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Summary

For the problem of tracking multiple manoeuvering targets in clutter and missing measurements

the paper develops a Joint Interacting Multiple Model Probabilistic Data Association type of par-

ticle filter and compares this with other Interacting Multiple Model Joint Probabilistic Data Asso-

ciation based filters through Monte Carlo simulation for a simple example.
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1 Introduction

McGinnity & Irwin (2000, 2001), Doucet et al. (2001) and Musso et al. (2001) showed that esti-

mation of jump linear systems with particle filter approaches has certain performance advantages

over the Interacting Multiple Model algorithm (Blom, 1984; Blom & Bar-Shalom, 1988). Simi-

larly, for the problem of tracking multiple targets in clutter and missed detections, Avitzour (1995)

and Gordon (1997) have reported that particle filters outperform Gaussian density approximations

of Bayesian filters using the bootstrap approach of Gordon et al. (1993). The aim of this paper

is to extend the bootstrap particle filtering approach of McGinnity & Irwin (2000) to situations of

possibly false and missing observations of multiple maneuvering targets.

Following Blom & Bloem (2002a, 2002b) this multitarget tracking problem is first presented as

one of filtering for a descriptor system with both i.i.d. and Markovian coefficients. For this de-

scriptor system we develop a characterization of the evolution of the exact conditional density

function. The specialty of this exact equation is that both the IMM step and the PDA step are

performed jointly for all targets. In contrast with this the IMMJPDA of Chen & Tugnait (2001)

jointly performs the PDA step only. Following the exact equations, we develop a Joint IMMPDA

Particle (JIMMPDAP) which evaluates the exact equations through the particle filtering approach

of McGinnity & Irwin (2000). Through Monte Carlo simulations for a simple example this novel

algorithm is compared with the IMMJPDA of Chen & Tugnait (2001) and the track coalescence

avoiding IMMJPDA* of Blom & Bloem (2002a,b).

The paper is organized as follows. Section 2 formulates the problem considered. In this way

it is ensured that there is no unambiguity which mathematical model is addressed. Section 3

develops an exact Bayesian characterization of the evolution of the conditional density for the

state of the multiple targets. Section 4 develops the JIMMPDA Particle filter. Section 5 shows

the effectiveness of this filter through Monte Carlo simulation results. Finally, Section 6 draws

conclusions.
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2 Problem formulation

Following Blom & Bloem (2002a,b) the problem is formulated in terms of filtering for a jump

linear descriptor system with both Markovian switching and i.i.d. coefficients:

xt+1 = A(θt+1)xt +B(θt+1)wt (1)

Φ(ψ∗
t )yt = v∗t if Lt > Dt, (2)

Φ(ψt)yt = χ
t
Φ(φt)[H(θt)xt +G(θt)vt] if Dt > 0 (3)

Target evolution eq. (1)

The underlying model components are follows:

xt
�
= Col{x1

t , ..., x
M
t },

θt
�
= Col{θ1

t , ..., θ
M
t },

A(θ)
�
= Diag{a1(θ1), ..., aM (θM )},

B(θ)
�
= Diag{b1(θ1), ..., bM (θM )},

wt
�
= Col{w1

t , ..., w
M
t },

wherexi
t is then-vectorial state of thei-th target at momentt, θi

t is the mode of thei-th target at

momentt and assumes values fromM = {1, .., N}, ai(θi) andbi(θi) are(n× n)- and(n× n′)-

matrices,wi
t is a sequence of i.i.d. standard Gaussian variables of dimensionn′ with wi

t , wj
t

independent for alli �= j andwi
t ,xi

0, x
j
0 independent for alli �= j.

Clutter measurements eq. (2)

yt
�
= Col{y1,t, ..., yLt,t} is the measurement vector that contains a random mixture of target- and

clutter measurements, where yi,t denotes the i-thm-vectorial measurement at momentt, andLt is

the number of measurements at momentt.

v∗t is a column vector ofLt − Dt i.i.d. false measurements with densitypv∗
t |Ft

(v∗|F ) = V −F ,

whereF refers to a number of false measurements in volumeV .

ψ∗
t

�
= Col{ψ∗

1,t, ..., ψ
∗
Lt,t} is a clutter indicator vector of sizeLt with ψ∗

l,t ∈ [0, 1] the clutter in-

dicator at momentt for measurementi. It assumes the value one if measurementi comes from

clutter and zero if measurementi belongs to a target.

In order to select the clutter measurements by simple matrix multiplication, a matrix operatorΦ

is defined, producingΦ(ψ′) as a(0, 1)-valued matrix of sizeD(ψ′) ×M ′ of which theith row

equals theith non-zero row of Diag{ψ′}, whereD(ψ′) �
=

∑M ′
i=1 ψ

′
i for an arbitrary (0,1)-valued

M ′-vectorψ′. To take into account the measurement vector sizem, Φ(ψ∗
t ) needs to be ”inflated” to

the proper size ofDtm by means of the tensor product withIm. To this end,Φ(ψ′) �
= Φ(ψ′)⊗ Im
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with Im a unit-matrix of sizem, and⊗ the tensor product. HenceΦ(ψ∗
t )yt is a column vector that

contains only clutter measurements from yt.

Notice that the order of the clutter measurements in (3) is not of interest.

Target measurement eq. (3)

The coefficients on the right hand side of eq. (2) are:

H(θ)
�
= Diag{h1(θ1), ..., hM (θM )},

G(θ)
�
= Diag{g1(θ1), ..., gM (θM )},

hi(θi) is an (m× n)-matrix,

gi(θi) is an (m×m′)-matrix,

vt
�
= Col{v1

t , ..., v
M
t },

wherevi
t is a sequence of i.i.d. standard Gaussian variables of dimensionm′ with vi

t andvj
t inde-

pendent for alli �= j. Moreovervi
t is independent ofxj

0 andwj
t for all i,j.

ψt
�
= Col{ψ1,t, ..., ψLt,t} is the target indicator vector, whereψi,t ∈{0,1} is a target indicator

at momentt for measurementi, which assumes the value one if measurementi belongs to a de-

tected target and zero if measurementi comes from clutter.

To select the target measurements, which are indicated by the target indicator vector, by simple

matrix multiplication, the matrix operatorΦ is used again. HenceΦ(ψt)yt is a column vector that

contains target measurements from yt only, in a random order.

φt
�
= Col{φ1,t, ..., φM,t} is the detection indicator vector, whereφi,t ∈{0,1} is the detection

indicator for targeti, which assumes the value one with probabilityP i
d > 0, independently ofφj,t,

j �= i, whereP i
d denotes the detection probability of targeti. {φt} is a sequence of i.i.d. vectors,

andDt
�
=

∑M
i=1 φi,t denotes the number of detected targets. HenceLt −Dt is the number of clut-

ter measurements. As before, by using the matrix operatorΦ, Φ(φt)H(θt)xt is a column vector

of potential detected measurements of targets in a fixed order.

Finally the detected target measurements in the observation vector yt are in random order. Hence

the potential detected measurements of targets need to be randomly mixed. To perform this by a

simple matrix multiplication, a sequence of independent stochastic permutation matrices{χt} of

sizeDt×Dt is defined and assumed to be independent of{φt}. To take into account the measure-

ment vector sizem, χt needs to be ”inflated” to the proper size ofDtm by means of the tensor

product withIm. To this end,χ
t

�
= χt ⊗ Im with Im a unit-matrix of sizem, and⊗ the tensor

product. Henceχ
t
Φ(φt)H(θt)xt is a column vector of potential detected measurements of targets

in random order.
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3 Exact filter equations

In this section a Bayesian characterization of the conditional densitypxt,θt| Yt
(x, θ) is given where

Yt denotes theσ-algebra generated by measurements yt up to and including momentt. Sub-

sequently, characterizations are developed for the mode probabilities and the mode conditional

means and covariances.

Notice that (2) is a linear Gaussian descriptor system (Dai, 1989) with stochastic i.i.d. coefficients

Φ(ψt) andχ
t
Φ(φt) and Markovian switching coefficientsH(θt) andG(θt). Becauseχt has an

inverse, (2) can be transformed into

χT
t
Φ(ψt)yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt, if Dt > 0 (4)

Next we introduce an auxiliary indicator matrix processχ̃t of sizeDt × Lt, as follows:

χ̃t
�
= χT

t Φ(ψt) if Dt > 0. (5.a)

and an auxiliary measurement process

ỹt
�
= χ̃

t
yt (5.b)

With this we get a simplified version of (4):

ỹt = χ̃
t
yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt, if Dt > 0, (6)

where the size of̃χ
t

isDtm× Ltm and the size ofΦ(φt) isDtm×Mm.

From (6), it follows that forDt > 0 all relevant associations and permutations can be covered

by (φt, χ̃t)-hypotheses. We extend this toDt = 0 by adding the combinationφt = {0}M and

χ̃t = {}Lt . Hence, through defining the weights

βt(φ, χ̃, θ)
�
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt},

the law of total probability yields:

pxtθt|Yt
(x, θ) =

∑
χ̃,φ

βt(φ, χ̃, θ)pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) (7)

And thus, our problem is to characterize the terms in the last summation. This problem is solved

in two steps, the first of which is the following Theorem.
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Theorem 1. For any φ ∈{0, 1}M , such thatD(φ)
�
=

∑M
i=1 φi ≤ Lt, and any χ̃t matrix realization

χ̃ of size D(φ) × Lt, the following holds true:

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) =

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1

(x | θ)
Ft(φ, χ̃, θ)

(8)

βt(φ, χ̃, θ) = Ft(φ, χ̃, θ)λ(Lt−D(φ)) · [
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1
(θ)/ct (9)

where χ̃
�
= χ̃⊗ Im , and Ft(φ, χ̃, θ) and ct are such that they normalize pxt|θt,φt,χ̃t,Yt

(x | θ, φ, χ̃)

and βt(φ, χ̃, θ) respectively.

Proof: If φ = 0 we getpxt|θt,φt,χ̃t,Yt
(x | θ, 0, χ̃) = pxt|θt,Yt−1

(x | θ). Else

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) = pxt|θt,φt,χ̃t,yt,Lt,Yt−1

(x | θ, φ, χ̃, yt, Lt) =

= pxt|θt,φt,χ̃t,yt,Lt,ỹt,Yt−1
(x | θ, φ, χ̃, yt, Lt, χ̃yt) =

= pxt|θt,φt,ỹt,Yt−1
(x | θ, φ, χ̃yt) =

= pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1

(x | θ)/Ft(φ, χ̃, θ)

with Ft(φ, χ̃, θ)
�
= pỹt|θt,φt,Yt−1

(χ̃yt | θ, φ). Subsequently

βt(φ, χ̃, θ)
�
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt} =

= pφt,χ̃t,θt|Yt
(φ, χ̃, θ) =

= pφt,χ̃tθt|yt,Lt,Yt−1
(φ, χ̃, θ | yt, Lt) =

= pyt,χ̃t,θt|φt,Lt,Yt−1
(yt, χ̃, θ | φ,Lt) · pφt|Lt,Yt−1

(φ | Lt)/c′t =

= pyt,χ̃t|θt,φt,Lt,Yt−1
(yt, χ̃ | θ, φ, Lt) · pφt|Lt,Yt−1

(φ | Lt)pθt|Yt−1
(θ)/c′t

If Dt > 0 we have

χ̃T
t χ̃t = Φ(ψt)Tχtχ

T
t Φ(ψt) = Φ(ψt)T Φ(ψt) = Diag{ψt}

χ̃tΦ(ψt)T = χT
t Φ(ψt)Φ(ψt)T = χT

t

which means that the transformation from (ψt, χt) into χ̃t has an inverse, which implies

pyt,χ̃t|θt,φt,Lt,Yt−1
(yt, χ

T Φ(ψ) | θ, φ, Lt) = pyt,ψt,χt|θt,φt,Lt,Yt−1
(yt, ψ, χ | θ, φ, Lt)



- 10 -
NLR-TP-2003-574

Furthermore, because the transformation from(yt, ψt, χt) into (ỹt, v
∗
t , ψt, χt) is a permutation, we

get forLt > D(φ) > 0

pyt,ψt,χt|θt,φt,Lt,Yt−1
(yt, ψ, χ | θ, φ, Lt) =

= pỹt,v
∗
t ,ψt,χt|θt,φt,Lt,Yt−1

(χT Φ(ψ)yt,Φ(ψ∗)yt, ψ, χ|θ, φ, Lt)

Hence, forLt > D(φ) > 0, βt satisfies:

βt(φ, χT Φ(ψ), θ) = Ft(φ, χT Φ(ψ), θ) · pv∗t |φt,Lt
(Φ(ψ∗)yt | φ,Lt)pψt|φt,Lt

(ψ | φ,Lt)·
·pχt|φt

(χ | φ)pLt|φt
(Lt | φ)pφt(φ)pθt|Yt−1

(θ)/c′′

Subsequently using the JPDA derivation [2] yields:

βt(φ, χT Φ(ψ), θ) = Ft(φ, χT Φ(ψ), θ)λ(Lt−D(φ)) · [
M∏
i=1

(P i
d)

φi(1− P i
d)

(1−φi)]pθt|Yt−1
(θ)/ct

with ct a normalizing constant. It can be easily verified that the last equation also holds true if

Lt = D(φ) orD(φ) = 0.

In order to prepare for a particle filter approach, substituting (8) and (9) into (7) yields

pxt,θt|Yt
(x, θ) =

∑
χ̃,φ

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1

(x | θ)
Ft(φ, χ̃, θ)

·

·Ft(φ, χ̃, θ)λ(Lt−D(φ)) · [
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1
(θ)/ct (10)

Simplifying (10) and rearranging terms yields:

pxt,θt|Yt
(x, θ) =

∑
χ̃,φ

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt,θt|Yt−1

(x, θ) ·

·λ(Lt−D(φ)) · [
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ]/ct (11)

with

pỹt|xt,θt,φt
(ỹ | x, θ, φ) = N{ỹ; Φ(φ)H(θ)x,Φ(φ)G(θ)G(θ)T Φ(φ)T }) (12)
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Define

F̃t(φ, χ̃, x, θ)
�
= pỹt|xt,θt,φt

(χ̃yt | x, θ, φ) (13)

Hence from (12) we get:

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]− 1
2 ·

· exp{−1
2
µ̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)−1µ̃t(φ, χ̃, x, θ)} (14)

where

µ̃t(φ, χ̃, x, θ)
�
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
�
= Φ(φ)

(
G(θ)G(θ)T

)
Φ(φ)T

Substituting (14) into (11) and rearranging terms yields

pxt,θt|Yt
(x, θ) =

1
ct

∑
χ̃,φ

F̃t(φ, χ̃, x, θ) · λ(Lt−D(φ)) ·

·[
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pxt,θt|Yt−1
(x, θ) (15)
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4 Joint IMMPDA Particle filter

In this section a JIMMPDA Particle filter of the exact filter characterization of Theorem 1 is

developed following the approach of McGinnity & Irwin (2000). One cycle of this JIMMPDA

Particle filter consists of the following seven steps, where a particle is defined as a triplet(w, x, θ),

w ∈ [0, 1], x ∈ R
Mn, θ ∈ M

M .

JIMMPDA Particle filter Step 1: Start with the mode probabilities

γ̂t−1(θ)
�
= pθt−1|Yt−1

(θ)

and for eachθ ∈ M
M a set ofSθ particles in[0, 1] × R

Mn × M
M , i.e.:

{(wθ,j
t−1, x

θ,j
t−1, θ

θ,j
t−1 = θ); j ∈ [1, Sθ], θ ∈ M

M}

with

wθ,j
t−1 = γ̂t−1(θ)/Sθ

Thus in total there areS =
∑

θ S
θ particles.

JIMMPDA Particle filter Step 2: (Interaction) Determine the new set of particles (the weights

wθ,j
t−1 are not changed)

{(wθ,j
t−1, x

θ,j
t−1, θ̄

θ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}

by generating for each particle a new valueθ̄θ,j
t according to the model

Prob{θ̄θ,j
t = θ̄ | θθ,j

t−1 = θ} = Πθ,θ̄

JIMMPDA Particle filter Step 3: Determine the new set of particles (the weightswθ,j
t−1 are not

changed)

{(wθ,j
t−1, x̄

θ,j
t , θ̄θ,j

t ); j ∈ [1, Sθ], θ ∈ M
M}
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by running for each particle a Monte Carlo simulation from(t− 1) to t according to the model

x̄θ,j
t = A(θ̄θ,j

t )xθ,j
t−1 +B(θ̄θ,j

t )wt−1

JIMMPDA Particle filter Step 4: Determine new weights for the set of particles, i.e.

{(w̄θ,j
t , x̄θ,j

t , θ̄θ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}

with for the new weights

w̄θ,j
t = wθ,j

t−1 ·
1
ct

∑
χ̃,φ

F̃t(φ, χ̃, x̄
θ,j
t , θ̄θ,j

t ) · λ(Lt−D(φ)) · [
M∏
i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ]

where

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]− 1
2 ·

· exp{−1
2
µ̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)−1µ̃t(φ, χ̃, x, θ)} (16)

with

µ̃t(φ, χ̃, x, θ)
�
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
�
= Φ(φ)

(
G(θ)G(θ)T

)
Φ(φ)T

andct such that

∑
θ∈MM

Sθ∑
j=1

w̄θ,j
t = 1

JIMMPDA Particle filter Step 5: MMSE measurement update equations:

γ̂t(θ) =
∑

η∈MM

Sη∑
j=1

w̄η,j
t 1

θ̄η,j
t

(θ)

x̂t(θ) =
∑

η∈MM

Sη∑
j=1

w̄η,j
t x̄η,j

t 1
θ̄η,j
t

(θ)
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P̂t(θ) =
∑

η∈MM

Sη∑
j=1

w̄η,j
t [x̄η,j

t − x̂t(θ)][x̄
η,j
t − x̂t(θ)]T 1

θ̄η,j
t

(θ)

JIMMPDA Particle filter Step 6: θ dependent resampling: Generate the new set of particles

{(wθ,j
t , xθ,j

t , θθ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}

by applying the following equations perθ value:

θθ,j
t = θ

wθ,j
t = γ̂t(θ)/Sθ

xθ,j
t is the j-th of theSθ samples drawn from the particle spanned joint conditional density for

(xt, θt) givenYt:

∑
η∈MM

Sη∑
l=1

w̄η,l
t 1

θ̄η,l
t

(θ)δ
x̄η,l

t
(x)

JIMMPDA Particle filter Step 7: MMSE output equations:

x̂t =
∑

θ∈MM

γ̂(θ)x̂t(θ)

P̂t =
∑

θ∈MM

γ̂(θ)
(
P̂t(θ) + [x̂t(θ) − x̂t][x̂t(θ) − x̂t]T

)
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5 Monte Carlo simulations

In this section some Monte Carlo simulation results are given for the JIMMPDA Particle filter, the

IMMJPDA* and IMMJPDA filter algorithms, and for an IMMPDA which updates an individual

track using PDA by assuming the measurements from the adjacent targets as false. The JIMMPDA

Particle filter ran on a total ofS = 10000 particles, with for each of the four modesSθ = 2500

particles. The simulations primarily aim at gaining insight into the behavior and performance of

the filters when objects move in and out close approach situations, while giving the filters enough

time to converge after a manoeuvre has taken place. In the example scenarios there are two targets,

each modelled with two possible modes. The first mode represents a constant velocity model and

the second mode represents a constant acceleration model. Both objects start moving towards each

other, each with constant initial velocityVinitial (i.e. the initial relative velocityVrel, initial = 2V ).

At a certain moment in time both objects start decelerating with -0.5 m/s2 until they both have

zero velocity. The moment at which the deceleration starts is such that when the objects both

have zero velocity, the distance between the two objects equalsd (see figure 1). After spending a

significant number of scans with zero velocity, both objects start accelerating with 0.5 m/s2 away

from each other without crossing until their velocity equals the opposite of their initial velocity.

From that moment on the velocity of both objects remains constant again (thus the final relative

velocityVrel, final = Vrel, initial). Note thatd < 0 implies that the objects have crossed each other

before they have reached zero velocity. Each simulation the filters start with perfect estimates and

run for 40 scans. Examples of the trajectories ford > 0 andd < 0 are depicted in figures 1a and

1b respectively.

0 100 200 300 400
−1000

−500

0

500

1000
Trajectories for d > 0

time

p
o

si
tio

n

 d > 0 

0 100 200 300 400
−1000

−500

0

500

1000
Trajectories for d < 0

time

p
o

si
tio

n

 d < 0 

1a. Trajectories examples ford > 0 1b. Trajectories examples ford < 0

Fig. 1 Trajectories examples for d > 0 and for d < 0
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For each target, the underlying model of the potential target measurements is given by (29) and

(30)

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t (17)

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t (18)

Furthermore fori = 1, 2 and θi
t ∈ {1,2}:

ai(1) =




1 Ts 0

0 1 0

0 0 0


 , ai(2) =




1 Ts
1
2T

2
s

0 1 Ts

0 0 1




bi(1) = σi
a ·




0

0

1


 , bi(2) = σi

a ·




0

0

0




hi =
[

1 0 0
]
, gi = σi

m

Π =

[
1 − Ts/τ1 Ts/τ1

Ts/τ2 1 − Ts/τ2

]

whereσi
a represents the standard deviation of acceleration noise andσi

m represents the standard

deviation of the measurement error. For simplicity we consider the situation of similar targets

only; i.e. σi
a = σa, σi

m = σm, P i
d = Pd. With this, the scenario parameters arePd, λ, d, Vinitial ,

Ts, σm, σa, τ1, τ2, and the gate sizeγ. We used fixed parametersσm = 30, σa = 0.5, τ1 = 500,

τ2 = 50, andγ = 25. Table 1 gives the other scenario parameter values that are being used for the

Monte Carlo simulations.

Table 1 Scenario parameter values.1

Scenario Pd λ d Vinitial Ts

1 1 0 Variable 7.5 10

2 1 0.001 Variable 7.5 10

3 0.9 0 Variable 7.5 10

4 0.9 0.001 Variable 7.5 10

1IMMPDA’s λ = 0.00001 for scenarios 1 and 3
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During our simulations we counted tracki ”O.K.”, if

| hix̂i
T − hixi

T |≤ 9σm

and we counted tracki �= j ”Swapped”, if

| hix̂i
T − hjxj

T |≤ 9σm

Furthermore, two tracksi �= j are counted “Coalescing” at scant, if

| hix̂i
t − hj x̂j

t |≤ σm∧ | hixi
t − hjxj

t |> σm

For each of the scenarios Monte Carlo simulations containing 100 runs have been performed for

each of the tracking filters. To make the comparisons more meaningful, for all tracking mecha-

nisms the same random number streams were used. The results of the Monte Carlo simulations

for the four scenarios are shown in tables and figures as follows:

• The percentage of Both tracks ”O.K.”, see Table 2, and figures 2a, 3a and 4a.

• The percentage of Both tracks ”O.K.” or ”Swapped”, see Table 3, and figures 2b, 3b and 4b.

• The average number of ”coalescing” scans, see Table 4, and figures 2c, 3c and 4c.

• The average CPU time per scan (in seconds), see Table 5.
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Table 2 Average % Both tracks ”O.K.”.

Scenario IMMPDA IMMJPDA IMMJPDA* JIMMPDAP

1 19 66 73 75

2 10 56 68 70

3 6 63 69 72

4 4 41 50 57

Table 3 Average % Both tracks ”O.K.” or ”swapped”.

Scenario IMMPDA IMMJPDA IMMJPDA* JIMMPDAP

1 28.3 99.96 100 96.2

2 18.9 92.5 96.8 94.6

3 8.5 99.8 100 95.8

4 5.6 76.6 80.96 82.3

Table 4 Average number of coalescing scans.

Scenario IMMPDA IMMJPDA IMMJPDA* JIMMPDAP

1 9.7 1.5 0.4 1.3

2 11.0 2.1 0.3 1.4

3 18.9 1.7 0.5 1.3

4 14.5 2.6 0.5 1.5

For the example considered, the averages in Tables 2, 3, and 4 show that IMMPDA performs

less good than all others. In contrast with this, the JIMMPDA Particle filter (JIMMPDAP) outper-

forms the other filter algorithms when it comes to ”Both tracks O.K.”. Nevertheless, IMMJPDA*

performs best regarding the ”both tracks O.K. or swapped” criterion on scenarios 1-3 and best on

track coalescence avoidance for all scenarios.
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Table 5 Average CPU time per scan (in seconds).

Scenario IMMPDA IMMJPDA IMMJPDA* JIMMPDAP

1 0.016 0.022 0.023 0.439

2 0.038 0.054 0.048 7.959

3 0.014 0.020 0.020 0.438

4 0.038 0.061 0.056 7.810

Table 5 indicates a significant CPU-time increase for JIMMPDA Particle filter relative to the

others. The increase is one order of magnitude for scenarios without clutter and two orders of

magnitude for scenarios with clutter.
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Fig. 2 Simulation results for scenario 1
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Fig. 3 Simulation results for scenario 2
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Fig. 4 Simulation results for scenario 4
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6 Conclusion

In this paper we studied a Joint multi-target version of IMM and PDA. The approach taken is

to first characterise the problem in terms of filtering for a jump linear descriptor system with

both Markovian and i.i.d. coefficients. Subsequently exact Bayesian filter equations have been

characterized. Based on these exact equations a JIMMPDA Particle filter is developed. Through

Monte Carlo simulations for a simple example the JIMMPDA Particle filter algorithm has been

compared to the IMMJPDA of Chen & Tugnait (2001) and the IMMJPDA* of Blom & Bloem

(2002a, 2002b). All together the JIMMPDA Particle filter appears to perform best for this example,

and in particular when there is clutter and missed detections. If performance is measured in track

coalescence avoiding power or if CPU load is an issue, however, then IMMJPDA* is the best on

this example.
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Appendices

A Acronyms

CPU Central Processing Unit

IMM Interacting Multiple Model

IMMJPDA Interacting Multiple Model Joint Probabilistic Data Association

IMMJPDA* Track-coalescence-avoiding IMMJPDA

IMMPDA Interacting Multiple Model Probabilistic Data Association

IMMPDAP IMMPDA Particle

JIMMPDA Joint IMMPDA

JIMMPDAP Joint IMMPDA Particle

JPDA Joint PDA

JPDA* Track-coalescence-avoiding JPDA

MMSE Minimum Mean Square Error

NLR Nationaal Lucht- en Ruimtevaartlaboratorium

PDA Probabilistic Data Association
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B List of symbols

ai(θi) Targeti’s state transition matrix of sizen× n as function of modeθi

A(θ) Joint target state transition matrix as function of joint modeθ

bi(θi) Targeti’s state noise gain matrix of sizen× n′ as function of modeθi

A(θ) Joint target state noise gain matrix as function of joint modeθ

Dt Total number of detected targets at momentt

Ft Total number of false measurements at momentt

gi(θi) Targeti’s measurement noise gain matrix of sizem×m′ as function of modeθi

G(θ) Joint target measurement noise gain matrix as function of joint modeθ

hi(θi) Targeti’s state-to-measurement transition matrix of sizem× n as function of modeθi

H(θ) Joint target state-to-measurement transition matrix as function of joint modeθ

Im Unit-matrix of sizem×m

Lt Total number of measurements at momentt

M Total number of targtes

N Total number of modes of a target

P i
d Detection probability of targeti

S The total number of particles

Sθ the number of particles for modeθ

vi
t Sequence of i.i.d. standard Gaussian variables of dimensionm′ representing the

measurement noise for targeti

v∗t Column-vector ofFt i.i.d. false measurements

V Volume of the validation region

wi
t Sequence of i.i.d. standard Gaussian variables of dimensionn′ representing the

system noise of targeti

xi
t n-vectorial state of targeti at momentt

xt Joint target state vector at momentt

yk
t k-th measurement at momentt

yt Measurement vector at momentt, containing all measurements at momentt

ỹt Measurement vector at momentt, containing in the upper part the

measurements of alldetected targets at momentt in a fixed

order and in the lower part the false measurements at momentt

zi
t m-vectorial potential measurement of targeti at momentt

zt Joint measurement vector at momentt, containing the potential measurements of all

targets at momentt

z̃t Joint measurement vector at momentt, containing the measurements of all

detected targets at momentt in a fixed order
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˜̃zt Joint measurement vector at momentt, containing the measurements of all

detected targets at momentt in a random order

θi
t Mode of targeti at momentt

θt Joint targets mode at momentt

φi,t Detection indicator for targeti at momentt

φt Detection indicator vector at momentt, containing the detection indicators for all

targets at momentt

Φ Matrix operator to link the detection indicator vector with the measurement model

χt Stochastic permutation matrix of sizeDt ×Dt

ψi,t Target indicator for measurementi at momentt

ψt Target indicator vector at momentt, containing the target indicators for all

measurements at momentt

ψ∗
i,t Clutter indicator for measurementi at momentt

ψ∗
t Clutter indicator vector at momentt, containing the target indicators for all

measurements at momentt


