is known that direct solution methods like 

Cramer's rule or Gaussian elimination are not stable so that round-off errors accumulate in these 

approaches (Ref. 12). Numerical stability is achieved by complete pivoting (Ref. 17), but 

this approach is computationally expensive since for each pivot all matrix elements of matrix A 

have to be accessed. Another more elegant approach similar to complete pivoting would be to 

choose suitabletransformations (6) so that a 3 x 3 lower-triangular matrix (9) results which can be 

solved in a numerically stable manner. This method is computationally expensive since 5 matrix 

operations have to be performed. 

For the latter practical reason LU-decomposition (Gaussian elimination) with partial pivoting of 

the rows of matrix A (Ref. 12) is considered here. LU-decomposition with partial pivoting can 

be written in the form (Ref. 17) 

where L is a lower-triangular matrix, U is an upper-triangular matrix, PI and Pz are permutation 

matrices (for row interchanges). The determinant of matrix A equals 

where s is the sign change induced by the number of permutations PI and Pz needed. 



6 Handling of t he  degenerate zero volume case 

In order to avoid that during tetrahedral grid generation tetrahedral elements with a non-positive 

volume are formed it is required that 

The volume is computed from (18) as V = det(A). Since tetrahedral elements with a volume 

near zero are ill-conditioned according to (1 1) these elements receive a special treatment. 

To improve the accuracy of the circumcentre and the radius one iterative improvement based on 

LU-decomposition with partial pivoting (Ref. 18) is adopted for an ill-conditioned tetrahedral 

element with a volume 

The upperbound has been made relative to the largest edge length d,,,. 



7 In-sphere criterion 

To arrive at a robust treatment of the in-sphere criterion the criterion should be invariant for scaling 

transformations. As a result of this invariance the in-sphere criterion has become independent of 

the reference length of a geometry under consideration. 

A node g is located on the circumscribing sphere in case 

where dl(-) = (g, - g , ~  - g) - L~ and E = 1 x lo-". Otherwise, if condition (21) is not 

satisfied node g is located inside the circumscribing sphere if 

and outside the sphere in case 

In such a way the in-sphere criterion is made invariant for scaling transformations. 



8 Conclusions 

In this paper an accurate and robust algorithm for the in-sphere criterion is proposed. The 

calculation of the circumcentre and the radius of the circumscribing sphere of a tetrahedral 

element is computed with the same accuracy as proposed by integer arithmetic based methods. 

The volume of a tetrahedral element is computed with the best attainable accuracy in floating point 

arithmetic. 

Application of the proposed algorithm in a three-dimensional Delaunay based tetrahedral grid 

generation algorithm learns that the computational cost of the proposed algorithm is moderate. 
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