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Problem area 
Corrosion-induced embrittlement of 
ancient silver is a complex 
phenomenon that can cause severe 
cracking and fragmentation of 
valuable objects. This damage may 
require irreversible methods of 
restoration and conservation. 
Detailed case studies to characterize 
the embrittlement are important for 
selecting the optimum methods to 
ensure conservation with a 
minimum of intervention. 
 
 
 
 
 
 
 
 

Description 
This report has two parts. The first 
describes the types of corrosion-
induced embrittlement in ancient 
silver, especially in the light of 
more recent evidence that some 
types may be due to stress corrosion 
cracking (SCC). The second part 
proposes and discusses ways to 
restore and conserve cracked and 
severely embrittled ancient silver 
objects.  
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Summary 

Corrosion-induced embrittlement of ancient silver is a complex phenomenon that can cause 
severe cracking and fragmentation of valuable objects. This damage may require irreversible 
methods of restoration and conservation. Detailed case studies to characterize the embrittlement 
are important for selecting the optimum methods to ensure conservation with a minimum of 
intervention. This paper describes the types of corrosion-induced embrittlement observed in a 
wide variety of ancient silver artefacts and discusses the remedial measures that are or could be 
used.  
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CORROSION-INDUCED EMBRITTLEMENT OF ANCIENT SILVER 
 
R.J.H. Wanhill1 and J.P. Northover2 
 
 
Abstract 
 
Corrosion-induced embrittlement of ancient silver is a complex phenomenon that can cause severe 
cracking and fragmentation of valuable objects. This damage may require irreversible methods of 
restoration and conservation. Detailed case studies to characterize the embrittlement are important for 
selecting the optimum methods to ensure conservation with a minimum of intervention. This paper 
describes the types of corrosion-induced embrittlement observed in a wide variety of ancient silver 
artefacts and discusses the remedial measures that are or could be used.  
 
Keywords: silver embrittlement, corrosion, stress corrosion, restoration, conservation 
 
 
1 Introduction 
 
Ancient silver artefacts and coins can be susceptible to microstructurally-induced and corrosion-induced 
embrittlement [1-14]. Microstructurally-induced embrittlement is much less common and is 
characterized solely by intergranular fracture with bodily displaced grains [1, 8-12]. In contrast, 
corrosion-induced embrittlement takes several forms [8-14]. 
 
This paper has two parts. The first part describes the types of corrosion-induced embrittlement, 
especially in the light of more recent evidence that some types may be due to stress corrosion cracking 
(SCC). Thorough characterization of embrittlement is important for determining the best ways to restore 
and conserve ancient silver objects. These aspects are discussed in the second part.  
 
2 Types of corrosion-induced embrittlement 
 
2.1 General corrosion: figure 1 

 
In high silver content alloys general corrosion is slow conversion of the original metal surfaces or 
fracture surfaces to silver chloride [4, 13-16]. The silver chloride forms a brittle, finely granular layer, 
see figure 1, but does not affect the remaining metal’s integrity. On the other hand, unfavourable 
environmental conditions and longevity of interment may result in an object being completely converted 
to silver chloride, sometimes retaining its shape, sometimes not [4, 15]. 

 
2.2 Intergranular or interdendritic corrosion: figures 2-6 

 
Intergranular corrosion is the most common type since it occurs in mechanically worked and annealed 
ancient objects, which constitute the majority of recovered artefacts. This type of corrosion has been 
attributed partly to low-temperature segregation of copper [2, 3, 6, 13, 14], which is commonly present 
in ancient silver. In particular, so-called discontinuous precipitation of copper has been suggested to be 
very detrimental [2]. This precipitation sometimes causes the grain boundaries to appear meandering. 
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However, intergranular corrosion need not occur along the meandering grain boundaries, while it does 
occur along boundaries with  no evidence of  discontinuous  precipitation  [12-14].   Another important 
factor is residual (retained) cold-work, which can increase the susceptibility to both intergranular and 
transgranular corrosion [8, 12]. Examples to illustrate all these points are given in figures 2-5. 
 
Interdendritic corrosion can occur in castings, which are uncommon, especially in the Old World. An 
example from pre-Inca Peru is shown in figure 6. 
 
2.3 Transgranular corrosion: figures 7 and 8 
 
Corrosion along slip lines and deformation twin boundaries can occur in objects that have not been 
annealed after (final) mechanical working, which includes striking coins [1] and decorating by chasing 
and stamping [8, 12]. Inside the metal these types of corrosion can lead to additional corrosion along 
segregation bands. These are the much-modified remains of high-temperature solute element 
segregation (coring) and interdendritic segregation that occurred during solidification of an ingot or 
cupelled button. Examples to illustrate these types of corrosion are given in figures 7 and 8. 
 
2.4 Evidence for transgranular SCC: figure 9 
 
Stress-assisted corrosion-induced embrittlement of ancient silver was previously reported [8, 17], 
without explicitly implicating SCC. In both cases the embrittlement was attributed to residual cold-
work, which resulted in transgranular cracking.  
 
Figure 9 illustrates (a) slip line corrosion, (b) cracking, and (c) the resulting crystallographic fracture 
observed for an Egyptian silver vase [8, 9]. The vase was also microstructurally-embrittled, which 
enabled the observation of transgranular cracking superimposed on intergranular fracture, as in figures 
9a and 9b.  
 
Models linking slip line corrosion to transgranular SCC have been proposed for alloys with the same 
face centred cubic (fcc) crystal structure as silver [18-23]. These models consider two stages of 
cracking: 
 
(1) Corrosion along slip lines and slip plane dissolution. Several classes of fcc alloys undergo 
 corrosion along slip lines [21, 22, 24]. Corrosion begins as pitting attack of the highly strained 
 crystal lattice at the cores of surface-connected dislocations. The pits develop into slots that can 
 eventually merge to result in slip plane dissolution and cracking. Since the slip planes are {111} 
 in fcc metals, these initial cracks are on {111} planes. 
 
(2) Transgranular SCC. In this stage the cracking diversifies in the choice of average crystallographic 

fracture planes and the fracture topography. The average fracture planes are usually {110} in 
copper alloys [18-20] and {100} in austenitic stainless steels [21], although average {110} 
cracking also occurs in these steels [22]. In detail the fracture topographies reveal microfaceting. 
Copper alloy fracture surfaces show {110} microfacets [19], and the stainless steel fracture 
surfaces consist partly or even entirely of {111} microfacets [21, 22].  

 
The models are “corrosion-assisted cleavage” [18-20]; its successor, “strain-enhanced dissolution” [23]; 
and “corrosion-enhanced plasticity” [21, 22]. A detailed discussion of the models and their applicability 
to ancient silver has been given previously [9]. Since the corrosion-assisted cleavage model was 
abandoned [23] and the corrosion-enhanced plasticity model requires hydrogen generation – which does 
not occur when silver corrodes [25] – only the strain-enhanced dissolution model remains to try and 
explain the features shown in figure 9. 
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A schematic of the strain-enhanced dissolution model is given in figure 10. The proposed (and here 
abbreviated) sequence of events is: 
 
(a) Dislocation pile-up at an obstacle on a slip plane. 
 
(b, c) Crack initiation and growth by slip plane dissolution, enhanced by the strain associated with the 
 local normal stress, σn1. The slip plane dissolution continues as long as σn1 exceeds the local 
 normal stress, σn2, on alternative crystallographic planes. 
 
(d) Crack growth by strain-enhanced directed dissolution on an alternative plane whose local 
 normal stress, σn2, exceeds σn1 but is not high enough to blunt the crack tip by dislocation 
 emission. 
 
By proposing that the fracture planes do not always have to be the slip planes (as found for copper alloys 
and austenitic stainless steels [18-22]), this model also provides an explanation for the transgranular 
fracture features in figures 9b and 9c. Figure 9b shows a 90º “dog-leg” crack which cannot be on a 
{111} plane, but must be on either a {110} or {112} plane. Figure 9c shows similar “dog-legs” that 
result in high-angle steps on slip plane fracture surfaces. There is no evidence of microfaceting similar 
to that observed for copper alloys [19] and stainless steels [21, 22], but this was variable anyway, see (2) 
above. 
 
The strain-enhanced dissolution model also has a more general implication. It reduces the distinction 
between corrosion along slip lines, slip plane dissolution and transgranular SCC. In other words, these 
phenomena are seen to have a common cause, namely the enhancement of corrosion by local strains in 
the crystal structure. 
 
2.5 Evidence for intergranular SCC: figures 2 and 11 
 
Intergranular SCC is a widespread phenomenon in metals and alloys [24, 26], though generally confined 
to high strength materials. Several mechanisms have been proposed, but there is no overall consensus, 
even for a particular class of alloys. However, a common feature of intergranular SCC is the relatively 
clean-looking grain boundary facets. Here this feature is used by analogy to suggest that intergranular 
SCC can occur in ancient silver. 
 
Figures 2 and 11 give examples of corrosion-induced intergranular fracture. Figure 11a is a detail of 
figure 2b, and figure 11b is a fractograph of intergranular corrosion and SCC in an aluminium-lithium 
alloy [27].  
 
Figure 11a shows a transition caused by general corrosion destroying the corrosion-induced 
intergranular fracture in a silver kaptorga [13]. The intergranular fracture is very clean-looking, with 
only isolated pits. Figure 11b shows a transition from intergranular corrosion with corroded (pitted) 
facets to intergranular SCC with facets hardly attacked by pitting [27]. Other fractographs showed more 
pitting attack, which mainly affected the intergranular corrosion areas [27]. 
 
Although the fracture surfaces and transitions in figures 11a and 11b are not identical in appearance, the 
overall similarity suggests that the corrosion-induced intergranular fracture in figure 11a could be SCC. 
However, in this case the source of the necessary stresses and strains would be external forces due to 
interment rather than residual cold-work, since the kaptorga had a recrystallized microstructure with 
large annealed grains [13]. 
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3 Restoration and conservation 
 
Modern restoration and conservation must consider both technical and ethical aspects. This means that 
preference is given to reversible remedial measures that respect an object’s integrity. However, 
reversibility is not always practicable [4, 6, 7]. This is especially the case for severely embrittled and 
fragmented ancient silver objects, for which non-reversible consolidation is essential [4, 28].  
 
The remedial measures for corrosion-embrittled ancient silver objects depend on their condition [9, 12, 
29]: 
 
(1) In general, nominally intact (but cracked) or previously restored objects may be cleaned, 
 outgassed to dry crack surfaces and any entrapped corrosion products, and given a removable 
 transparent organic coating. Even so, the choice of cleaning methods and coatings requires 
 careful consideration [4, 30].  
 Traditional cleaning methods restore the surface finish by light polishing, cleaning and 
 rinsing in demineralised water and alcohol, and allowing the object to dry, preferably in a low-
 humidity environment, e.g. in a desiccator. 
 A recently developed cleaning method is hydrogen plasma reduction [31]. This requires no 
 more than an hour, at temperatures of 40-100 ºC, which minimises or avoids significant 
 alterations to an object’s microstructure. The hydrogen plasma reduces surface corrosion 
 products to metallic silver, but it is not suitable for thick corrosion layers [28, 31]. 
 
(2) If the embrittlement is severe it may be necessary to consolidate the object, especially if it is 

fragmented. Customarily this is done using impregnation or soaking in lacquers or resins [28] 
and joining cleaned fragments with adhesives and adhesive-impregnated backing cloths [7]. 
These treatments are irreversible. 

 An additional dimension is added if the fragments are covered in corrosion products and/or 
deformed, in which case it may be necessary to heat-treat them before consolidation [6, 7, 29]. 
Again, this is irreversible, and not without risk of further damage. 

 
A possible alternative to consolidation using lacquer or resins is cleaning followed by the use of 
Parylene coatings. For example, an object could be cleaned in hydrogen plasma, which would penetrate 
surface-connected cracks as well as clean the surface. In this respect, the relatively clean-looking 
intergranular fracture exemplified by the kaptorga, figure 11a, suggests that many intergranular cracks 
would be clean after a short time. Following cleaning, the object could undergo a Parylene coating 
procedure.  
 
Parylene coatings have special properties and advantages, since they are applied in the vapour phase in a 
reduced-pressure environment [32]. They have controllable thickness, high crevice or crack penetration, 
and are pinhole-free. Also, most moisture would be removed by the reduced-pressure environment (13.3 
Pa, 0.1 Torr) in the coating chamber. Another potential advantage is the possibility of “tailoring” the 
coating thickness to fill cracks, thereby providing adhesion between the fracture surfaces and improving 
the consolidation. 
 
Disadvantages of using Parylene coatings are that they are not removable below 150-175 ºC, i.e. they 
would be effectively irreversible treatments for ancient silver, and they require special equipment. 
However, this equipment need not be purchased and can be employed for small coating runs. 
 
In view of the fact that the Canadian Conservation Institute in Ottawa is already conserving brittle and 
fragile objects by using Parylene coatings, it seems very worthwhile to investigate their use for the 
conservation of severely embrittled ancient silver. 
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4 Concluding remarks 
 
Ancient silver can be susceptible to several types of corrosion-induced embrittlement. Examples have 
been given for several artefacts with widely different provenance: an Egyptian vase, a kaptorga from the 
Czech Republic, a Byzantine paten, a Sassanian repoussé head, the Gundestrup Cauldron, and a Sican 
tumi. There is evidence that some of this embrittlement could be due to stress corrosion cracking.  
 
The damage can be so severe that irreversible restoration and conservation methods must be used. The 
technical and ethical aspects of these methods must be carefully considered, aiming for a minimum of 
intervention. In this respect detailed case studies [1, 5, 8, 12-14] to characterize embrittlement are most 
useful.  
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Fig. 1 SEM fractograph of general (surface) corrosion overlying intergranular fracture in an 
 Egyptian vase [8]: see figure 2b also

Fig. 2 Optical metallograph (a) and SEM fractograph (b) of corrosion-induced intergranular 
 fracture in a kaptorga (container for relicts or amulets) [13]. There was no discontinuous
 precipitation at grain boundaries. Note the general (surface) corrosion in the fractograph,
 cf. figure 1
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Fig. 3 SEM metallograph of corrosion-induced intergranular fracture in a Byzantine paten
 (altar plate) [12]. There was extensive discontinuous precipitation of copper at grain 
 boundaries, not visible at this magnification

Fig. 4 Optical metallograph of corrosion-induced intergranular fracture in a Sassanian repoussé
 head [2]. Note the association of cracking with discontinuous precipitation of copper at
 some grain boundaries
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Fig. 5 Electron Backscatter Diffraction IPF (Inverse Pole Figure) colour-coded maps of 
 (a) annealed and (b) heavily cold-worked samples from the Gundestrup cauldron [12].
 The annealed sample was uncorroded despite extensive discontinuous precipitation of 
 copper (delineated by the black dots) at grain boundaries. The cold-worked sample had
 no discontinuous precipitation of copper at grain boundaries but there was extensive 
 corrosion-induced intergranular and transgranular fracture (the internal black-dotted 
 areas)
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Fig. 6 SEM metallograph of interdendritic corrosion penetrating into a virtually as-cast sample
 from a Sican tumi (ceremonial knife) [16]

Fig. 7 SEM metallograph of corrosion along slip lines, deformation twins and segregation bands
 in an Egyptian vase [8, 12]. The diamond-shaped shadow is due to a microhardness 
 indentation that rendered the corrosion more visible
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Fig. 8 SEM fractograph of corrosion along slip planes and deformation twins in an Egyptian 
 vase [8, 12]. General corrosion has attacked and partly destroyed the left-hand fracture 
 surface

Fig. 9 SEM fractographs of (a) slip line corrosion, (b) slip plane dissolution and cracking and 
 (c) crystallographic fracture topography in an Egyptian vase [9]
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Fig. 10 The “strain-enhanced dissolution” model of transgranular SCC [23]

Fig. 11 SEM fractographs of (a) corrosion-induced intergranular fracture and general corrosion
 in a silver kaptorga (detail of figure 2) and (b) the boundary between SCC and 
 intergranular corrosion in an aluminium-lithium alloy [27]
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