


Unclassified Pseudo-time stepping methods for space-time discontinuous Galerkin
discretizations of the compressible Navier-Stokes equations

als tijd nodig. In het huidige project
wordt een nieuwe simulatiemetho-
de ontwikkeld die in staat is om op
lokaal verfijnde rekenroosters te re-
kenen en dus de potentie heeft om
de stroming in de wervel nauwkeu-
rig te simuleren.

Werkzaamheden
In vorig onderzoek is de functio-
naliteit van de simulatiemethode
aangetoond (zie bovenstaande lin-
kerfiguur). Lokale rekenroosterver-
fijning maakt het mogelijk details
van de stroming in de wervelkern te
tonen. De efficiëntie van de metho-
de laat echter nog te wensen over.
In het onderzoek dat beschreven
staat in het huidige rapport, is de
eerste stap gezet om te komen tot
een efficiëntere simulatiemethode.

Uiteindelijk zal de methode middels
de versnellingstechniek multigrid
bruikbaar worden voor toepassingen
als het simuleren van vortex break-
down. Kern van deze versnellings-

techniek is de zogenaamde smoot-
her, ‘gladstrijker’, op basis van een
expliciete tijdsintegratiemethode. In
het huidig rapport wordt een tijdsin-
tegratiemethode beschreven die ge-
schikt is als smoother. Ten opzichte
van de bestaande tijdsintegratieme-
thode levert deze methode een orde
tijdswinst op (vergelijk in de rech-
terfiguur de ononderbroken lijn van
de nieuwe methode met de onder-
broken lijn van de oude methode).

Conclusies
Met succes is een tijdsintegratie-
methode ontwikkeld die een orde
sneller is dan de oorspronkelijke
tijdsintegratiemethode.

Aanbevelingen
Nu de smoother voor de versnel-
lingstechniek gereed is, zal het
onderzoek voortgezet worden om
een efficiënt multigridalgoritme te
ontwikkelen voor deze numerieke
methode.
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Summary

The space-time discontinuous Galerkin discretization of the compressible Navier-Stokes equa-

tions results in a non-linear system of algebraic equations, which we solve with a local pseudo-

time stepping method. Explicit Runge-Kutta methods developed for the Euler equations are un-

suitable for this purpose as a severe stability constraint linked to the viscous part of the equations

must be satisfied in boundary layers. In this paper, we investigate two new alternatives:

1. an implicit-explicit Runge-Kutta method, where the viscous terms are treated implicitly

and the inviscid terms explicitly,

2. a combination of two explicit Runge-Kutta schemes, one designed for inviscid flows and

the other for viscous flows.

We analyze the stability of the explicit and implicit-explicit methods, discuss their (dis)advantages

and compare their performance by computing the flow around the NACA0012 airfoil at low and

moderate Reynolds numbers.
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1 Introduction

Discontinuous Galerkin (DG) methods are nowadays applied to a wide range of problems be-

cause of their accuracy and favorable properties related to the locality of the discretization, such

as flexibility in mesh adaptation and efficient parallelization. In fact, the discretization in each

element only involves its direct neighbors, even for higher order of accuracy, making the method

most local. The usual approach is to apply discontinuous basis-functions in space and a Runge-

Kutta method for the time integration, resulting in the so-called RKDG method, see for exam-

ple the survey by Cockburn and Shu (Ref. 9). Thanks to the work by Bassi and Rebay (Ref. 3),

Baumann and Oden (Ref. 5) and Cockburn and Shu (Ref. 8), DG methods were successfully ex-

tended from hyperbolic to (incompletely) parabolic equations, see Arnold, Brezzi e.a. (Ref. 1, 6)

for the detailed analysis of purely elliptic problems and (Ref. 2, 4, 10) for applications to the

compressible Navier-Stokes equations.

In (Ref. 12), we presented a space-time discontinuous Galerkin method for the compressible

Navier-Stokes equations, which is an extension of the space-time DG method for the Euler equa-

tions (Ref. 18, 19) designed for flow problems on moving and deforming meshes. The main

idea is to use discontinuous basis-functions both in space and time, and to introduce a numeri-

cal time-flux to ensure causality in time. The viscous flux is treated by extending the approach

presented in (Ref. 3, 4) to the space-time context. The method is fully implicit in physical time

and results in a system of non-linear algebraic equations (Ref. 12). This paper focuses on solving

the algebraic system.

For the space-time discretization of the Euler equations (Ref. 18), the algebraic system was solved

with an explicit pseudo-time stepping Runge-Kutta method (with the correction by Melson e.a.

(Ref. 15)). When applied as a smoother in a full approximation multigrid scheme, this approach

proved very efficient. The main advantage of the pseudo-time stepping method is its locality,

which matches the locality of the discontinuous Galerkin method. An alternative would be to

solve the system with a Newton method; in which case a global linear system based on the ex-

pensive Jacobian of the Euler flux would have to be solved. Another disadvantage of Newton’s

method is the small basin of attraction which demands an accurate initial guess in order to con-

verge. In practice, this translates to small physical times steps for the space-time discontinuous

Galerkin method. Being implicit in physical time, the solver of the algebraic system needs to be

stable for large physical time steps as well. This is the case for the pseudo-time stepping method

as it is insensitive to the initial condition. Therefore, we will aim at extending the pseudo-time

stepping approach in (Ref. 18) to the space-time discretization of the Navier-Stokes equations

presented in (Ref. 12).
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Such an extension is not trivial for two reasons. First, for the Euler equations, the pseudo-time

Courant-Friedrichs-Levy (CFL) condition must be satisfied for stability of the Runge-Kutta

method (Ref. 18). But applying the same method to the space-time discretization of the com-

pressible Navier-Stokes equations requires an additional stability constraint, the Von Neumann

condition, which is more restrictive than the CFL condition in flow regions with small cell Reynolds

numbers, i.e. boundary layers. Therefore, the Runge-Kutta method would no longer be a good

smoother for the multigrid algorithm. Second, the multigrid algorithm itself should also be adapted

since the equations are no longer hyperbolic but incompletely parabolic. In this paper, we will

limit ourselves to finding an effective solver for viscous flows, to be combined with multigrid in

our future work.

A possible solution to overcome the severe stability constraint in boundary layers, is the so-

called implicit-explicit Runge-Kutta method, where the inviscid part is treated explicitly and the

viscous part implicitly, such that only the CFL condition needs to be satisfied for stability. Con-

trary to Newton methods, this method does not require the Jacobian of the Euler flux but only

of the viscous flux, the latter being readily available in the discretization (Ref. 12). However, in

common with Newton methods, the implicit-explicit method does involve a global linear system.

This rises the question whether the additional effort of solving the implicit system negates the re-

lief of the stability constraint. To answer this question a priori is difficult as it highly depends on

the case under consideration. Therefore, we will attempt to provide guidelines for aerodynamical

applications based on representative numerical experiments.

Whether or not the implicit-explicit method significantly improves convergence in pseudo-time,

it still involves a global sparse linear system and thus conflicts with the DG philosophy of local-

ity. To preserve locality, we turn to the family of explicit Runge-Kutta methods derived by Kleb

e.a. (Ref. 13). These schemes are specially designed for viscous flows and have stability domains

which are much more stretched along the negative real axis than the Runge-Kutta schemes used

for hyperbolic equations. Therefore, even though the Von Neumann condition still has to be

satisfied for stability, it may no longer be the most restrictive. Since accuracy is not an issue in

pseudo-time we can apply local pseudo-time stepping and combine the scheme developed for the

Euler equations in (Ref. 18), which is optimal in the inviscid regime, with the scheme presented

in (Ref. 13) for the viscous regime. By comparing the performance with the implicit-explicit

scheme, we can see how effective this combination is in relieving the stability constraint for vis-

cous flows.

The outline of this paper is the following. In Section 2, we briefly summarize the space-time dis-

continuous Galerkin discretization and give the weak formulation, the basis-functions and the
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resulting system of non-linear algebraic equations. The different pseudo-time stepping meth-

ods are described in Section 3 and their stability is analyzed using the scalar advection-diffusion

equation as a model problem in Section 4. In Section 5, we compare the performance of both

methods by computing steady and unsteady viscous flow around the NACA0012 airfoil and draw

conclusions in Section 6.

2 Summary of the space-time DG discretization

This section summarizes the space-time discontinuous Galerkin discretization of the compress-

ible Navier-Stokes equations as presented in (Ref. 12), to which we refer for further details. The

main idea is to consider the equations directly in the space-time domain using discontinuous

basis-functions in space-time and introduce a numerical time-flux to ensure causality in time.

The treatment of the viscous terms in (Ref. 3, 4) was extended to the space-time context.

2.1 Space-time formulation
The space-time discontinuous Galerkin finite element method does not distinguish between space

and time variables: the equations are considered in an open domain E ⊂ R4, where a point with

position x̄ = (x1, x2, x3) at time t = x0 has Cartesian coordinates (x0, x1, x2, x3). The flow

domain Ω(t) at time t is defined as Ω(t) := {x̄ ∈ R3 : (t, x̄) ∈ E}. Let t0 and T be the

initial and final time of the evolution of the flow domain, then the space-time domain boundary

∂E consists of the hypersurfaces Ω(t0) := {x ∈ E : x0 = t0}, Ω(T ) := {x ∈ E : x0 = T},

and Q := {x ∈ ∂E : t0 < x0 < T}. Using this notation, the compressible Navier-Stokes

equations can be written as:
Ui,0 + F e

ik(U),k −
(
Aikrs(U)Ur,s

)
,k

= 0 on E ,
U = U0 on Ω(t0),

U = B(U,U b) on Q,

with U ∈ R5 the vector of conservative variables, F e ∈ R5×3 the inviscid flux, A ∈ R5×3×5×3

the homogeneity tensor, U0 ∈ R5 the initial flow field and B ∈ R5 the boundary operator. The

conservative variables, the inviscid flux and the viscous flux F v ∈ R5×3 are defined as:

U =


ρ

ρuj

ρE

 , F e
k =


ρuk

ρujuk + pδjk

uk(ρE + p)

 , F v
k =


0

τjk

τkjuj − qk

 ,
with ρ the density, ρ~u the momentum density vector, ρE the total energy density, p the pressure,

δ the Kronecker delta function, τ the shear stresses and q the heat flux. The summation conven-
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tion is used on repeated indices. The viscous flux F v is homogeneous with respect to the gradi-

ent of the conservative variables ∇U . This defines the homogeneity tensor A as:

Aikrs(U) =
∂F v

ik(U,∇U)
∂(Ur,s)

.

This property is essential for the treatment of the viscous terms in the space-time formulation of

the compressible Navier-Stokes equations (Ref. 12).

2.2 Discretization
The space-time discretization starts with the tessellation T n

h = {K} of the flow domain E in the

time slab (tn, tn+1). The associated functional spaces are defined as:

Wh :=
{
W ∈ (L2(Eh))5 : W |K ◦GK ∈ (P k(K̂))5, ∀K ∈ Th

}
,

Vh :=
{
V ∈ (L2(Eh))5×3 : V |K ◦GK ∈ (P k(K̂))5×3, ∀K ∈ Th

}
,

where GK denotes the mapping of the master element K̂ = (−1, 1)4 to element K and P k(K̂)

denotes the space of polynomials of degree at most k. Notice that ∇hWh ⊂ Vh where ∇h is

the broken gradient: (∇hWh)|K = ∇(Wh|K). The set of internal faces is denoted by Sn
I and

the set of boundary faces by Sn
B . The traces from the left and right are denoted by (·)L and (·)R,

respectively. The average operator is defined as {{·}} = 1/2((·)L +(·)R) and the jump operator as

[[·]]k = (·)LnL
k + (·)RnR

k , with n the outward normal vector of the element under consideration.

Using this notation, the weak formulation of the compressible Navier-Stokes equations can be

written as follows.

Find a U ∈Wh, such that for all W ∈Wh:

−
∑
K∈T n

h

∫
K

(
Wi,0Ui +Wi,k(F e

ik −AikrsUr,s +Rik)
)
dK

+
∑

K∈T n
h

( ∫
K(t−n+1)

WiU
L
i dK −

∫
K(t+n )

WiU
R
i dK

)
+

∑
S∈Sn

I

∫
S
(WL

i −WR
i )Hi dS +

∑
S∈Sn

B

∫
S
WL

i H
b
i dS

−
∑
S∈Sn

I

∫
S
[[Wi]]k{{AikrsUr,s − ηRS

ik}} dS

−
∑
S∈Sn

B

∫
S
WL

i

(
Ab

ikrsU
b
r,s − ηRS

ik

)
n̄L

k dS = 0.

Here, H ∈ R5 is the inviscid numerical flux from the HLLC approximate Riemann solver with

the extension needed for moving meshes (cf. (Ref. 18)) and (·)b indicates dependence on the
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prescribed boundary data. The stability constant is η > Nf , with Nf the number of faces per

element. The local lifting operator is denoted by RS ∈ R5×3 and defined (Ref. 12) as:

Find an RS ∈ Vh, such that for all V ∈ Vh:

∑
K∈T n

h

∫
K
VikRS

ik dK =


∫
S
{{VikAikrs}}[[Ur]]s dS for S ∈ Sn

I ,∫
S
V L

ikA
L
ikrs(U

L
r − U b

r )n̄s dS for S ∈ Sn
B,

The global lifting operator R ∈ R5×3 is obtained from the local lifting operator RS using the

relation:

R =
∑

S∈Sn
I ∪S

n
B

RS .

The upwind character of the numerical time-flux in the integrals over the time faces K(t+n ) and

K(t−n+1) ensures causality in time. The trial function U and the test function W in each element

K ∈ T n
h are represented as polynomials:

U(t, x̄)|K = Ûmψm(t, x̄), and W (t, x̄)|K = Ŵlψl(t, x̄),

with (̂·) the expansion coefficients and ψ the basis functions described in (Ref. 12). The system

of algebraic equations for the expansion coefficients of U is obtained by replacing U and W in

the weak formulation with their polynomial expansions and using the fact that the test functions

W are arbitrary. For each physical time step the system can be written as:

L(Ûn; Ûn−1) = 0. (1)

This paper focuses on solving system (1) using pseudo-time stepping methods. We add a pseudo-

time derivative:

∂Û

∂τ
= − 1

∆t
L(Û ; Ûn−1), (2)

and iterate in pseudo-time τ to steady-state using Runge-Kutta methods. At steady-state we have

Ûn = Û . In this paper we will investigate two different approaches:

1. an implicit-explicit Runge-Kutta method, where the viscous terms are treated implicitly

and the inviscid terms explicitly,

2. a combination of two explicit Runge-Kutta schemes, one designed for inviscid flows and

the other for viscous flows.

In our future work the most efficient of these methods will be used as a smoother in a full ap-

proximation multigrid scheme to enhance the overall efficiency of the method.
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3 Pseudo-time stepping methods

In this section, the different Runge-Kutta methods for the pseudo-time integration of system (2)

are described.

First, we consider the explicit 5 stage Runge-Kutta method, which was successfully used to

solve the system arising from the space-time discretization of the Euler equations in (Ref. 18).

The method is derived from a second order 5 stage Runge-Kutta method using the correction

proposed by Melson e.a. (Ref. 15) to enhance the stability of the pseudo-time integration. For

details of the derivation and the stability analysis for the Euler case we refer to (Ref. 18). This

scheme is given by:

Algorithm 1 (EXI). Explicit Runge-Kutta method for inviscid flow with Melson correction.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:(
I + αsλI

)
V̂ s = V̂ 0 + αsλ

(
V̂ s−1 − L(V̂ s−1; Ûn−1)

)
.

3. Return Û = V̂ 5.

The Runge-Kutta coefficients at stage s are denoted by αs and defined as: α1 = 0.0791451,

α2 = 0.163551, α3 = 0.283663, α4 = 0.5 and α5 = 1.0. The matrix I represents the identity

matrix. The coefficients were optimized to ensure rapid convergence to steady state. The factor

λ is the ratio between the pseudo-time step ∆τ and the physical time step: λ = ∆τ/∆t. The

Melson correction consists in treating V̂ semi-implicitly, without this the scheme would become

unstable for values of λ around one.

Second, we consider the implicit-explicit version of the EXI method. The residual L defined in

(1) consist of two parts: L = Le + Lv, where Le stems from the inviscid part of the compress-

ible Navier-Stokes equations and Lv from the viscous part. The implicit-explicit method can be

derived by introducing a Newton matrix D, which approximates the Jacobian of the viscous part

of the residual:

DV̂ s ∼= Lv.

Here, the approximation consists of freezing the (non-linear) homogeneity tensor A at the pre-

vious Runge-Kutta stage s − 1. This approximation is relatively inexpensive compared with

the Jacobian of the inviscid flux which would be required by a Newton solver, since A is readily

available in the discretization. The implicit-explicit Runge-Kutta method can thus be written as:

12
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Algorithm 2 (IMEX). Implicit-explicit Runge-Kutta method.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s by solving:(
I + αsλ(I +D)

)
V̂ s = V̂ 0 + αsλ

(
(I +D)V̂ s−1 − L(V̂ s−1; Ûn−1)

)
.

3. Return Û = V̂ 5.

Note that the diffusive terms Lv in the residual L are not replaced by the approximation, both

methods solve the same non-linear system L = 0. Clearly, the l.h.s. of the equation for V̂ s is

no longer a diagonal matrix, but a global sparse block matrix, therefore V̂ s must be computed by

solving the sparse linear system. We do so using the sparse iterative GMRES solver with Jacobi

preconditioning, available in the PETSc package (Ref. 17).

Finally, we consider one of the methods proposed by Kleb e.a. (Ref. 13), which is an explicit 4

stage Runge-Kutta method, but with coefficients optimized for viscous flows:

Algorithm 3 (EXV). Explicit Runge-Kutta method for viscous flows.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:

V̂ s = V̂ 0 − αsλL(V̂ s−1; Ûn−1).

3. Return Û = V̂ 5.

For this method, the Runge-Kutta coefficients at stage s are defined as: α1 = 0.0178571, α2 =

0.0568106, α3 = 0.174513 and α4 = 1. A summary of the derivation of these values is given

in Appendix A. With these coefficients, the stability domain of the Runge-Kutta method is very

different from the one associated with the classic 4 stage Runge-Kutta method for inviscid flows.

Notice that we do not apply the Melson correction to this scheme because we will not use it for

values of λ around one, for reasons which will become clear in the next section.

The EXI method is designed for inviscid flows, while the EXV method is designed for viscous

flows. In aerodynamical applications, however, one encounters both flow regimes in the same

simulation: the flow is inviscid in the far-field and viscous in boundary layers. Therefore, we

will seek to combine both methods, based on their stability domains. The advantage of such a

combination is that it remains local, contrary to the IMEX method which requires the solution of

a global linear system.

13
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4 Stability analysis

The methods discussed in the previous section can all be applied to solve the system of non-

linear equations (2) given by the space-time discretization of the compressible Navier-Stokes

equations, provided a suitable pseudo-time stability constraint is satisfied. In this section, we de-

rive these constraints.

4.1 The model problem
Rigorous stability analysis of numerical methods for the Navier-Stokes equations is extremely

difficult and rarely attempted. Instead, in order to derive practical stability constraints, the method

is required to be stable for the scalar advection-diffusion equation (Ref. 13, 20):

ut + a ux = d uxx, t ∈ (0, T ), x ∈ R,

with a > 0 the advection constant and d > 0 the diffusion constant. The domain is divided into

uniform rectangular elements ∆t by ∆x. The space-time discontinuous Galerkin method using

the linear basis functions described in (Ref. 12) gives the following discrete system for the vector

of expansion coefficients û at time level n:

L(ûn; ûn−1) = 0, (3)

with L = La + Ld. The inviscid part La is defined as La(ûn; ûn−1) = Aûn + Cûn−1 with

A = blocktridiag(A,B, 0) and C = blockdiag(C). The matrices A, B and C depend on the

Courant number:

σ =
a∆t
∆x

, (4)

and are given by:

A =


−σ −σ σ

σ σ −σ
σ σ −4

3σ

 , B =


1 + σ σ −σ
−σ 1

3 + σ σ

−2− σ −σ 2 + 4
3σ

 ,
and

C =


−1 0 0

0 −1
3 0

2 0 0

 .
The viscous contribution Ld is defined as Ld(ûn) = Dûn with D = blocktridiag(D,E, F ). The

matrices D, E and F depend on the Von Neumann number:

δ =
d∆t

(∆x)2
(5)

14



NLR-TP-2006-056

as well as on the stabilization constant η:

D = δ


−2η 1− 2η 2η

−1 + 2η −2 + 2η 1− 2η

2η −1 + 2η −13
6 η

 , E = δ


4η 0 −4η

0 4η 0

−4η 0 13
3 η

 ,
and

F = δ


−2η −1 + 2η 2η

1− 2η −2 + 2η −1 + 2η

2η 1− 2η −13
6 η

 .
The system of algebraic equations (3) resulting from the space-time discontinuous Galerkin dis-

cretization of the model problem is solved using the pseudo-time stepping methods described in

the previous section. Since the stability in pseudo-time of the Runge-Kutta methods is only af-

fected by the transients, we only consider the homogeneous part (C = 0) of the linear system (3).

Thus, the pseudo-time equation for the model problem becomes:

∂ûn

∂τ
= − 1

∆t
(A+D)ûn. (6)

4.2 Stability of the EXI and EXV method
The stability analysis of the EXI and EXV method is similar and therefore treated simultane-

ously in this section. We begin by noticing that the matrix A+D can be diagonalized as QMQ−1,

with Q the matrix of right eigenvectors of A + D and M the diagonal matrix with the (complex)

eigenvalues µ. Using this property and introducing the new vector w = Q−1ûn, reduces equation

(6) to the simple scalar test model:

∂w

∂τ
= − µ

∆t
w, (7)

for all eigenvalues µ of A + D. When applying the EXI method to this model equation, the

Runge-Kutta stages ws are computed as:

(1 + αsλ)ws = w0 + αsλ(1− µ)ws−1,

with λ = ∆τ/∆t and for the EXV as:

ws = w0 − αsλµw
s−1.

Using these equations the relation between two consecutive pseudo-time steps can easily be de-

rived and is written in generic form as:

wn = G(−λµ)wn−1,

15
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with G the algorithm dependent amplification factor. In stability analysis, we are interested in the

behavior of a perturbation of the initial condition (see for example (Ref. 20)). Due to linearity,

the equation for the perturbation is the same as the equation for w and after n steps we obtain:

wn = G(−λµ)nwi,

with wi the initial solution. Clearly, the perturbation w is bounded if ‖Gn‖ is bounded, where

‖ · ‖ denotes the Euclidian (or discrete l2) norm (Ref. 11, 20). Therefore, a sufficient condition

for stability is that all values −λµ must lie inside the stability domain S given by:

S = {z ∈ C : |G(z)| ≤ 1}.

Remember that the discretization of the advection-diffusion equation only depends on the Courant

number (4), the Von Neumann number (5) and the constant η. For given values of these numbers,

the factor λ of the Runge-Kutta algorithm should be chosen such that −λµ lies inside the sta-

bility domain S for all µ. Once a suitable λ is found, it is convenient to express the stability in

terms of the pseudo-time Courant and Von Neumann numbers: σ∆τ = λσ and δ∆τ = λδ. For

stability, the pseudo-time step ∆τ must satisfy the Courant-Friedrichs-Levy (CFL) condition and

the Von Neumann condition:

∆τ ≤ σ∆τ∆x
a

and ∆τ ≤ δ∆τ (∆x)2

d
.

We distinguish between flow regimes by introducing the cell Reynolds number, defined as:

Re∆x =
a∆x
d

. (8)

In aerodynamical computations, the flow is inviscid in most of the domain, yet significant vis-

cous effects occur in the boundary layer near the airfoil. Therefore we will consider the follow-

ing regimes:

1. Steady-state, inviscid: σ = 100 and Re∆x = 100,

2. Steady-state, viscous: σ = 100 and Re∆x = 0.01,

3. Time-dependent, inviscid: σ = 1 and Re∆x = 100,

4. Time-dependent, viscous: σ = 1 and Re∆x = 0.01.

The Von Neumann condition can be expressed in terms of the cell Reynolds number as:

∆τ ≤ δ∆τRe∆x∆x
a

.

Thus, for the inviscid flow regime the CFL condition is the most restrictive, for the viscous flow

regime the Von Neumann condition and the threshold between both is given by δ∆τRe∆x =

σ∆τ .
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Table 1 Stability constraints of the EXI and EXV methods.

flow regime stability restriction

σ Re∆x EXI EXV

Steady-state, inviscid 100 100 σ∆τ ≤ 1.8 σ∆τ ≤ 0.3

Steady-state, viscous 100 0.01 δ∆τ ≤ 0.1 δ∆τ ≤ 0.8

Time-dependent, inviscid 1 100 σ∆τ ≤ 1.6 σ∆τ ≤ 1.0

Time-dependent, viscous 1 0.01 δ∆τ ≤ 0.1 δ∆τ ≤ 0.8

The stability domains of the EXI and EXV method and the values −λµ are plotted in Figures 1,

2, 3 and 4. For inviscid flow regimes with pseudo-time Courant number around α∆τ = 1.7, the

EXI method is stable and the EXV is unstable, but for viscous flow regimes with pseudo-time

Von Neumann number δ∆τ = 0.8, the converse holds. Stability constraints for which both meth-

ods are stable are given in Table 1, confirming that the EXI method is preferable in the inviscid

regime and the EXV in the viscous regime. Therefore, we combine the EXI and EXV by look-

ing at the cell Reynolds number, and, for that particular cell, deploy whichever scheme has the

mildest stability restriction. We can apply this type of local pseudo-time stepping because accu-

racy is not an issue in pseudo-time.

The Melson correction is applied to the EXI scheme to ensure stability for for values of λ around

one, which is the case for the time-dependent inviscid flow regime (Figure 3). For all other flow

regimes, λ is small and the Melson correction vanishes. Since we only apply the EXV scheme in

the viscous flow regime, the Melson correction is unnecesary for this scheme.

4.3 Stability of the IMEX method
The IMEX method solves the inviscid part of the equations with the EXI method and treats the

viscous part implicitly. The main idea is that the stability should now only depend on the invis-

cid part, so only the CFL condition needs to be satisfied, thereby allowing the EXI method to

be deployed for both the inviscid and viscous flow regimes. Unfortunately, the matrices A and

D in (6) do not commute, making it impossible to obtain a scalar model problem through diag-

onalization, as was done for the explicit method. Stability analysis of IMEX methods for gen-

eral non-commuting matrices is still largely an open problem, although recently, for the related

W-methods, results have been presented by Ostermann (Ref. 16). In this section, we will proof

stability of the IMEX method by directly estimating the norm of the amplification factor G.

For the IMEX method the Runge-Kutta stages v̂s are computed by solving the sparse linear sys-

17
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Fig. 1 The stability domain S and values −λµ (dots) for the EXI method (top) and EXV method

(bottom) in the steady-state inviscid flow regime with λ = 1.8 · 10−2. The pseudo-time

CFL number is 1.8 and for this constraint only the EXI method is stable.
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Fig. 2 The stability domain S and values −λµ (dots) for the EXI method (top) and EXV method

(bottom) in the steady-state viscous flow regime with λ = 8 · 10−5. The pseudo-time Von

Neumann number is 0.8 and for this constraint only the EXV method is stable.
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Fig. 3 The stability domain S and values −λµ (dots) for the EXI method (top) and EXV method

(bottom) in the time-dependent inviscid flow regime with λ = 1.6. The pseudo-time CFL

number is 1.6 and for this constraint only the EXI method is stable.
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Fig. 4 The stability domain S and values −λµ (dots) for the EXI method (top) and EXV method

(bottom) in the time-dependent viscous flow regime with λ = 8 · 10−3. The pseudo-time

Von Neumann number is 0.8 and for this constraint only the EXV method is stable.
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tem: (
I + αsλ(I +D)

)
v̂s = v̂0 + αsλ(I −A)v̂s−1. (9)

The starting point of our analysis is the fact that D is a Hermitian matrix: D = QMQT where

Q is a unitary matrix and M the diagonal matrix with the (real and positive) eigenvalues µ of D.

For a unitary matrix Q−1 = QT and the l.h.s. of (9) can be written as:

I + αsλ(I +D) = Q
(
I + αsλ(I +M)

)
QT

= QMsQ
T ,

(10)

with Ms the diagonal matrix with values 1 + αsλ(1 + µ). Introducing the decomposition (10)

into (9) gives:

Msw
s = w0 + αsλQ

T (I −A)Qws−1,

= w0 + αsλPAw
s−1,

(11)

with ws = QT v̂s and PA = QT (I − A)Q. Therefore, the relation between two consecutive

pseudo-time steps is: wn = Gwn−1 with the amplification matrix G defined as:

G =M−1
5 (I + α5λPA

M−1
4 (I + α4λPA

· · ·

M−1
1 (I + α1λPA))).

If ‖G‖ ≤ 1, then ‖Gn‖ ≤ 1 and the method is stable. Our stability analysis aims at a direct

estimation of this norm, therefore we consider the following upper bound:

‖G‖ ≤‖M−1
5 ‖(1 + α5λ‖PA‖

‖M−1
4 ‖(1 + α4λ‖PA‖

· · ·

‖M−1
1 ‖(1 + α1λ‖PA‖))).

The matrices M−1
s are equal to:

M−1
s = diag

( 1
1 + αsλ(1 + µ1)

, · · · , 1
1 + αsλ(1 + µn)

)
,

with µ the eigenvalues of D. The Euclidian norm of M−1
s can be estimated as:

‖M−1
s ‖ = max

i∈{1,··· ,n}

1
1 + αsλ(1 + µi)

<
1

1 + αsλ
,
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since µ, αs, λ > 0. Using this estimation, the upper bound for the Euclidian norm of G is then

provided by the following estimate:

‖G‖ ≤ 1
1 + α5λ

(1 + α5λ‖PA‖

1
1 + α4λ

(1 + α4λ‖PA‖

. . .

1
1 + α5λ

(1 + α1λ‖PA‖))).

The r.h.s. of this equation is called the stability function, denoted by f(λ, ‖PA‖) and plotted for

‖PA‖ = 1 in Figure 5. If ‖PA‖ < 1 we find ourselves below the curve in Figure 5, therefore:

‖PA‖ ≤ 1 ⇒ f(λ, ‖PA‖) ≤ 1 ⇒ ‖G‖ ≤ 1 meaning ‖PA‖ ≤ 1 is a sufficient condition for

stability of the implicit-explicit method. Since the matrix PA is defined as PA = QT (I − A)Q,

with Q a unitary matrix (hence ‖Q‖ = 1), this implies that the stability of the IMEX method is

only determined by the following condition:

‖I −A‖ ≤ 1.

Since A only depends on the Courant number (4), this condition implies that the IMEX method

is stable independently of the Von Neumann number, and only the CFL condition has to be satis-

fied.

The fact that the IMEX method does not need the Von Neumann condition for stability is a con-

siderable advantage over fully explicit methods. But does this advantage outweight the additional

effort of solving the implicit linear system? The answer to this question highly depends on the

case under consideration. Therefore, we will adress it in the following section through numerical

experiments.

5 Results

In this section, two benchmark problems are considered. We present the results obtained with the

space-time discontinuous Galerkin method combined with either the explicit or implicit-explicit

pseudo-time stepping methods.

To test the performance of the pseudo-time stepping methods, we have chosen the cases A1 and

A7 described in (Ref. 7) for the viscous flow past a NACA0012 airfoil. The Prandtl number is

fixed at Pr = 0.72 for both cases while the far-field Mach and Reynolds numbers and the angle

of attack are given by:

A1. M∞ = 0.8, Re∞ = 73 and α = 12◦: steady-state viscous flow.

23



NLR-TP-2006-056

Fig. 5 The stability function f for ‖PA‖ = 1.
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A7. M∞ = 0.85, Re∞ = 104 and α = 0◦: time-dependent viscous flow with a shock and vortex

shedding.

The A1 case has become a standard benchmark for discontinuous Galerkin methods for the com-

pressible Navier-Stokes equations as it was treated in the seminal paper by Bassi and Rebay

(Ref. 3).

For laminar viscous flow, the boundary layer at the nose of the airfoil is usually estimated as:

b ≈ 5/
√

Re∞,

which means that b ≈ 0.6 in the A1 case and b ≈ 0.05 in the A7 case. To compute the boundary

layer in the A7 case with reasonable accuracy, we have chosen a C-type grid for viscous flows

with 224 × 76 elements which offers more than 30 elements in the b ≈ 0.05 boundary layer, see

Figure 6. For the A1 case, the boundary layer is much thicker and we can use a coarsened grid

with 112× 38 elements. In both cases, we use linear basis functions.

The space-time method is unconditionally stable in physical time, which allows us to take any

physical time step ∆t and solve the non-linear system using the pseudo-time stepping methods.

For the steady-state case, we take one huge time step ∆t = 1010 and for the unsteady case we

take time steps ∆t = 0.05 which follows from the physical CFL constraint needed to capture

the vortex shedding. Since accuracy is not an issue in pseudo-time we can use local steps (∆τ)K ,

which are determined for each element K as:

(∆τ)K =

min{(∆τ)e
K , (∆τ)

v
K} for EXI and EXV,

(∆τ)e
K for IMEX.

The local inviscid and viscous pseudo-time steps are computed as:

(∆τ)e
K =

σ∆τdK

λe
K

with λe
K = max{|uK | − aK , |uK |+ aK},

(∆τ)v
K =

δ∆τ (dK)2

λv
K

with λv
K = max

{ 1
cv

κK

ρK
,
4
3
µK

ρK

}
,

where σ∆τ is the pseudo-time Courant number, δ∆τ the pseudo-time Von Neumann number

(both from Table 1) and dK the diameter of the circle inscribed in element K. The cell Reynolds

number ReK is defined as:

ReK =
λe

KdK

λv
K

,

and λe represents the maximum of the absolute value of the eigenvalues of the inviscid Jaco-

bian and λv of the viscous Jacobian. Furthermore, uK is the flow speed, aK the speed of sound
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and ρK the density in element K. The specific heat at constant volume cv is constant throughout

the domain but the dynamic viscosity µK and the thermal conductivity coefficient κK depend

on the temperature in element K, see (Ref. 12, 14). Even though the stability analysis was only

done for the advection-diffusion equation on a periodic domain, the resulting stability constraints

proved also adequate for the A1 and A7 case. The local Mach number isolines for both cases are

presented in Figure 7, the convergence results for the A1 case in Figure 8 and for the A7 case in

Figure 9.

In the A1 case, the cell Reynolds number varies between 0.09 and 88 which explains why the

convergence of the EXI method is very slow: one order of convergence in 80 000 pseudo-time it-

erations. If the EXV method is applied for elements with ReK < 1, one order of convergence re-

quires ten times less iterations and seven orders of convergence are reached within 50 000 steps.

In terms of iterations, the IMEX method performs much better: in this case six orders of conver-

gence in 3 000 pseudo-time steps. However, due to the construction and solution of the implicit

system the work load per pseudo-time step is much higher. In an effort to quantify this additional

cost, we define the basic work unit as the work needed to perform one explicit Runge-Kutta step.

For each Runge-Kutta stage, the implicit linear system must be solved which is difficult because

the matrix is neither symmetric nor positive definite. Using the sparse GMRES solver with Ja-

cobi preconditioner available in the PETSc package (Ref. 17), we found that the system is typi-

cally solved in about 80 iterations. This translates to about 25 work units for an implicit-explicit

Runge-Kutta step, based on CPU-time measurements. The IMEX method is still significantly

faster than the EXI but the combination between EXI and EXV is clearly the fastest.

In the A7 case, for each physical-time step, the EXI method achieves three orders of convergence

in 1000 pseudo-time steps, see Figure 9. The physical time-step is already fairly small in or-

der to capture the vortex shedding, which explains the relatively small number of pseudo-time

steps needed to solve the system. In this case, the cell Reynolds number varies between 2.5 and

14 000 and if the EXV method is applied for elements with ReK < 10 the convergence is twice

as fast. The IMEX method requires 200 iterations, which is two and half times faster than the

combined EXI and EXV method. However, at a twenty-five times higher cost per iteration, the

IMEX method is the slowest when expressed in work units.

6 Discussion and conclusions

When applying the space-time discontinuous Galerkin method to the compressible Navier-Stokes

equations one obtains a system of non-linear algebraic equations. To solve this system we pre-
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(a) Overview (b) Airfoil

(c) Nose (d) Tail

Fig. 6 Details of the NACA0012 C-grid with 224× 76 elements.
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Fig. 7 Local Mach numbers for the A1 (top; M∞ = 0.8, Re∞ = 73, α = 12◦) and A7 (bottom;

M∞ = 0.85, Re∞ = 104, α = 0◦) test cases. In the A7 case, snapshot at t = 10.
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Fig. 8 Convergence to steady state for the A1 case (M∞ = 0.8, Re∞ = 73, α = 12◦) on the

112× 38 grid in terms of iterations (top) and work units (bottom).
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Fig. 9 Convergence in pseudo-time for three physical time steps in the A7 case (M∞ = 0.85,

Re∞ = 104, α = 0◦) on the 224 × 76 grid, expressed in terms of iterations (top) and work

units (bottom).
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sented two pseudo-time stepping methods: the combined EXI and EXV method and the IMEX

method.

The EXI and EXV method both treat the inviscid and viscous terms explicitly. We showed that

these algorithms are stable if either the pseudo-time CFL or the Von Neumann condition is sat-

isfied, depending on the cell Reynolds number. In the inviscid flow regime, the cell Reynolds

numbers are high and the CFL condition is the most restrictive, while in the viscous flow regime

low cell Reynolds numbers occur so that the Von Neumann condition is most restrictive. We also

considered the implicit-explicit version of the EXI method where the viscous terms are treated

implicitly and the inviscid terms explicitly. We showed that the stability of the IMEX method

only depends on the inviscid part, thereby effectively relieving us of the Von Neumann condi-

tion. The price to pay for this advantage is the construction and solution of a global sparse linear

system. The question whether the advantage of not having to satisfy the Von Neumann condi-

tion outweighs this disadvantage was answered for two numerical experiments where both the

viscous and inviscid flow regime occur in the same simulation, albeit in different proportions.

We compared the performance of the different Runge-Kutta methods and arrive at the following

guidelines for aerodynamical simulations:

1. The best option is to use the EXI in the inviscid part of the flow domain together with the

EXV in the viscous part. With local pseudo-time stepping, the cell Reynolds number deter-

mines which scheme to use in which cell, based on the given stability constraints.

2. The IMEX method is very well suited for both the inviscid part and the viscous part when

expressed in terms of iterations. However, the work load per iteration is such that this

method only gives significant gain in terms of work load for fairly viscous flows, this gain

still being less than the one obtained with the combined explicit methods.

We showed that pseudo-time stepping with local explicit methods efficiently solves the system

of non-linear algebraic equations. It is not necessary to give up locality for improved stability as

was done with the implicit-explicit method. In our future work, we will focus on further reducing

the computational effort by applying the combined explicit methods as a smoother in a multigrid

algorithm.
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Appendix A Details of EXV method

In (Ref. 13) a family of Runge-Kutta schemes for efficient time-marching of viscous flow prob-

lems is presented. We used a member of this family, the EXV method, for local pseudo-time

stepping in flow regions with low cell Reynolds numbers. In this appendix, we summarize the

derivation of the entire family.

Consider the following N stage Runge-Kutta scheme:

1. Initialize v̂0 = û.

2. For all stages s = 1 to N compute v̂s as:

v̂s = v̂0 − αsλL(v̂s−1; ûn−1).

3. Return û = v̂N .

When applied to the simple model problem:

∂u

∂τ
= − µ

∆t
u,

the stages s are updated according to: vs = v0−αsλµ v
s−1 and therefore the amplification factor

G is of the form:

GN (z) = 1 + αNz + αNαN−1z
2 + · · ·+ αN · · ·α1z

N , (12)

with z = −λµ ∈ C. The family of Runge-Kutta schemes proposed in (Ref. 13) can be derived

by chosing the coefficients αs in such a way that the amplification factor equals Manteuffel’s

transformation of Tchebyshev polynomials:

GN (z) =
TN

(
(d− z)/ε

)
TN (d/ε)

,

where TN denotes the N -th Tchebyshev polynomial defined recursively as:

Tn+1(z) = 2zTn(z)− Tn−1, n ∈ N,

with T0(z) = 1 and T1(z) = z. Here, the parameter d defines the family of N stage Runge-Kutta

schemes and the parameter ε is chosen such that:

GN (0) = 1 and
dGN

dz

∣∣∣∣
z=0

= 1,

which ensures that the stability region touches the imaginary axis and is symmetric w.r.t. the real

axis. The parameter d controls the scaling of the stability region.
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The family member used in this paper is the 4-stage Runge-Kutta scheme with d = −14. For this

scheme, we use the fourth order Tchebyshev polynomial: T4(z) = 8z4 − 8z2 + 1 and obtain the

following stability region:

G4(z) = 1 +
16ε2d− 32d3

D
z +

48d2 − 8ε2

D
z2 − 32d

D
z3 +

8
D
z4, (13)

with D = 8d4−8d2ε2 + ε4. The coefficients αs can now be computed by equating (13) with (12)

which gives:

α1 = − 1
4d
, α2 =

4d
ε2 − 6d2

, α3 =
6d2 − ε2

2d(ε2 − 2d2)
, α4 =

16d(ε2 − 2d2)
D

.

The condition G4(0) = 1 is already satisfied and the condition on the derivative of G becomes:

16ε2d− 32d3

D
= 1,

which has four solutions for ε from which we choose the following:

ε =
√

4d(d+ 2)− 2
√

16d2 + 8d3 + 2d4.

In the same way, we can derive the other members of the family. Note, however, that only even

N produces consistent schemes.
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