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Green’s Functions for In-Duct Beamforming Applications 

Pieter Sijtsma* 
National Aerospace Laboratory NLR, 8300 AD Emmeloord, The Netherlands 

This paper considers the calculation of Green’s functions in a ducted parallel shear flow, 
in which both the flow speed and the temperature vary in radial direction. The duct can be 
hollow or annular. Wall lining can be locally or non-locally reacting. For annular ducts, the 
hub may be lined as well. The Green’s function is evaluated in the frequency-domain, and 
expressed in azimuthal modes. For each mode the governing equation is Fourier-
transformed to the axial wave number domain, and the remaining ordinary differential 
equation in the radial coordinate is solved. Then, the inverse Fourier transform to the 
physical axial coordinate is applied to obtain the final solution. Instead of applying the 
Residue Theorem to get a solution in terms of duct modes, the Fourier integral is evaluated 
numerically. Emphasis is put on the practical aspects of calculating the Green’s function. 
The key assumption made here is that the flow properties are stepwise constant in radial 
direction. In other words, the shear flow is represented by a set of cylindrical vortex sheets. 
Thus, issues with continuum modes are circumvented, and the Green’s function can be 
calculated in a straightforward way. 

Nomenclature 
A  = constant for Bessel function 
B  = constant for Hankel function 

0c  = ambient sound speed 
d  = liner thickness 
F  = axial Fourier transform of G  

mF  = axial Fourier transform of mG  
f  = frequency 
f


 = force field 
G  = Green’s function 

mG  = azimuthal mode of G  
(2)
mH  = m-th order Hankel function of the second kind 

i  = imaginary unit 
J  = number of flow intervals 

mJ  = m-th order Bessel function of the first kind 
j  = flow interval number 
N  = number of eigenvalues on the real axis 
m  = azimuthal mode number 
p  = acoustic pressure 

jQ  = see Eq. (38) 
R  = gas constant 

innerR  = inner radius 
outerR  = outer radius 

r  = radial coordinate 
jr  = radial position of vortex sheet 
0T  = ambient temperature 

t  = time 
U  = parallel main flow velocity 

                                                           
* Senior Scientist, Department of Helicopters & Aeroacoustics, P.O. Box 153, Member AIAA. 
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u  = inner solution 
v  = outer solution 

,a bX X  = auxiliary functions, see Eq. (42) 
x  = axial coordinate 

cZ  = characteristic impedance of porous material 
fsZ  = facing sheet impedance 
innerZ  = impedance at inner wall 
outerZ  = impedance at outer wall 

 
α  = axial wave number 

mµα  = axial eigenvalue 
δ  = Dirac-delta function 
ε  = radial wave number 
φ  = azimuthal coordinate of source 
γ  = ratio of specific heats 

pµ  = propagation constant of porous material 
innerΘ  = right hand side of Eq. (20) or Eq. (22) 
outerΘ  = right hand side of Eq. (15) or Eq. (19) 

θ  = azimuthal coordinate 
ρ  = radial coordinate of source 

0ρ  = air density 
σ  = volume source strength 
τ  = source emission time 
ω  = angular frequency 
ξ  = axial coordinate of source 

I. Introduction 
HIS paper discusses Green’s functions of the acoustic differential equation in axisymmetric parallel shear flows. 
Green’s functions are solutions of linear differential equations with a Dirac-delta function in the right hand side. 

In acoustics, they can be considered as expressions for the field generated by monopole sources. This paper is 
motivated by in-duct applications1, but the method described here can also be applied to sources in unducted sheared 
flows, e.g., to model sound refraction by the shear layer of a circular open jet of, or to model diffraction and 
refraction of sound in the presence of a cylindrical fuselage. 
 Green’s functions can be useful for several in-duct applications: 

− calculation of the total acoustic field when volume sources and/or dipole sources on a surface are given, e.g., 
in lifting surface theory2,3 or in the Ffowcs Williams-Hawkings method4,5, 

− testing CAA codes6, 
− constructing steering vectors for in-duct beamforming7,8. 

Moreover, if wall lining is included, Green’s functions can be used to optimize liners. 
An analytic expression, in terms of duct modes, for the Green’s function in an annular duct with uniform flow 

and hard walls, is already known for a few decades3. More recently, analytic expressions were developed for 
uniform flow and locally-reacting liners9. This paper considers the more general case of a ducted parallel shear flow, 
in which the flow speed and the temperature may vary in radial direction. The duct can be either hollow or annular. 
Wall lining can be locally or non-locally reacting. In annular ducts, the hub may be lined as well.  

Just like the existing expressions referenced above, the Green’s function is evaluated in the frequency-domain, 
and expressed in azimuthal modes. For each mode the governing equation is Fourier-transformed to the axial wave 
number domain, and the remaining ordinary differential equation in the radial coordinate is solved. Then, the inverse 
Fourier transform to the physical axial coordinate is applied to obtain the final solution. Instead of applying the 
Residue Theorem to get a solution in terms of duct modes9, the Fourier integral is evaluated numerically. The 
frequency-domain approach ignores issues associated with unstable acoustic modes10-12. 

Emphasis is put on the practical aspects of calculating the Green’s function. The key assumption made here is 
that the flow properties are stepwise constant in radial direction. In other words, the shear flow is represented by a 
set of cylindrical vortex sheets. This offers a number of benefits: 

T 
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− The solution in the frequency-wave number domain can be expressed in terms of Bessel functions. Well-
known asymptotic expansions can be used for large arguments. 

− For a ducted flow, the frequency-wave number solution is meromorphic. There are no “branch cuts”. 
− Its poles are related to acoustic modes. There are neither continuum modes nor convection modes. 

A more in-depth study on the effects of flow gradients was recently performed by Brambley, Darau, and Rienstra13. 
The organization of this paper is as follows. Chapter II provides a general overview of the problem and the 

solution procedure. Chapter III gives an overview of the boundary conditions. Chapter IV discusses the implications 
of a stepwise uniform flow. Chapter V shows a number of typical examples. 

II. Theory 
In the theory that follows, all physical quantities are in full dimensions. To avoid confusion, they were not made 

dimensionless, as the sound speed and the air density do not need to be uniform. Cylindrical coordinates ( , , )x r θ  
will be used. 

A. Governing equations 
The following linearized expression can be derived14 for the acoustic pressure p in a parallel shear flow: 

 ( ) ( )
2 2

0 0 0 0 0 02

1 2 2 rfD D p dU p D D dUT p T T f T T
Dt R dr r x Dt Dt dr xDt

σρ
γ

  ∂∂  ∇ ⋅ ∇ − − = ∇ ⋅ − −   ∂ ∂ ∂  



. (1) 

Herein, we have: 
−  0ρ  : the air density, 
−  0T  : the static temperature, 
−  γ  : the ratio between specific heats (in air: 1.4), 
−  R  : the gas constant (in air: 287 m2s−2K−1), 
−  U  : the axial velocity, 
−  f



 : an external fluctuating force field acting on the fluid, 
− σ  : external fluctuating volume sources. 

The static temperature 0T  and the axial velocity U can be dependent on the radial coordinate r, having any subsonic 
profile. The sound speed 0c  follows from 

 2
0 0c RTγ= . (2) 

The convective derivative is 

 D U
Dt t x

∂ ∂
= +
∂ ∂

. (3) 

We consider the following differential equation for the Green’s function G:  

 ( ) ( ) ( ) ( ) ( )
2 2

0 0 02

1 2D D G dU G DT G T T t x y z
Dt R dr r x DtDt

δ τ δ ξ δ η δ ζ
γ

  ∂
∇ ⋅ ∇ − − = − − − −  ∂ ∂ 

. (4) 

This is the equivalent of the Green’s function in uniform flow2,9. Solutions of Eq. (4) can be used to construct 
solutions of Eq. (1), under the condition that the second term in the right hand side is zero: 

 0rfdU
dr x

∂
=

∂
. (5) 

Hence, forces with a radial component, acting on a shear flow, are excluded by this description. In Chapter IV, we 
will consider flows with piecewise constant velocity. Then, condition (5) is valid when the force is not acting on a 
vortex sheet. 

After performing the Fourier transforms t ω→  and x α→  we find for (4) 

 ( ) ( ) ( )
2

2 20 0
0 0 02 2

21 1 1 .
T dTdU FT r F U T F T y z

r r r U dr dr r Rr
α

ω α α δ η δ ζ
ω α γθ

   ∂ ∂ ∂ ∂ + − − + + − = − −    ∂ ∂ + ∂∂     
 (6) 

Herein, the axial Fourier transform is defined by  

 ( )( ) exp ( )F i x G x dxα α ξ
∞

−∞

= − −  ∫ . (7) 
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Substituting 

 [ ]( , , , , ) exp ( ) ( , , )m
m

F r im F rα θ ρ φ θ φ α ρ
∞

=−∞

= − −∑ , (8) 

and writing the source position in cylinder coordinates ( , , )ξ ρ φ , we obtain  

 ( )
2

2 20 0 0 0
0 2

2 1 ( )
2

m m
m

T dF T dT dF Td dU mr U T F r
r dr dr U dr dr dr R r

α
ω α α δ ρ

ω α γ πρ
   − − + + − + = −     +    

. (9) 

In the left hand side of Eq. (9) we recognize the Pridmore-Brown wave operator15. We can rewrite Eq. (9) in a self-
adjoint form:  

 ( )
( )

( )
202 2 2 0

02 2

1 1 ( )
2

m

m

dFr T Td mdrU U T F r
r dr R rU
ω α ω α α δ ρ

γ πρω α

 
    

+ + + − + = −     +      
 

. (10) 

B. Solution procedure 
It is assumed that an inner radius innerR  and an outer radius outerR  exist, such that  
 inner outer0 R Rρ< ≤ ≤ . (11) 

Obviously, this excludes sources on the axis, i.e., when 0ρ = . This special case is treated in the appendix.  
Suppose that the ratio between mF  and mdF dr  is known at innerr R=  and outerr R= . Then Eq. (10) can be 

solved by a “shooting” method: First, an “inner solution” ( )u r  for innerR r ρ≤ ≤  and an “outer solution” ( )v r  for 
outerr Rρ ≤ ≤  are constructed, which satisfy the homogeneous equation and the boundary conditions at innerr R=  and 

outerr R= , respectively. By applying the appropriate relations between inner and outer solution at r ρ= , i.e., 
continuity and a prescribed jump in the derivative, the full solution of Eq. (10) is found to be  

 
( )

( ) ( ), ,1( , , )
( ) ( ), .2 ( ) ( ) ( ) ( )m

v u r r
F r

u v r ru v u v
ρ ρ

α ρ
ρ ρπρ ρ ρ ρ ρ

<
= ×′ ′ >− 

 (12) 

Then mG  is obtained by performing the inverse Fourier transform:  

 ( )1( , , , ) exp ( , , )
2m mG x r i x F r dξ ρ α ξ α ρ α
π

∞

−∞

= −  ∫ , (13) 

and the full solution is given by  

 [ ]( , , , , , ) exp ( ) ( , , , )m
m

G x r im G x rθ ξ ρ φ θ φ ξ ρ
∞

=−∞

= − −∑ . (14) 

 
Figure 1. Possible locations of singularities of Fm in the complex α-plane, and integration contour. 

C. Inverse Fourier transform 
In order to obtain the final solution, we need to (numerically) evaluate the Fourier integrals, Eq. (13). However, 

there are α-values for which the denominator in Eq. (12) is zero. These are the so-called eigenvalues mµα , which 

upstream

downstream

upstream

downstream
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can be shown to be independent of ρ. Around isolated eigenvalues, mF  behaves like 1 ( )mµα α− . A sketch of 
possible eigenvalues is made in Figure 1, where it is assumed that 0U ≥ . Generally, the eigenvalues are complex-
valued, but a number of them may be located on the real axis (i.e., in the case of hard-wall boundary conditions; see 
next chapter). In a strict sense, this would make the Fourier integrals, Eq. (13), nonexistent. Nevertheless, we can 
evaluate them by moving the integration contour into the complex plane, as sketched in Figure 1. 

III. Conditions at inner and outer radius 

A. Wall condition at outer radius 
If the outer radius outerR  of the previous chapter is the radius of a flow duct, then Myers’ boundary condition16 

can be imposed:  

 ( )2
0

outer

m

m

dF
Udr

F i Z
ρ ω α

ω
+

= . (15) 

Herein outerZ  is the wall impedance. In the case of a hard wall, we have outerZ = ∞ .  

B. Free-field condition at outer radius 
A free-field condition can be derived by assuming that the flow properties are uniform for outerr R≥ . Then Eq. 

(10) simplifies into 

 ( )2 2 21 0m
m

dFd r m r F
r dr dr

ε  + − = 
 

, (16) 

with 

 ( )( )1 222 2
0i U cε α ω α= − − + . (17) 

Equation (16) is Bessel’s equation17. The solution that vanishes for r →∞  is 
 (2) ( )m mF H rε= , (18) 

where (2)
mH  is the m-th order Hankel function of the second kind. Consequently, at outerr R=  we have  

 
(2)

outer
(2)

outer

( )
( )

m

m

m m

dF
H Rdr

F H R
ε ε

ε

′
= . (19) 

C. Wall condition at inner radius 
If the inner radius innerR  is the radius of a center body (hub), then again Myers’ boundary condition can be 

imposed:  

 
( )2

0

inner

m

m

dF
Udr

F i Z
ρ ω α

ω
+

= − , (20) 

with innerZ  the wall impedance. Note the sign change with respect to Eq. (15). 

D. No-hub condition at inner radius 
 If there is no hub, we assume uniform flow conditions for innerr R≤ . Then again Eq. (16) holds. The solution 

that is be bounded for 0r →  is  
 ( )m mF J rε= , (21) 

where mJ  is the m-th order Bessel function. Consequently, at innerr R=  we have 

 inner

inner

( )
( )

m

m

m m

dF
J Rdr

F J R
ε ε

ε
′

= . (22) 
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E. Non-locally reacting liners 
For locally-reacting liners, the wall impedances outerZ  and innerZ  are independent of the axial wave number α. 

However, in the approach described above, there is no need for that restriction. In other words, we may use α-
dependent expressions for the wall impedance. Herewith, several types of non-locally reacting liners (“bulk-
absorbers”) can be considered. 
 For a certain class of bulk-absorbers, the wall impedance can we written as18,19 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }

(2) (2)
outer outer outer outer

outer fs
(2) (2)

outer outer outer outer

( ) ( )

( ) ( )
m m m m

p c

m m m m

J R H R d H R J R d
Z Z i Z

J R H R d H R J R d

ε ε ε ε
µ

ε ε ε ε ε

′ ′+ − +
= −

′ ′′ ′+ − +
, (23) 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }

(2) (2)
inner inner inner inner

inner fs
(2) (2)

inner inner inner inner

( ) ( )

( ) ( )
m m m m

p c

m m m m

J R H R d H R J R d
Z Z i Z

J R H R d H R J R d

ε ε ε ε
µ

ε ε ε ε ε

′ ′− − −
= +

′ ′′ ′− − −
. (24) 

Herein, we have: 
− fsZ  : facing sheet impedance, 
− d  : liner thickness , 
− pµ  : propagation constant of porous material, 
− cZ  : characteristic impedance of porous material. 

Obviously, the properties of the inner and the outer liner may be different. The radial wave number in porous 
material is given by 

 2 2 2
pε µ α= − . (25) 

IV. Stepwise uniform flow 

A. Governing equations 
Instead of smoothly varying shear flow properties ( )U r , 0 ( )T r , and 0 ( )c r , we now consider a flow which is 

stepwise uniform. That is, we subdivide the duct in radial direction into J intervals:  
 1 ,  0,...,j jr r r j J− ≤ < = , (26) 

with 

 0 inner

outer

,
.J

r R
r R
=

 =
 (27) 

In each interval 1j jr r r− ≤ <  constant flow properties jU , 0, jT , and 0, jc  are assumed. The source is supposed to be 
located in one of the intervals. Its position may be exactly on a shear layer ( jrρ = ), but then one of the 
corresponding intervals needs to be allocated for containing the source. 
 Instead of Eq.(10), we now need to solve 

 
2

, 2
,2

1 1 ( )
2

m j
j m j

dFd mr F r
r dr dr r

ε δ ρ
πρ

 
+ − = − 
 

 (28) 

in the interval that contains the source, and  

 
2

, 2
,2

1 0m j
j m j

dFd mr F
r dr dr r

ε
 

+ − = 
 

 (29) 

elsewhere. In Eqs. (28) and (29) we have introduced 

 ( )( )1 222 2
0,j j ji U cε α ω α= − − + . (30) 

An advantage of this approach is that we can describe the solutions of Eq. (29) in terms of Bessel functions. Thus, 
numerical problems with Runge-Kutta solvers, which may occur at large values of α, are avoided. Instead, 
asymptotic expression for Bessel functions can be used.  
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B. Interface conditions 
Across a vortex sheet at jr r= , we prescribe continuity of pressure:  
 , , 1m j m jF F += . (31) 

The second interface condition can be derived easily from the self-adjoint form of the Pridmore-Brown operator, Eq. 
(10), yielding 

 
( ) ( )

, , 12 2
0, 0, 1

2 2

1

m j m j
j j

j j

dF dF
c c

dr dr
U Uω α ω α

+
+

+

=
+ +

. (32) 

This is, in fact, the well-known “continuity of particle displacement” condition20,21.  

C. Shooting procedure 
The “shooting” procedure mentioned in Section II.B is worked out as follows. First, an “inner solution” ( )u r  is 

constructed starting from the first interval 0 1r r r≤ ≤ . Here, the general solution can be written as 
 (2)

1 1 1( ) ( ) ( )m mu r AJ r BH rε ε= + . (33) 
The constants A and B are fixed by setting 

 1 0

1 0 inner

( ) 1,
( ) ,

u r
u r

=
 ′ = Θ

 (34) 

where innerΘ  is the right hand side of Eq. (20) or Eq. (22). Thus, we obtain 

 
(2) (2)

10 1 0 1 0

inner1 0 1 0

( ) ( )
2 ( ) ( )

m m

m m

A ir H r H r
B J r J r

επ ε ε
ε ε

 ′    −=       Θ′−    
, (35) 

where use has been made of a Wronskian for Bessel functions17. If 1rρ ≤  we can evaluate by Eq. (33) the solution at 
the source location. Otherwise, we have to proceed to the next interval: 1j jr r r− ≤ ≤ , with 2j = . As in Eq. (33) we 
write 

 (2)( ) ( ) ( )j m j m ju r AJ r BH rε ε= + . (36) 

At jr r=  we have the interface conditions Eqs. (31) and (32), which yield 

 
(2)

1 1 1 1

(2)
1 1 1 1

( ) ( ) ( ),

( ) ( ) ( ) ,

m j j m j j j j

m j j m j j j j j j

AJ r BH r u r

AJ r BH r Q u r

ε ε

ε ε ε

− − − −

− − − −

 + =


′′ ′+ =
 (37) 

with 

 
( )

( )

2

0, 1
2

0, 1

j j
j

j j

T U
Q

T U

ω α

ω α

−

−

+
=

+
. (38) 

Hence,  

 
(2) (2)

1 11 1 1

1 11 1

( )( ) ( )
( )2 ( ) ( )

j j jj m j j m j j

j j jm j j m j j

u rirA H r H r
Q u rB J r J r

επ ε ε
ε ε

− −− − −

− −− −

 ′    −
 =      ′′−    

. (39) 

We can repeat this until we arrive at the interval containing r ρ= .  
The same procedure can be carried out for the “outer solution” ( )v r . In that case we start with  

 
outer

( ) 1,
( ) ,

J J

J J

v r
v r

=
 ′ = Θ

 (40) 

where outerΘ  is the right hand side of Eq. (15) or Eq. (19). Thus, we obtain a total solution as in Eq. (12). The further 
evaluation is the same as outlined in Chapter II.  

D. Properties of wave number solution 
The solution ( , , )mF rα ρ  is given by Eq. (12). The inverse Fourier transform, Eq. (13), needs to be applied in 

order to get the solution in physical coordinates. In this section some typical properties of mF  are discussed, when a 
ducted flow is considered (i.e., when condition (15) applies at outerr R= ).  
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As mentioned in the previous section, the inner solution ( )u r  is constructed by shooting from 0r r=  to r ρ= . 
Then, a number of radial intervals have to be passed through. Solutions per interval are given by insertion of Eq. 
(39) into Eq. (36), yielding 

 
( )

( )

1
1 1 1 1

1
1 1 1 1

( ) ( ) ( ) ( ) ( ) ,
2

( ) ( ) ( ) ( ) ( ) ,
2

j
j j j a j j j b

j
j j j a j j j b

ir
u r u r X r Q u r X r

ir
u r u r X r Q u r X r

π

π

−
− − − −

−
− − − −


′= +


 ′ ′ ′ ′= +

 (41) 

where 

 

( )

( )

(2) (2)
1 1

(2) (2)
1 1

2 (2) (2)
1 1

(2)
1 1

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( )

a j m j j m j m j j m j

b m j j m j m j j m j

a j m j j m j m j j m j

b j m j j m j m j j

X r H r J r J r H r

X r H r J r J r H r

X r H r J r J r H r

X r H r J r J r H

ε ε ε ε ε

ε ε ε ε

ε ε ε ε ε

ε ε ε ε

− −

− −

− −

− −

′ ′= −

= − +

′ ′′ ′ ′= −

′ ′= − +( )(2) ( ) .m jrε








 ′


 (42) 

By inspection of the power series for Bessel functions17, it is seen that the functions defined in Eq. (42) are analytic 
in 2

jε . Therefore, they are also analytic in α . From Eq. (41) if follows that ( )ju r  and ( )ju r′  are meromorphic 
functions of α  if the same holds for 1( )ju r−  and 1( )ju r−′ . Iterating back to 0r r= , we can conclude that the inner 
solution ( )u r  is a meromorphic function of α  for any r between 0r  and ρ, if the same is true for 1 0( )u r  and 1 0( )u r′ . 
From (34) it follows that this is indeed the case, since the right hand sides of Eqs. (20) and (22) are analytic 
expressions of α . 

Likewise, the outer solution ( )v r  is meromorphic, because this is also true for the right hand side of Eq. (15). It 
follows that ( , , )mF rα ρ , Eq. (12), is a meromorphic function of α. Thus, in principle, the integral in Eq. (13) can be 
evaluated by closing the contour in the upper or lower half plane (dependent on the sign of x ξ− ), and applying the 
Residue Theorem to the poles of mF . For a uniform flow this has been evaluated by Rienstra and Tester8.  

Note that this is not applicable to unducted flows, as the right hand side of Eq. (19) is not meromorphic. Then, 
branch cuts need to be defined13.  

A further remark to be made is that the poles of ( )mF α  do not include convective modes. At first sight it looks 
as if (double) poles jUα ω= − are introduced in the inner and outer solution, through jQ  (see Eqs. (41) and (38)). 
These modes would form a discretized version of the “continuum modes”. However, poles like these in the 
numerator of the expression for mF , Eq. (12), are completely counterbalanced by the same poles in the denominator.  

V. Numerical Examples 
Green’s functions were calculated for 12 typical configurations. For all of them we had 
− inner radius: inner 0.244 mR = , 
− outer radius: outer 0.4 mR = , 
− source position:  0 m, 0.32 m, 2ξ ρ ϕ= = = ° , 
− frequency:  4000 Hzf = , 
− mean flow speed:  112 m/sU = , 
− sound speed: 0 340 m/sc = . 

In Table 1, an overview of the configurations is listed. An “open” casing or hub means that it is not present. For the 
“liner” configurations we used: 

− outer impedance: outer 0 0 1.5Z c iρ = − ,  
− inner impedance: inner 0 0 2.5 2Z c iρ = − . 

For the “bulk” configurations we made use of Eqs. (23) and (24) for outerZ  and innerZ , respectively, with: 
− facing sheet impedance: fs 0 0 0.5Z cρ = , 
− characteristic impedance: ( )1 2

0 0 01.5cZ c Yc iρ ω= + , 
− propagation constant: ( )1 2

0 01.5p Yc i cµ ω ω= + . 
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The constant Y is the “resistivity” of the porous material, normalized by 0 0cρ , for which we used the value 
1120 mY −=  (typical value for “Retimet”19). For the configuration with shear flow, the (piecewise uniform) flow 

profile is drawn in Figure 2. The temperature and, consequently, the sound speed were kept uniform.  
 

Table 1: Configurations for numerical examples 
 casing hub flow intake SPL exhaust SPL 

Config 1 open open uniform 74.31 74.31 
Config 2 open hard uniform 74.24 74.24 
Config 3 hard open uniform 85.96 85.96 
Config 4 hard hard uniform 85.68 85.68 
Config 5 lined hard uniform 76.22 76.17 
Config 6 hard lined uniform 82.38 82.71 
Config 7 lined lined uniform 73.96 71.86 
Config 8 lined lined shear 77.05 72.47 
Config 9 bulk hard uniform 75.38 76.68 
Config 10 hard bulk uniform 83.02 82.73 
Config 11 bulk bulk uniform 73.08 71.94 
Config 12 bulk bulk shear 77.67 72.70 

 
The inverse Fourier transforms, Eq. (13), were calculated along contours 

 
2

0
0

0 0

1( ) exp 1 ,  4 4
4 2

c siss s s s
c c
ω ωα

ω

    = + + − − − ≤ ≤ +   
     

. (43) 

These contours cross the real axis in 0(0) sα = . The 0s -values were obtained by searching hard-wall eigenvalues on 
the real axis. For each m this gives an even number (say N) of eigenvalues. For a non-zero number of eigenvalues, 

0s  is chosen halfway eigenvalues 2N  and 2 1.N +  If no eigenvalues are found, then an average value is chosen.  

 
Figure 2. Shear flow profile. 

 
For all configurations, the acoustic pressure amplitudes are plotted in the plane 0θ = ° , which is very close to 

the source location. The results can be found in Figure 3 and Figure 4. The flow is from left to right. The mean SPL 
at the “intake” and “exhaust” positions 0.4x = −  and 0.4x = + , respectively, are given in Table 1.  
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Clearly, shear flow, hub lining, and the liner type have a great impact. However, with a single frequency and a 
single source position, there is too little information to draw general conclusions. For a thorough study, a set of 
incoherent sources along a radial line would be required. 

 

 
Figure 3. Acoustic pressure amplitude at θ = 0°, Configs 1-6. 
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Figure 4. Acoustic pressure amplitude at θ = 0°, Configs 7-12. 
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VI. Conclusion 
A general approach was discussed to calculate Green’s functions in a duct with parallel shear flow. It features the 

numerical integration of the inverse Fourier transform with respect to the axial coordinate. The shear flow is 
assumed to be piecewise uniform. Bessel functions can be used to evaluate the Green’s functions, and issues with 
continuum modes are circumvented. The range of applicability is wide:  
− annular or hollow ducts, 
− open jets with or without inner body, 
− hard or lined duct walls and inner body walls, 
− locally and non-locally reacting liners. 
Applications were shown to several configurations. 

Appendix: Source on the axis 
When the source is on the axis, 0ρ = , Eq. (11) does not hold and the shooting method is not applicable. In that 

case, we can use an alternative shooting method, as described below. 
First, it is noted that 0mF =  for 0m ≠ , because of the axisymmetry. We assume that an “inner radius” innerR  

exists such that the flow properties are uniform for innerr R≤ . In that case Eq. (16) holds for 0r > : 

 ( )( )2 2 20
0 0

1 0
dFd r U c F

r dr dr
ω α α  + + − = 

 
. (44) 

As in Chapter IV, we shoot from outerr R=  to innerr R= , thus providing an “outer solution” ( )v r . For innerr R≤  we 
write the solution as 

 (2)
0 0( ) ( ) ( )v r AJ r BH rε ε= + . (45) 

The parameters A and B are found by matching ( )v r  and its derivative at innerr R= :  

 
(2)

0 inner 0 inner inner

(2)
0 inner 0 inner inner

( ) ( ) ( ),

( ) ( ) ( ) .

AJ R BH R v R

AJ R BH R v R

ε ε

ε ε ε

 + =


′′ ′+ =
 (46) 

Hence, we have  

 
(2) (2)

innerinner 0 inner 0 inner

inner0 inner 0 inner

( )( ) ( )
( )2 ( ) ( )

v RA iR H R H R
v RB J R J R

επ ε ε
ε ε

 ′    −=       ′′−    
, (47) 

where use has been made of a Wronskian for Bessel functions17.  
Thus, we have obtained a complete “outer solution” ( )v r , which can still be multiplied with a constant C. This 

constant is chosen such that 

 
4
iBC = . (48) 

Then we have for innerr R≤   

 (2)
0 0 0( ) ( ) ( )

4
iF Cv r ACJ r H rε ε= = + . (49) 

The term with the Hankel function is a Green’s function in uniform flow; the term with the Bessel function is a 
solution of the homogeneous equation. From the foregoing, it follows that  

 
( )inner 0 inner inner 0 inner inner

1
2 ( ) ( ) ( ) ( )

C
R J R v R J R v Rπ ε ε ε

=
′ ′− +

. (50) 

The final solution 0G G=  follows from Eq. (13).  
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