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ABSTRACT
A new discretization method for the three-dimensional Euler equations of
gas dynamics is presented, which is based on the discontinuous Galerkin
finite element method. Special attention is paid to an efficient
implementation of the discontinuous Galerkin method that minimizes the
number of flux calculations, which is generally the most expensive part
of the algorithm. In addition a detailed discussion of the truncation
error of the presented algorithm is given. The discretization of the
Euler equations is combined with anisotropic grid refinement of an
unstructured, hexahedron type grid to achieve optimal resolution in areas
with shocks, vortices and other localized flow phenomena. The data
structure and searching algorithms necessary for efficient calculation on
highly irregular grids obtained with local grid refinement are discussed
in detail. The method is demonstrated with calculations of transonic flow
on the ONERA M6 wing.



Abstract

A new discretization method for the three-dimensional Euler equations of gas dynamics is presented,

which is based on the discontinuous Galerkin �nite element method. Special attention is paid to an

e�cient implementation of the discontinuous Galerkin method that minimizes the number of ux

calculations, which is generally the most expensive part of the algorithm. In addition a detailed

discussion of the truncation error of the presented algorithm is given. The discretization of the

Euler equations is combined with anisotropic grid re�nement of an unstructured, hexahedron type

grid to achieve optimal resolution in areas with shocks, vortices and other localized ow phenomena.

The data structure and searching algorithms necessary for e�cient calculation on highly irregular

grids obtained with local grid re�nement are discussed in detail. The method is demonstrated with

calculations of the supersonic ow over a 10
�
ramp and the ONERA M6 wing under transsonic

ow conditions.
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1 Introduction

The Discontinuous Galerkin (DG) �nite element method has some unique features which make it an

excellent choice for the solution of the Euler equations of gas dynamics using anisotropic, local grid

re�nement. Local grid re�nement is a very exible tool to increase grid resolution in regions with

complex or non-smooth ow phenomena, but generally results in highly irregular, unstructured

grids, which put severe demands on the accuracy and exibility of the ow solver. The DG �nite

element method is an extremely local scheme and therefore less sensitive to grid regularity, which

makes it a good candidate to be combined with local grid re�nement. This paper discusses a new

algorithm which extends the discontinuous Galerkin �nite element method for the Euler equations

of gas dynamics to three dimensions in combination with local grid re�nement to improve solution

quality. Special emphasis will be put on an e�cient implementation and study of discretization

error and data structure for the DG �nite element method on unstructured grids with hexahedral

elements.

The DG �nite element method is a mixture of a �nite volume and �nite element method. It

was �rst proposed by Lesaint and Raviart [13] and extended to hyperbolic conservation laws by

Cockburn, Shu et al. [7, 9, 10]. In the DG �nite element method the ow �eld in each element is

locally expanded in a polynomial series and equations for the polynomial coe�cients are obtained.

The DG �nite element method therefore not only solves equations for the ow �eld, but also for the

moments of the ow �eld. No interpolation is necessary to determine the ow state at the element

faces in the ux calculation. The information about the ow state at the internal and external

element faces can be directly obtained from the polynomial expansion in each element. The only

additional information from neighboring elements is the element mean ow state, which is used in

the slope limiter. In this way an almost completely local scheme is obtained, which does not lose

accuracy on highly irregular grids.

The use of separate equations for the ow gradients in the DG �nite element method has as

important bene�t that it is not necessary to determine the ow gradients from data in neighboring

elements. This is commonly done in MUSCL type �nite volume methods using Gauss' identity,

but this method requires a certain grid regularity which is not required for the DG �nite element

method. The use of local grid re�nement results in hanging nodes, but the DG �nite element method

does not have any di�culty with hanging nodes because they do not enter the discretization due

to the local series expansion of the ow �eld, which results in a cell based scheme. A signi�cant
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bene�t of the cell based DG �nite element method in comparison with node based �nite element

methods is that the mass matrix of each element is uncoupled from other elements and it is not

necessary to invert a large mass matrix for the complete �nite element system. The element based

polynomial expansion in the DG �nite element method makes it easy to use degenerated hexahedra,

such as prisms and tetrahedra. The discontinuous Galerkin method, together with Runge- Kutta

time integration, is an excellent candidate for parallel computing due to it's local behavior, as was

demonstrated by van der Ven and van der Vegt [24]. A disadvantage of the DG �nite element

method is that it requires more variables per element, because it is necessary to store several

moments of the ow �eld. The increase in number of variables does not have to be a limitation

because grid adaptation will generally reduce the number of elements needed for a given accuracy

and therefore reduce the memory requirements signi�cantly.

The DG �nite element method has until now primarily been used in two-dimensions. Cockburn

and Shu [8] applied the method on triangle based grids, while Lin and Chin [14] and Bey and

Oden [5] used quadrilateral elements. The �rst extension of the DG �nite element method to three-

dimensional ows was presented by van der Vegt [22] and will be discussed more in detail in this

paper. Applications to three-dimensional vortical type ows can be found in van der Vegt and van

der Ven [23].

The second topic in this paper is the use of anisotropic grid re�nement to improve solution

quality. Accurate solutions of three-dimensional ows with highly localized ow phenomena fre-

quently can only be obtained with reasonable e�ciency using grid adaptation. Several types of grid

adaptation are possible, the most important methods for compressible ow are local grid re�nement

(h-re�nement) and methods which redistribute grid points (r-re�nement). One of the main bene�ts

of local grid re�nement is that one does not have global constraints on the grid generation. In this

paper a new grid adaptation method for the three-dimensional Euler equations of gas dynamics

will be discussed.

The numerical method is a combination of local grid re�nement of hexahedral elements with

the DG �nite element method. The grid adaptation is done independently in all three directions

to allow for maximum exibility. Many local ow phenomena, such as shocks and shear layers, are

locally pseudo two-dimensional and anisotropic grid re�nement is more e�cient in these cases than

isotropic re�nement.

Until now most of the unstructured algorithms for the Euler and Navier-Stokes equations use

tetrahedral elements, for a review see [11]. The use of hexahedral, unstructured grids is a more
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recent development, e.g. Aftosmis [1]. Hexahedra su�er less from loss of accuracy due to anisotropic

re�nement than tetrahedra, because the elements do not degenerate after successive re�nements

in one direction. Hexahedron elements are also more accurate on highly stretched grids which

are necessary for applications to viscous ows. In order to deal with complicated geometries,

elements such as prisms and tetrahedra are used to deal e�ciently with topological degeneracies.

An additional bene�t of hexahedra is the fact that the initial coarse grid can be provided by

standard multi-block grid generators which are widely available.

The data structure for anisotropic h-re�nement is more complicated than for unstructured

methods without grid re�nement. In the present study it is found to be more e�cient to replace the

commonly used element based octree data structure with a face based data structure. Especially

when one does not want to impose restrictions on the number of neighboring elements. The

description of this data structure is given special attention in this paper.

The outline of the paper is as follows. First, the Discontinuous Galerkin �nite element method

will be discussed for the three-dimensional Euler equations of gas dynamics, followed by a study

of the discretization error of the DG method presented in this paper. Next, the grid adaptation

procedure will be discussed and an overview of the data structure and searching algorithms neces-

sary for anisotropic grid re�nement with hexahedral type elements will be given. Finally, the grid

adaptation algorithm will be demonstrated with calculations of the supersonic ow about a 10
�

ramp and with calculations of the ONERA M6 wing under transsonic ow conditions.

2 Governing Equations

The Euler equations for inviscid gas dynamics in conservation form can be expressed as:

@

@t
U(x; t) +

@

@xj
Fj (U(x; t)) = 0; (x; t) 2 
� (0; T );

(1)

with initial condition U(x; 0) = U0(x), x 2 
 and boundary condition U(x; t)j@
 = B(U;Uw),

(x; t) 2 @
 � (0; T ); where B denotes the boundary operator and Uw the prescribed boundary

data. Here 
 2 R3
is an open domain with boundary @
 � �
 and t 2 (0; T ) represents time. The

summation convention is used on repeated indices in this paper. The vectors with conserved ow
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variables U : �
� (0; T )! R5
and uxes Fj , j = f1; 2; 3g; Fj : R

5 ! R5
, are de�ned as:

U =

0
BBBB@

�

�ui

�E

1
CCCCA ; Fj =

0
BBBB@

�uj

�uiuj + p�ij

uj(�E + p)

1
CCCCA ;

where i = f1; 2; 3g and �, p and E denote the density, pressure and speci�c total energy, ui the

velocity component in the Cartesian coordinate directions xi and �ij the Kronecker delta symbol.

This set of equations is completed with the equation of state: p = ( � 1)�(E � 1
2
uiui), with  the

ratio of speci�c heats.

3 Discontinuous Galerkin Approximation

The discontinuous Galerkin approximation of the Euler equations is de�ned by the following steps:

� Suppose the open domain 
 is a polyhedron and denote by Th a tessellation of 
 into a

disjunct set of polyhedra Kj , j 2 N+
, such that [Kj =

�
. Each polyhedron K has n faces

eiK , i 2 N+
with [ie

i
K = @K � �K. Each face eiK can connect to multiple faces e

j
K0 . The

faces eiK are split into sub-faces siK(K
0; j) = eiK \ e

j
K0 . The faces siK(K

0; j) therefore always

connect to only two neighboring elements in 
, viz. K and K 0
. This greatly facilitates the

update of the uxes through element boundaries. The boundary faces eiK � @
 are denoted

biK . As basic elements hexahedra (n = 6) are used, but in order to deal with topologically

degenerated cases, hexahedra with degenerated edges, such as prisms and tetrahedra, are

allowed when necessary.

� Each of the elements Kj 2 Th is related to the cubic master element K̂ = [�1; 1]3, with local

coordinates, x̂ = (�; �; �)T ; �; �; � 2 [�1; 1], by means of the mapping FK : x̂ 2 K̂ ! x 2 K,

using the standard linear �nite element shape functions:

FK : x(�; �; �) =

mKX
i=1

x
i
K i(x̂); (2)

with  i(x̂) trilinear element shape functions and x
i
K the coordinates of the corner points of

the hexahedron K, (mK = 8). More details about the mapping FK can be found in the

appendix.
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� De�ne P k
(K̂) as the space of polynomial functions of degree � k on the master element

K̂: P k
(K̂) = spanf^�j ; j = 0; � � � ;Mg. In this paper M is restricted to 3, so the four basis

functions
^�j are: ^�j 2 f1; �; �; �g.

� De�ne P k
(K) as the space of functions associated to functions in P k

(K̂) through the mapping

FK : P
k
(K) = spanf�j = ^�j � F

�1
K ; j = 0; � � � ;Mg.

� De�ne V
1
h(K) = fP(K) = (p1; � � � ; p5)

T j pi 2 P
1
(K)g, then U(x; t)jK can be approximated

by Uh(x; t) 2 V
1
h(K)
 C1

[0; T ] as:

Uh(x; t) � P (U(x; t)jK) =
3X

m=0

Ûm(K; t)�m(x); (3)

with P the projection operator to the �nite dimensional space V
1
h(K).

A major di�erence with standard node based Galerkin �nite element methods is that the expansion

of U(x; t) is local in each element, without any continuity across element boundaries. This has as

important bene�t that hanging nodes, which frequently appear after h-re�nement, do not give any

complications because they do not arise in the formulation of the discretization scheme.

A weak formulation of the Euler equations is obtained by multiplying Eq. (1) with Wh 2

V
1
h(K), integrating over element K using Gauss' identity, and replacing the exact solution U with

its approximation Uh 2 V
1
h(K)
 C1

[0; T ]:

Find Uh 2 V
1
h(K) 
 C1

[0; T ], such that Uh(x; 0) = P (U0(x)jK) 2 V
1
h(K), and for 8Wh 2

V
1
h(K):

@

@t

Z
K
W

T
h (x)Uh(x; t)d
 = �

X
p

Z
s
p
K

W
T
h (x)

�
n
T
(x)F(Uh)

�
dS

�
X
p

Z
b
p
K

W
T
h (x)

�
n
T
(x)F(B(Uh;Uw))

�
dS

+

Z
K
rWT

h (x)F(Uh)d
; (4)

with F = Fj, j = f1; 2; 3g and n the unit outward normal vector at the faces s
p
K and b

p
K .
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Introducing the polynomial expansions for Uh and Wh into the weak formulation of the Euler

equations we obtain the following set of equations for the coe�cients Ûm:

@

@t
Ûmi(K; t)

Z
K
�n(x)�m(x)d
 = �

X
p

Z
s
p
K

�n(x)nj(x)Fij(Uh)dS

�
X
p

Z
b
p
K

�n(x)nj(x)Fij(B(Uh;Uw))dS

+

Z
K

@�n(x)

@xj
Fij(Uh)d
 i 2 f1; � � � ; 5g;

n 2 f0; � � � ; 3g; (5)

with Fij the i-th element of ux vector Fj. The integral on the left hand side of Eq. (5) represents

the mass matrix M(K) with elements Mnm(K), for which an analytic expression is given in the

appendix. The relation given by Eq. (5) can be expressed symbolically as:

@

@t
Ûmi(K; t) = Lmi (Uh) �M�1

nmRni(Uh); (6)

where Lmi(Uh) stands symbolically for the spatial nonlinear operator and Rni(Uh) represents the

components of the right hand side of Eq. (5).

3.1 Flux Calculation

Due to the fact that the polynomial basis functions P k
(K) are discontinuous across element bound-

aries it is necessary to replace the ux at element boundaries with a monotone ux,H(U
int(K)
h ;U

ext(K)
h ),

which is consistent, H(U;U) = n
TF(U) � F̂(U), [9]. HereU

int(K)
h andU

ext(K)
h denote the value of

Uh at x 2 @K taken as the limit from the interior and exterior of K. The use of a monotone Lips-

chitz uxH introduces upwinding into the Galerkin method by solving the (approximate) Riemann

problem given by (U
int(K)
h ;U

ext(K)
h ). Suitable uxes are those from Godunov, Roe, Lax-Friedrichs

and Osher. In this paper the Osher approximate Riemann solver [16] is used, because of it's good

shock capturing capabilities, and the possibility to easily modify the Riemann problem to account

for boundary conditions. An important additional reason for the use of the Osher scheme is that it

gives an exact solution for a steady contact discontinuity, and therefore has a very low numerical

dissipation in boundary layers, [21], which is important for future extension of the algorithm to the

Navier-Stokes equations. The Osher approximate Riemann solver is de�ned as:

H(U
int(K)
h ;U

ext(K)
h ) =

1

2

 
F̂(U

int(K)
h ) + F̂(U

ext(K)
h )�

X
�

Z
��(U

int(K)

h
;U

ext(K)

h
)
j@F̂jd�

!
; (7)
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where [��� is a path in phase space between U
int(K)
h and U

ext(K)
h . Details of the calculation of this

path integral in multi-dimensions can be found in [16]. At the boundary faces b
p
K the path �� must

be modi�ed to account for boundary conditions B(U;Uw), with Uw the prescribed boundary data.

In this way a Riemann initial-boundary value problem is solved instead of an initial value problem,

[16], and a completely uni�ed and consistent treatment of the ux calculations is obtained, both at

interior and exterior faces. In the rest of the paper therefore no distinction will be made between

ux calculations at internal or boundary faces.

The ux integrals in Eq. (5) can be calculated using Gauss quadrature rules. Cockburn et

al. [9] showed that if the quadrature rules for the surface integrals are exact for polynomials of

degree 2k + 1 and exact for polynomials of degree 2k for the volume integrals then the order of

accuracy of the numerical approximation of the ux integrals on the right hand side of Eq. (5)

is k + 1. In order to preserve uniform ow for hexahedral grids with element boundaries which

have a twist, it is necessary to use quadrature rules which are exact for polynomials of degree

3. This can be accomplished using four and nine point product Gauss quadrature rules for the

element face and volume integrals, respectively. The number of quadrature points can be slightly

reduced by using more sophisticated multi-dimensional Gauss quadrature rules, see Stroud [19],

but the direct application of the Gauss quadrature rules to the integrals on the right-hand side of

Eq. (5) requires a prohibitively large number of ux calculations. This makes the discontinuous

Galerkin method unnecessarily expensive when only second order accuracy is required. Recently

this problem was also addressed by Atkins and Shu [2], but they restricted themselves to tetrahedral

elements. Tetrahedral elements result in signi�cantly easier ux integrals than hexahedral elements,

but tetrahedra are not easy to use for anisotropic grid re�nement, because successive re�nements

in one direction create tetrahedra with very small angles between faces resulting in large numerical

errors. A second order accurate discontinuous Galerkin discretization can be obtained using the

following approximation to the ux integrals at the element boundary face s
p
K :Z

s
p
K

�n(x)Hi(U
int(K)
h ;U

ext(K)
h )dS �

=

1

2

�
Fij( �U

int(K)
h ) + Fij( �U

ext(K)
h )

� Z
s
p
K

�n(x)nj(x)dS �

1

2

 X
�

Z
��( �U

int(K)

h
; �U

ext(K)

h
)
j@F̂jd�

!Z
s
p
K

�n(x)dS;

i 2 f1; � � � ; 5g;

n 2 f0; � � � ; 3g; (8)
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with Hi and Fij the elements of the vectors H and Fj, respectively. The ow states
�Uh =

1
js
p
K
j

R
s
p
K
Uh(x)dS in the element face are de�ned as:

�U
int(K)
h =

1

js
p
K j

3X
m=0

Ûm;K

Z
s
p
K

�m;K(x)dS (9)

�U
ext(K)
h =

1

js
p
K j

3X
m=0

Ûm;K0

Z
s
p
K

�m;K0(x)dS; (10)

with K 0
the index of the element connected to element K at the face s

p
K . The su�ces K and K 0

of �m(x) refer to the limit of �m(x) taken from the interior and exterior of element K at face s
p
K ,

respectively.

It is important to approximate �Uh using the complete series expansion of Uh given by Eq.

(3), because the naive approximation �Uh
�
= Uh(� = 0; � = 0; � = 0) does not result in a second

order accurate discretization for elements which are a deformed cube. Simple analytic expressions

for the element face moments

R
s
p
K
�n(x)nj(x)dS are given in the appendix. The �rst component

(n = 0) is the surface area normal vector used in �nite volume calculations, whereas the other

moments represent cross-products between the element face edges. The integrals

R
s
p
K
�n(x)dS are

calculated using a four point Gauss quadrature rule. With this modi�cation the integration of

the uxes becomes approximately equally expensive as for upwind �nite volume schemes using an

(approximate) Riemann solver and requires only one ux calculation for each element face.

Another important bene�t of using �Uh instead of U(� = 0; � = 0; � = 0) is that a stronger cou-

pling between the equations for the expansion coe�cients is obtained, which signi�cantly improves

stability. A detailed discussion of the order of accuracy of the ux discretization is given in the

next section.

The volume ux integrals in Eq. (5) can be further evaluated resulting in:

Z
K

@�n(x)

@xj
Fij(Uh)d

3x = 0 n = 0

=

Z
K̂

Snj (x̂)Fij(Uh)d
3x̂ n = 1; 2; 3 (11)

with:

S
1
(x̂) = x� � x�

S
2
(x̂) = x� � x�

S
3
(x̂) = x� � x�:
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here x�, x� and x� denote derivatives of x with respect to the local coordinates �, � and � of the

master element K̂. The volume ux integrals in Eq. (11) are approximated as:

Z
K̂
Snj (x̂)Fij(Uh)d

3x̂ �= Fij( �Uh)

Z
K̂
Snj (x̂)d

3x̂: (12)

The geometric contribution

R
K̂
Snj (x̂)d

3x̂ can be calculated analytically and is discussed in the

appendix. The ow �eld �Uh for the volume integrals is de�ned as:

�Uh =

1

jKj

3X
m=0

Ûm

Z
K
�m(x)d

3x

=

1

M0;0(K)

3X
m=0

ÛmMm;0(K); (13)

with Mn;m(K) the elements of the mass matrix MK for element K.

3.2 Slope Limiter

The discretization of the ow �eld, Eq. (5), does not guarantee a monotone solution without

overshoots in areas with discontinuities. Cockburn et al. [9] presented a local projection method

for the discontinuous Galerkin discretization of multi-dimensional scalar conservation laws, which

makes the algorithm TVB stable and satis�es a maximum principle when combined with a TVD

Runge-Kutta time integration method [18]. Cockburn et al. [9] used triangular elements and

the extension to quadrilaterals is presented by Bey and Oden [5]. The extension to the Euler

equations is usually done with a local characteristic decomposition, but in multiple dimensions this

decomposition is only approximate and it is not guaranteed that the limiter satis�es a maximum

principle. Therefore a slightly di�erent approach is followed and the multi-dimensional limiter

proposed by Barth and Jesperson [4], with modi�cations due to Venkatakrishnan [25], is used

directly on the conservative variables. This limiter saves the considerable expense of computing

the local characteristic decomposition.

De�ne for each component �Ui;K , i = f1; � � � ; 5g, of the element average �UK =
1
jKj

R
KUh(x)d
:

Umin
i;K = min

8K02N(K)
( �Ui;K ; �Ui;K0)

Umax
i;K = max

8K02N(K)
( �Ui;K ; �Ui;K0);

with N(K) the set of neighboring elements which satisfy s
p
K(K

0; j) 6= ;, jKj the volume of element

K and �Ui;K0 the neighboring element averages. In order to maintain monotonicity the approximate
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ow �eld Uh must satisfy Uh(x) 2 [U
min
K ;Umax

K ], 8x 2 K, which is accomplished with the limiter

functions �i;K , i 2 f1; � � � ; 5g:

�i;K = min

8s
p
K
6=;

8>>>>>><
>>>>>>:

�L

�
Umax
i;K

� �Ui;K

U�
i;K

� �Ui;K

�
if U�

i;K � �Ui;K > 0

�L

�
Umin
i;K

� �Ui;K

U�
i;K

� �Ui;K

�
if U�

i;K � �Ui;K < 0

1 if U�

i;K � �Ui;K = 0

:

Here U�

i;K are the components of Uh used in the ux calculation at the cell faces s
p
K(K

0; j). The

function �L(y) replaces min(1; y) in the original Bart and Jesperson limiter and is de�ned as:

�L(y) =
y2 + 2y

y2 + y + 2

:

De�ning 4 = U�

i;K�
�Ui;K , 4+ = Umax

i;K � �UK and 4� = Umin
i;K � �UK and replacing 42

� with42
�+�

2
m

a smoother limiter, with signi�cantly improved convergence to steady state, is obtained:

�i;K = min

8s
p
K
6=;

8>>>>>><
>>>>>>:

4
2
++�

2
m;K

+244+

42
+
+�2

m;K
+242+44+

if 4 > 0

42
�
+�2

m;K
+244�

42
�
+�2

m;K
+242+44�

if 4 < 0

1 if 4 = 0

The coe�cients �m;K are set equal to �m;K = (C4m;K)
3
, with4m;K the minimum distance between

the element face centers of two opposite faces of element K in the local directions �; � or � of K̂.

A close resemblance with the original Barth and Jesperson limiter is obtained if C = 0. In this

paper C = 1 is used, but for cases with strong shocks a slightly smaller value should be used. Large

values of C prevent the limiter from being active in smooth parts of the ow �eld, which improves

convergence to steady state and accuracy, but this can result in insu�cient limiting in areas with

discontinuities. The limiter �K is applied independently to each component of the ow �eld:

~Umi = �i;KÛmi i = f1; � � � ; 5g; m = f1; 2; 3g

no summation on i.

The coe�cients Ûm;m = f1; 2; 3g in Eq. (3) represent the gradient of the ow �eld with respect to

the local coordinates in K̂. This modi�cation of the local gradient would violate conservation of Uh

in K if the element is not a rectangular cube, which can be corrected by modifying the coe�cient

Û0:

~U0;i = Û0;i +
1

M0;0

3X
m=1

(1��i;K)Mm;0Ûmi i = f1; � � � ; 5g

no summation on i:

13



This relation is obtained directly from the condition:
1
jKj

R
K
~Uh(x)d
 =

�UK . The limiting opera-

tion can now be expressed as:

~Umi = �mni(Uh)Ûni i = f1; � � � ; 5g; n;m = f0; � � � ; 3g

no summation on i

with

�mni(Uh) =

0
BBBBBBB@

1 (1� �i)M1;0=M0;0 (1� �i)M2;0=M0;0 (1� �i)M3;0=M0;0

0 �i 0 0

0 0 �i 0

0 0 0 �i

1
CCCCCCCA

The limited ow �eld ~Uh in element K then is equal to:

~Uh(x; t) =
3X

m=0

~Um(t)�m(x): (14)

3.3 Time Integration

For each element K a system of ordinary di�erential equations is now obtained:

MK

@

@t
ÛK = RK(Uh);

with ÛK a vector with the moments of the ow �eld in each element, Ûm;m = f0; � � � ; 3g and

RK the right-hand side of Eq. (5). The equations for
@
@t
ÛK are integrated in time using the third

order accurate TVD Runge-Kutta scheme from Shu [18] which is directly coupled with the limiting

procedure discussed in the previous section:

~U
(1)
mi (K) = �mpi(U

(1)
h )

�
~Upi(K; t) +4t(K)M�1

np (K)Rn(
~Uh(K; t))

�

~U
(2)
mi (K) = �mpi(U

(2)
h )

�
3

4

~Upi(K; t) +
1

4

~U
(1)
pi (K) +

1

4

4t(K)M�1
np (K)Rn(

~U
(1)
h )

�

~U
(3)
mi (K) = �mpi(U

(3)
h )

�
1

3

~Upi(K; t) +
2

3

~U
(2)
pi (K) +

2

3

4t(K)M�1
np (K)Rn(

~U
(2)
h )

�

i 2 f1; � � � ; 5g; no summation on i

~Um(K; t+4t) = ~U
(3)
m m; p 2 f0; � � � ; 3g:
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where the limiting operator �mpi depends on the unlimited ow �eld after each Runge-Kutta stage.

This Runge-Kutta scheme is stable for CFL numbers less than one, but all calculations are done with

a CFL=0.7. The use of TVD Runge-Kutta methods in the time integration is crucial for stability,

as was demonstrated by Cockburn et al. [9] and is also experienced during the present calculations.

A signi�cant di�erence of the present cell based �nite element discretization in comparison with

node based FEM is that the mass matrix MK of each element is uncoupled from other elements

and can be easily inverted because it is only a 4� 4 matrix.

For steady state calculations convergence is accelerated using local time stepping. The local

time step 4t(K) is determined from the relation:

4t(K) �
�2jKjCFLPN(K0)

K0=1 jsKK0jmin
�
(û�K0 � jû�K0 j; û�K0 � c�K0 � jû�K0 � c�K0 j)

: (15)

Here N(K 0
) is the number of element faces sKK0 connecting to element K. The symbols û�K0 and

c�K0 represent the normal velocity and speed of sound at the end points of each subpath �� in phase

space, connecting �U
int(K)
h and �U

ext(K)
h . This information is directly available when calculating the

Osher ux at the element faces and does not require any additional work. The use of Eq. (15) to

determine the local time step results in a very robust time integration method.

4 Error Estimates for the Flux Approximation

The numerical approximation L to the nonlinear operator L, de�ned in Eq. (6), using the approxi-

mations to the ux integrals Eqs. (8) and (12), does not satisfy the conditions stated by Cockburn

et al. [9] necessary to obtain a second order accurate approximation L to the operator L. In this

section it will be demonstrated that these conditions are overly restrictive and that the numerical

approximation L presented in this paper also results in a second order accurate approximation to

L, but with at least four times less ux calculations. In order to obtain an error estimate for jL�Lj

the following contributions have to be considered:

� An estimate for the error in the numerical discretization of the surface ux integrals, Eq.

(8). This estimate is obtained using a Taylor series expansion with remainder for the ux

Fj(Uh(x; t)) at both sides of S:����
Z
S

Fij(Uh(x; t))�n(x)nj(x)dS � Fij( �Uh(t))

Z
S

�n(x)nj(x)dS

����
� K1

ijl(t)

����
Z
S

4Ul(x; t)�n(x)nj(x)dS

���� ;
15



with the constant K1
ijl(t) de�ned as:

K1
ijl(t) = sup(

x 2 S
D(�(Uh(x;t)))2(0;1)

�����@Fij
�
�Uh(t) + �(Uh(x; t))

�
Uh(x; t) � �Uh(t)

��
@Ul

����� ;

�U given by Eqs. (9-10) for both sides of the element face and 4Ul(x; t) = Ul(x; t)� �Ul(x; t).

The function � depends on Uh, but has always values in the range (0; 1). This error estimate

can be further re�ned using the following relation for 4Ul(x; t):

4Ul(x; t) =
3X

m=1

Ûml(K; t)

�
�m(x)�

1

jSj

Z
S

�m(x)dS

�
;

which is immediately obtained from the series expansion for Uh(x; t), Eq. (3), the de�nition

of �U(t), Eqs. (9-10) and the relation �0(x) � 1, resulting in:

����
Z
S

Fij(Uh(x; t))�n(x)nj(x)dS �Fij( �Uh(t))

Z
S

�n(x)nj(x)dS

���� � K1
ijl(t)

�����
3X

m=1

Ûml(K; t)

����� �
����
Z
S
�m(x)�n(x)nj(x)dS �

1

jSj

Z
S
�m(x)dS

Z
S
�n(x)nj(x)dS

���� :
(16)

The contribution of the surface integrals of the basis functions �n(x) and their product with

the normal vector n(x) can be further evaluated using the following relation:

����
Z
S

f(x)dS

���� � jf(�x)j jSj+
1

2

sup(
x 2 S

D(�(x))2(0;1)

�����@
2f [�x+ �(x) (x� �x)]

@xj@xk

�����
��� ~Mjk

��� ; (17)

which is obtained using a Taylor series expansion of f(x) around the center of gravity �x of

face S. Here ~Mjk and �x are de�ned as:

~Mjk =

Z
S

xjxkdS �
1

jSj

Z
S

xjdS

Z
S

xkdS; (18)

�x =

1

jSj

Z
S
xdS: (19)

The integrals ~Mjk can be estimated using the following assumption:

Assumption 3.1: Each element K satis�es the condition

��x̂i�� � h > 0, i 2 f1; � � � ; 8g.

The coe�cients x̂
i
are linear combinations of the position vectors x

i
of the element vertices

and are discussed together with the estimates for ~Mjk in the appendix. This assumption
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implies that each element can be contained in a cube with maximum dimensions h for all

sides.

The error in the numerical approximation of the surface ux integrals can now be estimated

as:����
Z
S
Fij(Uh(x; t))�n(x)nj(x)dS � Fij( �Uh(t))

Z
S
�n(x)nj(x)dS

����
� sup

j2f1;��� ;5g

K1
ijl(t)

�����
3X

m=1

Ûml(K; t)

�����
�
C1(�x)h

4
+ C2(�x)h

6
�

(20)

where the coe�cients C1 and C2 only depend on derivatives of �m and nj at �x, but not on

x.

� The error estimate for the complete ux integrals of element K is obtained by considering

the total ux through @K:

Z
@K

Fij(Uh(x; t))�n(x)nj(x)dS =

6X
p=1

Z
e
p
K

Fij(Uh(x; t))�n(x)nj(x)dS;

with e
p
K , p 2 f1; � � � ; 6g one of the six faces of a hexahedral element K. The faces are

numbered such that e
p
K is opposite to face e

p+1
K , see Fig. 1. The normal vector n(x) at faces

e1K and e2K is de�ned as:

n(x) =
x� � x�

jx� � x� j
:

With similar relations at the other faces. This relation results in an inward pointing normal

vector at faces with p = 1, 3 or 5, so n(x) at these faces is replaced with �n(x) and we obtain

the following estimate for the total ux through @K:����
Z
@K

Fij(Uh)�n(x)nj(x)dS�

3X
p=1

 
Fij(

�Uh;2p)

Z
e
2p
K

�n(x)nj(x)dS � Fij(
�Uh;2p�1)

Z
e
2p�1
K

�n(x)nj(x)dS

!������
� sup

j2f1;��� ;5g

K1
ijl(t)j

3X
m=1

Ûml(K; t)j
3X

p=1

�
jC1(�x2p)� C1(�x2p�1)j h

4
+ jC2(�x2p)� C2(�x2p�1)j h

6
�

� sup

j2f1;��� ;5g

K1
ijl(t)j

3X
m=1

Ûml(K; t)j
�
C 0h5 + C 00h7

�
; (21)

where the supremum in K1
ijl is taken over all x 2 @K and the su�x p refers to the face index.

In addition the fact is used that the functions C1(�x) and C2(�x) are Lipschitz continuous and

j�x2p � �x2p�1j � h.
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� The Osher ux contribution in Eq. (7) can be expressed as:

5X
�=1

Z
��

�
U
int(K)

h
(x;t);U

ext(K)

h
(x;t)

� ���@F̂(Uh(x; t))
��� d� =

5X
�=1

�
F̂

�
U

�;2
h (x; t)

�
� F̂

�
U

�;1
h (x; t)

��
;

(22)

with U
�;n
h (x; t) 2 [U

int(K)
h (x; t);U

ext(K)
h (x; t)];n = f1; 2g, because the intermediate states

U
�;n
h (x; t) are de�ned using Riemann invariants along the paths �� in phase space. For a

detailed de�nition of the intermediate states in the Osher ux in three dimensions, see [16].

In the smooth part of the ow �eld the di�erence between U
int(K)
h (x; t) and U

ext(K)
h (x; t),

x 2 @K is O(h2). This follows immediately from the polynomial expansion of Uh, Eq. (3),

which gives the following estimate for the intermediate states:

���U�;2
h (x; t) �U

�;1
h (x; t)

��� � Ch2; 8x 2 @K:

(23)

The above relations, Eqs. (22-23), can be used to obtain the following estimate for the error

in the approximation of the integrals of the Osher ux over the element faces in Eq. (8):

�����
Z
S

 
5X

�=1

Z
��

���@F̂(Uh(x; t))
��� d�

!
�n(x)dS �

 
5X

�=1

Z
���

���@F̂( �U(t))
��� d�

!Z
S

�n(x)dS

�����
� sup

x2S

5X
�=1

����
Z
��

���@ ^F(Uh(x; t))
��� d�� Z

���

���@ ^F( �U(t))
��� d�

����
����
Z
S
�n(x)dS

���� ;
with: �� = ��(U

int(K)
h (x; t);U

ext(K)
h (x; t)) and ��� = ��(

�U
int(K)
h (t); �U

ext(K)
h (t)). The con-

tribution with the di�erence between the Osher uxes based on the pointwise data Uh(x; t)

in the element face S and the ux based on the element face averaged data �Uh(t) can be

estimated as:

����
Z
��

���@ ^F(Uh(x; t))
��� d�� Z

���

���@ ^F( �U(t))
��� d�

���� � K2
il sup

x2S

���U�;2
l (x; t)� U

�;1
l (x; t)�

�
�U
�;2
l (t)� �U

�;1
l (t)

���� ; (24)

with the coe�cient K2
il de�ned as: K2

il = njK
1
ijl. This relation is obtained using the repre-

sentation of the Osher ux given by Eq. (22). The right hand side of Eq. (24) is estimated

using Eq. (23), which implies that the di�erence in intermediate states at the interior and

exterior part of the element face are expressed as:

U
�;2
h (x; t)�U

�;1
h (x; t) = 4U�

h(x; t)h
2;
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with 4U�
h(x; t) a Lipschitz continuous function, which yields the �nal estimate for the Osher

uxes:����
Z
��

���@ ^F(Uh(x; t))
��� d�� Z

���

���@ ^F( �U(t))
��� d�

���� � K2
il sup

x2S

��4U�
l (x; t) �4

�U�
l (t)

��h2
� C 0h3:

The following estimate for the error in the numerical approximation of the surface integrals

of the Osher ux is subsequently obtained:�����
Z
S

 
5X

�=1

Z
��

���@F̂(Uh(x; t))
��� d�

!
�n(x)dS �

 
5X

�=1

Z
���

���@F̂( �U(t))
��� d�

!Z
S

�n(x)dS

����� � C 00h5;

(25)

where the estimate for the surface integral of the element face moments:����
Z
S
�n(x)dS

���� � 48h2;

is used, which is obtained with the relations for the element face Jacobian and the mapping

FK , discussed in the appendix.

� The error in the numerical approximation of the volume integrals can be obtained in a proce-

dure analogously to that for the ux integrals, but with S replaced by V , and the mean ow

state �Uh(t) de�ned by Eq. (13):�����
Z
K

@�n(x)

@xj
Fij(Uh(x; t))d

3x� Fij( �Uh(t))

Z
K

@�n(x)

@xj
d3x

�����
� sup

j2f1;��� ;5g

K3
ijl(t)

�����
3X

m=1

Ûml(K; t)

�����
�
C3(�x)h

5
+ C4(�x)h

7
�

(26)

with the constants K3
ijl(t) de�ned as:

K3
ijl(t) = sup(

x 2 K
D(�(Uh(x;t)))2(0;1)

�����@Fij
�
�Uh(t) + �(Uh(x; t))

�
Uh(x; t) � �Uh(t)

��
@Ul

����� :

The coe�cients C3 and C4 only depend on derivatives of �m at �x, but not on x.

The error estimate for the numerical discretization of the nonlinear operator Lin in Eq. (6) using

the approximations given by Eqs. (8) and (12) is obtained by combining the results of the estimates

given by Eqs. (21), (25) and (26), yielding:

jLni �Lnij �

���M�1
nm

���
�����

3X
m=1

Ûml(K; t)

�����C 0h5

�

�����
3X

m=1

Ûml(K; t)

�����C 00h2;
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where the estimate for the mass matrix

��M�1
nm

�� � C 000=h3 is used, which is discussed in the appendix.

The error caused by the numerical approximation of the surface and volume integrals and the Osher

ux di�erence scheme is thus O(h2), which is of the same order as the error in the polynomial

approximation of U(x; t) by Uh(x; t) in Eq. (3). A second order accurate spatial discretization

which would satisfy the conditions required by Cockburn et al. [9] needs Gaussian quadrature rules

with at least four quadrature points and would therefore be at least four time more expensive.

It should be noted that the error estimates showing the second order accurate spatial accuracy

of the discontinuous Galerkin discretization does not depend on the smoothness of the grid, demon-

strating the fact that an extremely local discretization is obtained, which is especially useful for

grid adaptation based on local grid re�nement, discussed in the next section.

5 Directional Grid Adaptation

The grid adaptation procedure is based on subdividing elements independently in each of their

three local coordinate directions, �, � or �. A coarse initial grid is used, which is generated with a

multi-block structured grid generator. This initial, structured multi-block grid is transferred into

an unstructured hexahedral grid, and degenerated hexahedra, such as prisms and tetrahedra, are

used when topological degeneracies make this necessary. This grid is called root grid. The root

grid can also be generated directly, without �rst using a block-structured grid, but this is not part

of the present paper. After calculating the ow �eld, elements are split in the local �-direction if:

R
�
K

max

8K2Th

R
�
K

> tolerance; (27)

with the sensor function R
�
K for element K de�ned as:

R
�
K = max

i2f1;��� ;6g;8K02N�(K)
(V i

K � V i
K0)

24�2K : (28)

Here 4�K is the length of element K in the local �-direction, and N �
(K) the indices of the neigh-

boring elements of element K in the �-direction. Equivalent expressions are used for the � and �

directions. The vector V has a elements: V = (�; u1; u2; u3; M
2
1p; pt�loss)

T
, with pt�loss the total

pressure loss de�ned as;

pt�loss = 1�
p

p1

 
1 +

�1
2
M2

1 +
�1
2
M2

1

! 
�1

and M2
= uiui=c

2
the local Mach number with c =

p
p=� the speed of sound. The su�x1 refers

to free stream values. These variables are used as adaptation sensor, because they represent all
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relevant ow phenomena to be captured by the adaptation process without preference for one or two

speci�c phenomena as is frequently done. The total pressure loss is added as a sensor, because this

is a conserved quantity outside shocks in inviscid compressible ow and gives a good measure for

the numerical error. The sensor presented in this section is based on the equidistribution principle,

see for instance Marchant et al. [15]. It's main advantage is that it prevents discontinuities, such as

shocks, from dominating the re�nement sensor, because at some point the element length in these

regions becomes so small that other ow features will start to become important.

Each element is adapted independently in all three directions, by dividing the elements which

meet the adaptation criterion into two new elements.

6 Data Structure

The success of an unstructured grid adaptation algorithm strongly depends on the e�ciency of the

data structure. The data structure for h-type grid adaptation is more complicated than for r-type

adaptation, because one element can be connected to multiple neighboring elements. An important

criterion in the design of the data structure is that no searching is required in the calculation of the

ow �eld. All the necessary searching to update the data structure is done during the adaptation

step. This greatly enhances the e�ciency of the code, because all the basic operations then can

be vectorized and parallelized using a proper coloring and domain decomposition scheme. Until

now, most of the applications with local re�nement of hexahedron type elements presented in the

literature where restricted to two-dimensional ows, where generally a quadtree data structure is

used. In three dimensions this becomes an octree data structure. An octree data structure is,

however, more suited for isotropic element re�nement, where each element has eight children, but

is ine�cient for anisotropic grid re�nement.

An e�cient data structure for the DG �nite element method is obtained using the element

faces instead of the elements as the basic component. This has several major advantages. The

primary loop in a DG �nite element method is the calculation of the uxes, which can be done

without any searching using a face based data structure. A second bene�t of a face based data

structure versus an element based data structure is that each sub-face siK(K
0; j) can only have two

neighboring elements, whereas each element can have an unlimited number of neighbors. A loop

over element faces can therefore be done without searching using a face based data structure. The

face based data structure has some resemblance with the edge based data structure commonly used
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with vertex based unstructured algorithms using tetrahedra.

6.1 Grid Structure

Each element K is related to its master element K̂ with the mapping FK , Eq. (2). The faces and

vertices of element K̂ are numbered uniquely, see Fig. 1, and the topology of each element K is

de�ned by the coordinates of the vertices and the mapping FK . The following arrays are used to

de�ne the grid structure: Array ICG(icell; n); (n = 1; � � � ; 8) to store the addresses of the vertices

of the elements and array IcTree(icell; n); (n = 1; � � � ; 4) to store the element connectivity. The

�rst element of IcTree is the address of the parent element and the second and third element are

the addresses of the �rst and second child. For e�ciency reasons also the type of re�nement (�; �

or � direction) is stored.

Due to the dynamic behavior of the grid, points are added and deleted, it is important to

store the grid points e�ciently. This is done using an AVL-tree data structure. For a detailed

description of AVL trees see [12] and [26]. The array IGAV L contains the addresses of the x, y

and z-coordinates of the grid points. The AVL-tree uses the same key as proposed in [20], viz.

(x1; y1; z1) < (x2; y2; z2) if x1 < x2, or if x1 = x2 and y1 < y2 or if x1 = x2 and y1 = y2 and z1 < z2.

Together with vectors for the x, y and z-coordinates of the grid points this information is

su�cient to describe the grid. The use of an AVL-tree is very e�cient. When a element is divided

it is possible to �nd in O(log2(N)) steps if a grid point already exists in the tree or must be added.

Both insertion and deletion of an element in the AVL tree can be done in O(log2(N)) operations,

with N the number of grid points.

6.2 Establishing Face to Element Connectivity

The most di�cult part of h-type grid adaptation on an unstructured hexahedral mesh is to establish

the face to element connectivity siK(K
0; j). It is impractical to try to determine in advance the large

number of possible connections, even if only a limited number of neighboring elements is allowed.

The following algorithm can �nd all possible connections:

At the root grid level all element connections are known, because they can be obtained from

the original unadapted grid. At this level there is no local grid re�nement.

For all root element faces the addresses and face indices of the two elements which connect to

this element face are stored in the array IfTree. Next, the tree IcTree is traversed. For each

element face which is the connection between the two children elements K 0
and K 00

, (siK0(K 00; j) =
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eiK0 ^ siK0(K 00; j) = e
j
K00), the addresses and face indices of the left and right children are also stored

in array IfTree. The set of these faces and the root element faces are called elementary faces.

To �nd the remaining face to element connections each elementary face is mapped to the domain

[0; 1]� [0; 1], with local (s; t) coordinates. Then for each side of the elementary face the tree IcTree

is traversed to �nd the local (s; t) coordinates of the four corners and center of the element faces of

the children elements which connect to the elementary face. This can be done easily using the type

of re�nement, (�, � or � direction), stored in array IcTree and the face index of the elementary

element which is the same for all kids. If necessary the local coordinate system (s0; t0) of element

face e
j
K0 is transformed to the (s; t) coordinate system of element face eik.

The coordinates of the corner points and element face centers at both sides of the elementary

face are stored in arrays FaceKeyL and FaceKeyR. For both sides of the element face also the

addresses of the children are stored in separate binary trees IfTreeL and IfTreeR, using the

element face center as key. This part of the algorithm has some similarity to that proposed in

[20] to �nd hanging nodes in a node based �nite element method. Their problem is a point search

problem, but the determination of the face to element connectivity is a geometric searching problem

and in this paper the alternating digital tree algorithm is used, [6].

First, for all the elements on the left side of the element face, the tree IfTreeR is traversed

to �nd the element face at the opposite side which has the same corner points or is completely

contained in the left element face. This can be done in O(log2(N)) operations. The same is done

for all the elements at the right element face. In order to e�ciently eliminate face to element

connections which occur twice, it is necessary to store the new face to element connections in a

binary tree.

After this search most face to element connections are found, but depending on the re�nement

strategy it is possible that one element face connects at both sides to more than one element, Fig.

2. If this happens it's face to element connection is not established in the previous search and the

element faces for which no connection can be found must be split into two faces on one of the sides

of the elementary face, Fig. 3. These faces are called sub-faces. By cyclically splitting the element

faces for which no connection can be found on one side in the local s and t directions and restarting

the search for those faces for which no connection was established �nally all connections will be

found. It is easy to test if all element to face connections are found because their area should add

up to one on both sides. After the search is completed, redundant sub-faces are merged and all

connections are added to the tree IfTree.
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The alternative to subdivision of element faces would be to further subdivide elements, but

this can easily generate new faces which connect to more than one element. This does not occur

with subdivision of element faces and the searching algorithm will �nish in �nite time. The only

complication of using sub-faces is that they have to be accounted for in the ux calculation, because

now the face eiK is subdivided into several faces instead of one. The corrections to the surface

integrals of the uxes are discussed in the appendix. With this algorithm all face to element

connections are found and the algorithm can be parallelized completely, because the determination

of the subdivision of each elementary face is completely independent from one another.

The calculation of the element face uxes can be done easily in one loop over the element faces,

without any di�culty caused by hanging nodes. This algorithm can be completely vectorized and

parallelized using a proper coloring and domain decomposition scheme. For more details, see van

der Ven and van der Vegt [24].

7 Discussion and Results

The Discontinuous Galerkin discretization of the Euler equations of gas dynamics and the grid

adaptation algorithm have been tested on two cases. The �rst case is the supersonic ow about a

10
�
ramp, which serves as a simple two-dimensional example to demonstrate the grid adaptation

algorithm. The second case is the transsonic ow about the ONERA M6 wing [3, 27], which is a

more complicated three-dimensional ow. The supersonic ow �eld about a 10
�
ramp generates

an oblique shock with a 39:314� angle with respect to the ow direction. A nice feature of this

problem is that it can be easily compared with the exact solution for an oblique shock using the

Rankine Hugoniot relations. The problem is also a good test case for the grid adaptation algorithm,

because the shock is not lined up with a grid line. The initial grid is uniform and consists of 600

elements and during each adaptation step, �rst the 5% of elements with the lowest values of the

sensor function are deleted if they are not a root element, and subsequently the 20% of elements

with the highest values of the sensor function are re�ned, independently in each direction. Table I

gives an overview of the number of elements and grid points after each adaptation step. A detailed

view of the �nal adapted grid is presented in Figure 4, which shows that the grid is well adapted

to the shock. An interesting feature is that there is no adaptation ahead of the ramp because the

ow �eld is uniformly supersonic. The pressure �eld over the ramp is shown in Figure 5, which

shows that the adaptation signi�cantly improves the capturing of the shock and produces a nearly
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monotone shock pro�le. The value of the pressure behind the shock, viz. p2 = 0:304 compares well

with the exact value p2 = 0:304746. Here the pressure is made dimensionless as p = p�=(M2
1),

with  the ratio of speci�c heats ( = 1:4) and M1 the free stream Mach number. Figure 5 also

shows the grid points along the ramp in the �nal adapted grid.

The second test case is the ONERA M6 wing which has a trapezoidal planform with 30
�
leading

edge sweep, and a taper ratio of 0.56. The wing sections are based on the symmetrical ONERA-D

pro�le with 5% thickness/chord ratio. The wing tip is rounded by rotating the tip section around

its symmetry axis. The free stream Mach number is 0.84 and angle of attack is 3:06�.

The grid adaptation was started by �rst calculating a steady solution on the initial grid, which

consists of 131072 elements and 137425 grid points. The grid is subsequently adapted three times,

independently in all three directions and the �nal grid consists of 339226 elements and 398356

grid points. See Table II for more details. This adaptation process is completely controlled by

the adaptation sensor. The only user interaction is the speci�cation of the increase in number of

elements during each adaptation step, which is done before the simulation started.

All calculations are done with a local CFL number of 0.7. Fig. 6 shows the convergence history

of the L2 residual. The spikes indicate the various instances when the grid is adapted. It can be

seen that convergence is relatively slow, because local time stepping is the only technique used to

accelerate convergence. The implementation of a multigrid algoritm to speed up convergence is

currently in progress. One of the main factors inuencing convergence is the activity of the slope

limiter in the far �eld, for an analysis of this problem see [25]. The Venkatakrishnan modi�cations

to the Bart and Jesperson limiter signi�cantly improve convergence, but can still be improved upon.

Grid adaptation generally has a positive inuence on convergence as can be seen in Fig. 6.

The time history of the lift force CL is presented in Fig. 7. The �nal values CL = 0:290 and

CD = 0:0136 are very close to the results obtained in literature, e.g. [27].

The use of the sensor functions RK , Eqs. (27) and (28), which approximate the gradient of the

primitive ow variables in all three directions, is e�ective in capturing the relevant ow features.

Generally the most dominant feature for adaptation is the stagnation region, especially on the initial

coarse grid, but shocks and shear layers are being captured well after re�nement. An important

feature of the sensor function is that it is weighted with the local grid distance, which prevents one

aspect of the ow to constantly dominate the adaptation process. This is strongly inuenced by

the power of 4�K in Eq. (28).

Fig. 8 shows the �nal adapted grid which clearly shows the lambda shock structure. The
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mesh adapts to regions with large ow activity and signi�cantly improves resolution in the shock

regions and around the tip. Fig. 8 shows that the two shocks merge at 87% span and separate at

approximately 94% span. The shock structure compares well with the results obtained by Rausch

et al. [17]. For e�cient adaptation it proved to very important to be able to both add and delete

elements, because initially the grid is primarily re�ned in the stagnation and rear shock regions

which tend to become overresolved in the initial adaptation stages. The position of the shocks also

signi�cantly changes during the adaptation process when the ow �eld becomes better resolved.

The shock sensor is, however, qualitative and further improvements in sensor functions based on

some estimate of the numerical error will contribute to improved e�ciency in the grid adaptation

process.

The pressure coe�cient CP for the initial grid and the three adapted solutions in cross-sections

at y = 0:20S, 0:44S, 0:65S, 0:80S and 0:90S, with S the wing span, are presented in Figs. 9

to 13. Also the experimental data from [3] are presented. The pressure coe�cient is de�ned as

CP =
p�p1
1
2
�V 2
1

, with V1 the free stream velocity. The correlation with the experiments is good,

especially considering the fact that the calculations are inviscid. The improvements due to the

adaptation are very clear, especially in resolving the inviscid shock structure, and the adaptation

process clearly converges to a �nal solution.

The calculations are done on the NEC SX-4/16 computer at NLR and required approximately

5 hours for the ONERA M6 wing. The ow solution part of the program runs approximately at

a speed of 4.4 Gops on seven processors, which is 31% of the peak speed with seven processors.

More details about the performance and parallelization strategy will be presented elsewhere.

8 Concluding Remarks

The extension of the discontinuous Galerkin method using hexahedron type elements to three

dimensional inviscid, compressible ow has been successfully demonstrated. An e�cient technique

for the ux calculations is presented and it is shown that the DG �nite element method can be

nicely combined with anisotropic grid adaptation, which signi�cantly improved accuracy. A new

algorithm to establish face to element connectivity is presented which works well with h-re�nement

of hexahedral elements and the DG �nite element method. Results of supersonic ow about a

10
�
ramp and transsonic ow about the ONERA M6 wing are presented, which demonstrate the

e�ciency of the adaptation algorithm in capturing the lambda shock wave and resolving localized
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ow phenomena. The DG �nite element method is a very local scheme which works well on

highly irregular grids and reaches a high e�ciency on a parallel vector computer. Future work will

especially concentrate on improving convergence using a multigrid technique.
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A Appendix: Analytic Expressions for Metrical Coe�cients

The calculation of the geometric integrals which appear in the discontinuous Galerkin �nite element

discretization can be done numerically with a Gauss quadrature rule of su�cient order or analyti-

cally. The use of Gauss quadrature rules is straightforward, but computationally expensive. In this

appendix analytic expressions are given which require signi�cantly less computational work than

the use of quadrature rules. The calculation of the integrals in the discontinuous Galerkin �nite

element discretization is greatly simpli�ed by expressing the mapping FK for hexahedral elements,

Eq. (2), as:

FK : x(�; �; �) = x̂
1
K + x̂

2
K� + x̂

3
K� + x̂

4
K� + x̂

5
K�� + x̂

6
K�� + x̂

7
K�� + x̂

8
K���: (29)

The position of the element vertices x
n
K is indicated in Fig. 1. The coe�cients x̂

n
K = (x̂nK ; ŷ

n
K ; ẑ

n
K)

T

are obtained from the relation:

(x̂1K ; � � � ; x̂
8
K)

T
= A(x1K ; � � � ; x

8
K)

T
(30)

with the matrix A de�ned as:

A =

1

8

0
BBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1

�1 1 �1 1 �1 1 �1 1

�1 �1 1 1 �1 �1 1 1

�1 �1 �1 �1 1 1 1 1

1 �1 �1 1 1 �1 �1 1

1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

�1 1 1 �1 1 �1 �1 1

1
CCCCCCCCCCCCCCCCCCCCCA

with identical relations for ŷnK and ẑnK , with x in Eq. (30) replaced by y and z, respectively.

A.1 Mass Matrix

An important component in both the calculation of the mass matrix and the volume integrals in

Eq. (5) is the Jacobian JFK of the mapping FK . The Jacobian JFK for hexahedral elements can

be expressed as:

JFK � Det

����@(x; y; z)@(�; �; �)

���� =
2X

k=0

2X
j=0

2X
i=0

bijk�
i�j�k (31)
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Here Det denotes the determinant of a matrix. The non-zero coe�cients bijk are de�ned as:

b0;0;0 = D2;3;4 b1;2;0 = D5;3;8 b0;2;1 = D8;3;7

b1;0;0 = D2;3;6 +D2;5;4 b0;0;1 = D2;7;4 +D6;3;4 b1;2;1 = D8;5;7

b2;0;0 = D2;5;6 b1;0;1 = D2;8;4 +D2;7;6 +D6;5;4 b0;0;2 = D6;7;4

b0;1;0 = D2;3;7 +D5;3;4 b2;0;1 = D2;8;6 b1;0;2 = D6;8;4

b1;1;0 = D2;3;8 +D2;5;7 +D5;3;6 b0;1;1 = D5;7;4 +D6;3;7 +D8;3;4 b0;1;2 = D8;7;4

b2;1;0 = D2;5;8 b1;1;1 = 2D7;6;5 b1;1;2 = D8;7;6

b0;2;0 = D5;3;7 b2;1;1 = D5;8;6

(32)

with:

Dijk = Det(x̂i; x̂j ; x̂k) (33)

The mass matrix Mnm(K) is now equal to:

Mnm(K) =

Z
K

�n(x)�m(x)d
3x

=

Z
K̂

^�n(x̂)^�m(x̂)JFK (x̂)d
3x̂

= N�n+�m;�n+�m;n+m n;m 2 f0; � � � ; 3g (34)

with �n = f0; 1; 0; 0g, �n = f0; 0; 1; 0g, n = f0; 0; 0; 1g. The coe�cients Nnml are de�ned as:

Nnml =

2X
k=0

2X
j=0

2X
i=0

bijkQ(k+l+1)Q(j+m+1)Q(i+n+1)

with the coe�cients bijk given by Eq. (32) and Qj de�ned as:

Qj =
1

j
(1� (�1)j)

A.2 Element Face Moments

The element face moment integrals can be calculated analytically using the mapping FK , Eq. (29):

� Face with index 1:

Z
e1
K

�n(x)n(x)dS = �0

�
x
1
K � x

7
K

�
�
�
x
3
K � x

5
K

�
n = 0 (35)

= �1
�
x
1
K � x

7
K

�
�
�
x
3
K � x

5
K

�
n = 1 (36)

= �2

�
x
5
K � x

7
K

�
�
�
x
3
K � x

1
K

�
n = 2 (37)

= �3
�
x
1
K � x

5
K

�
�
�
x
7
K � x

3
K

�
n = 3 (38)
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with �n = f12 ;�
1
2 ;

1
6 ;

1
6g. The integrals

R
e2
K
�n(x)n(x)dS for a face with index 2 can be

obtained by a simple permutation of the vertices x
n
K in Eqs. (35-38): 1 ! 2, 7 ! 8, 3 ! 4,

5! 6 and using �n = f1
2
; 1
2
; 1
6
; 1
6
g.

� Face with index 3:

Z
e3
K

�n(x)n(x)dS = �0
�
x
1
K � x

6
K

�
�
�
x
5
K � x

2
K

�
n = 0 (39)

= �1
�
x
1
K � x

2
K

�
�
�
x
6
K � x

5
K

�
n = 1 (40)

= �2
�
x
1
K � x

6
K

�
�
�
x
5
K � x

2
K

�
n = 2 (41)

= �3
�
x
1
K � x

5
K

�
�
�
x
2
K � x

6
K

�
n = 3 (42)

with �n = f12 ;
1
6 ;�

1
2 ;

1
6g. The integrals

R
e4
K
�n(x)n(x)dS for a face with index 4 can be

obtained by a simple permutation of the vertices x
n
K in Eqs. (39-42): 1 ! 3, 2 ! 4, 5 ! 7,

6! 8 and using �n = f1
2 ;

1
6 ;

1
2 ;

1
6g.

� Face with index 5:

Z
e5
K

�n(x)n(x)dS = �0
�
x
1
K � x

4
K

�
�
�
x
2
K � x

3
K

�
n = 0 (43)

= �1
�
x
1
K � x

2
K

�
�
�
x
3
K � x

4
K

�
n = 1 (44)

= �2
�
x
1
K � x

3
K

�
�
�
x
4
K � x

2
K

�
n = 2 (45)

= �3
�
x
1
K � x

4
K

�
�
�
x
2
K � x

3
K

�
n = 3 (46)

with �n = f1
2
; 1
6
; 1
6
;�1

2
g. The integrals

R
e6
K
�n(x)n(x)dS for a face with index 6 can be

obtained by a simple permutation of the vertices x
n
K in Eqs. (43-46): 1 ! 5, 2 ! 6, 3 ! 7,

4! 8 and using �n = f12 ;
1
6
; 1
6
; 1
2
g.

A.2.1 Sub-Face Corrections

Subfaces are de�ned as a rectangular subdomain [p1; p2]� [q1; q2] � @K̂ = [�1; 1]� [�1; 1]
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� Faces with index i = 1 or 2:

Z
si
K

�n(x)n(x)dS =

1

4

(p2 � p1)(q2 � q1)

Z
ei
K

�0(x)n(x)dS n = 0

=

1

4

(p2 � p1)(q2 � q1)

Z
ei
K

�1(x)n(x)dS n = 1

=

1

8

(p2 � p1)(q2 � q1)
2
Z
ei
K

�2(x)n(x)dS +

1

8

(p2 � p1)(q
2
2 � q21)

Z
ei
K

�0(x)n(x)dS n = 2

=

1

8

(p2 � p1)
2
(q2 � q1)

Z
ei
K

�3(x)n(x)dS +

1

8

(p22 � p21)(q2 � q1)

Z
ei
K

�0(x)n(x)dS n = 3

� Faces with index i = 3 or 4:

Z
si
K

�n(x)n(x)dS =

1

4

(p2 � p1)(q2 � q1)

Z
ei
K

�0(x)n(x)dS n = 0

=

1

8

(p2 � p1)(q2 � q1)
2

Z
ei
K

�1(x)n(x)dS +

1

8

(p2 � p1)(q
2
2 � q21)

Z
ei
K

�0(x)n(x)dS n = 1

=

1

4

(p2 � p1)(q2 � q1)

Z
ei
K

�2(x)n(x)dS n = 2

=

1

8

(p2 � p1)
2
(q2 � q1)

Z
ei
K

�3(x)n(x)dS +

1

8

(p22 � p21)(q2 � q1)

Z
ei
K

�0(x)n(x)dS n = 3
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� Faces with index i = 5 or 6:

Z
si
K

�n(x)n(x)dS =

1

4

(p2 � p1)(q2 � q1)

Z
ei
K

�0(x)n(x)dS n = 0
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Z
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�0(x)n(x)dS n = 2

=
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Z
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A.3 Volume Moments

Z
K̂

S
1
(x̂)d3x̂ =

1

4

(x
3
K + x

4
K � x

5
K � x

6
K)� (x

7
K + x
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4
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5
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6
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Z
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S
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4

(x
6
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8
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1
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K)� (x
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K + x

4
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5
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7
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2
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4
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5
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7
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1
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3
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6
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8
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Z
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S
3
(x̂)d3x̂ =
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2
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6
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7
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4
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5
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A.4 Estimates for Geometrical Quantities

The element face Jacobian at a surface � = 1 of a hexahedral element is de�ned as:

J� = jx� � x� j

and can be estimated using Assumption 3.1 and Eq. (29) as:

J� � jx̂3 + x̂
5j jx̂4 + x̂

6j+ jx̂3 + x̂
5j jx̂7 + x̂

8j j�j+ jx̂7 + x̂
8j jx̂4 + x̂

6j j�j �; � 2 [�1; 1]

� 12h2
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This estimate can be used to obtain the following estimates for jxj a vector x 2 S, the surface area

jSj and the integrals ~Mjk, de�ned in Eq. (18):

jxj � 8h

jSj � 48h2

j ~Mjkj � 6144h4

Identical results are obtained for other faces of a hexahedral element.

Estimates for the volume Jacobian, de�ned in Eq. (31), and the mass matrix, Eq. (34), are

also obtained using Assumption 3.1 and Eq. (29):

J � 384h3���M�1
nm

��� � C=h3
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Adaptation Step Elements Grid Points

0 600 1302

1 862 1902

2 1132 2588

3 1513 3604

4 2049 5032

5 2789 7006

6 3799 9458

Table I Number of grid points and elements after each adaptation step for supersonic ow about a

10
�
ramp.

Adaptation Step Elements Grid Points

0 131072 137425

1 199342 215499

2 259965 293471

3 339226 398356

Table II Number of grid points and elements after each adaptation step for transsonic ow about

the ONERA M6 wing.
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Figure 1: Face and vertex de�nition of master element K̂.
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Figure 2: Element re�nement at left and right side of elementary face. Elements 1 and 2 can not

be connected to elements 3 and 4 with one face.
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Figure 3: Faces of elements 1 and 2 are split into sub-faces such that each sub-face connects to one

element at each side.
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Figure 4: Detail of grid for supersonic ow over a 10
�
ramp after six adaptations.
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Figure 5: Pressure distribution along a 10
�
ramp for supersonic ow, M1 = 2:0 (� � � original grid,

| - | two adaptations, | | four adaptations, || six adaptations, � � � �nal adapted grid).
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Figure 6: Convergence history of L2 residual for ow �eld about ONERA M6 wing.
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Figure 7: Convergence history of lift force CL on ONERA M6 wing.
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Figure 8: Final adapted grid on ONERA M6 wing, M1 = 0:84; � = 3:06�.
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Figure 9: Pressure coe�cient Cp at cross-section y = 0:20S of ONERA M6 wing, M1 = 0:84; � =

3:06� (� � � original grid, | - | one adaptation, | | two adaptations, || three adaptations, �

� � experiment).
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Figure 10: Pressure coe�cient Cp at cross-section y = 0:44S of ONERA M6 wing,M1 = 0:84; � =

3:06� (� � � original grid, | - | one adaptation, | | two adaptations, || three adaptations, �

� � experiment).
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Figure 11: Pressure coe�cient Cp at cross-section y = 0:65S of ONERA M6 wing,M1 = 0:84; � =

3:06� (� � � original grid, | - | one adaptation, | | two adaptations, || three adaptations, �

� � experiment).
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Figure 12: Pressure coe�cient Cp at cross-section y = 0:80S of ONERA M6 wing,M1 = 0:84; � =

3:06� (� � � original grid, | - | one adaptation, | | two adaptations, || three adaptations, �

� � experiment).
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Figure 13: Pressure coe�cient Cp at cross-section y = 0:90S of ONERA M6 wing,M1 = 0:84; � =

3:06� (� � � original grid, | - | one adaptation, | | two adaptations, || three adaptations, �

� � experiment).
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