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Summary

A numerical method has been developed for predicting the complex vortex-wake for a
helicopter rotor in hover and in forward flight. The method is based on the solution of the three-
dimensional, compressible Euler equations expressed in an Arbitrary Lagrangian Eulerian
(ALE) reference frame. A second-order accurate discontinuous Galerkin (DG) finite-element
method is used to discretize the governing equations on a hexahedral mesh. Unstructured, local
mesh refinement is performed to enable prediction of the structure of the vortex-wake. The
capabilities of this CFD method are demonstrated by simulations of the flow around the
Caradonna-Tung helicopter rotor in hover and simulations of the flow around the Operational
Loads Survey helicopter rotor in forward flight. Accuracy of the method is assessed through
comparison with wind tunnel data, if available. Special attention is given to a rotor trimming
procedure developed at NLR, and the grid adaptation algorithm.
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1 Introduction

It is well known that the prediction of the aerodynamic performance of a helicopter in hover or
forward flight is dependent on one's ability to accurately predict its complex vortex-wake. To
assess the impact of improved airfoil designs, novel blade twist and blade planform on rotor
performance, it is essential to consider a tool that can accurately predict the rotor wake system.
In the following sections, the advantages and limitations of the available rotor flow prediction
methods are summarized, with special attention to wake predictions.

1.1 Rotor flow prediction methods
The presently available solution techniques for predicting the unsteady aerodynamic response of
helicopter rotors can be classified in two categories:
(i) vortex based methods, with a rigidly prescribed wake geometry  or with a free wake

geometry, and
(ii) Euler/Navier-Stokes methods.
Vortex based methods have more severe limitations than the more comprehensive Euler/Navier-
Stokes methods. The deficiencies of vortex based methods are related to the additional unknown
parameters (e.g., core size parameters), which have a direct influence on the position and/or
motion of the vortex.
In recent years, more comprehensive models that are based on the solution of the Euler and the
Navier-Stokes equations3-6,13-17,19-22,24-27,32-34 were developed. The prime objective was to develop
solution methods that had minimum reliance on user input while providing the necessary
accuracy. In principle, though these formulations are sufficient for capturing the details of the
vortical flow field, excessive numerical diffusion, especially in regions far from the blade, limit
their application. To minimize numerical diffusion, researchers embarked on adopting one, or
more, strategies. Namely, the use of higher-order numerical schemes17, the use of overset (or
Chimera) grid systems to resolve the details of the  wake away from the blade17,27, and the use
of adaptive gridding schemes that are natural for unstructured grid flow solvers3,4,13,14. Among
these three strategies, wake capturing through adaptation of an unstructured grid proved to be
the most promising - typically, not requiring excessively large grids as with structured grid flow
solvers.

1.2 State-of-the-art flow solvers for helicopter rotors in forward flight
In Tab. 3 an overview is given of the present state-of-the-art flow solvers for the simulation of
helicopter rotors in forward flight. The discontinuous Galerkin finite element flow solver
discussed in this report is the only flow solver based on the boundary conforming ALE
approach. The other codes apply the Chimera or overset approach where sets of partially
overlapping grids are used to cover the computational domain. At the grid overlaps flow
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interpolation is required, resulting not only in loss of the conservative property, but also
increasing the computational costs significantly. Loss of the conservative property is a major
concern for the accuracy of the flow solver, and may result in dissipation of vorticity. Ochi20

and Pahlke22 report that on parallel vector machines 20 % of the computing time is spent in the
flow data exchange between the different grids. Moreover, the use of overlapping grids involves
a large amount of communication, which reduces the scalability of the Chimera or overset
approach. Correlating the accuracy of the methods and the required flop count shows that the
simulation of a rotor in forward flight is a petaflop problem for state-of-the-art algorithms.
Hence acceptable turn-around times can only be accomplished on massively parallel computers
or by applying newly developed, more efficient algorithms.

1.3 Outline of report
In this report the unique features and the accuracy of a new unstructured flow solver for
capturing the wake of helicopter rotors are demonstrated.
First, the features of the discontinuous Galerkin (DG) finite element method are outlined. Next,
the rotor trimming procedure for helicopter rotors in forward flight as employed at NLR will be
presented. Also a section will be dedicated to the grid adaptation strategy used in the described
simulations. Following these discussions, the simulation capabilities of the present CFD
method for rotorcraft flows are demonstrated using the results of simulations of
•  the flow around the Caradonna-Tung helicopter rotor in hover, and
•  the flow around the Operational Loads Survey helicopter rotor in forward flight.
The results of these simulations will be compared with experimental data, if available. A

summary and conclusions complete the report.

2 CFD algorithm

2.1 Discontinuous Galerkin method
The flow solver is based on a discontinuous Galerkin finite element discretization of the
unsteady compressible Euler equations10,11,28.
Discontinuous Galerkin finite element methods use a discontinuous function space to
approximate the exact solution of the Euler equations. The discontinuous Galerkin finite
element method is a mixture of a finite element and an upwind finite volume method. The flow
domain is discretized into a large number of hexahedral elements. The polynomial  expansions
of the flow field variables are purely element-based and there will be, in general, a discontinuity
in the flow field variables across element faces, with as magnitude the truncation error in the
polynomial representation. This discontinuity at element faces is interpreted as a  one-
dimensional Riemann problem, which is used to obtain a unique definition of element face
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fluxes. The use of a Riemann problem in the flux calculations has a significant effect in that it
introduces upwinding into the finite element discretization. A short introduction to these DG
methods is provided in the lecture notes of a NATO special course on Higher Order
Discretization Methods in CFD10.

2.2 Unique features
A unique feature of the present second-order accurate discontinuous Galerkin finite element
method is that equations are solved not only for the traditional five mean flow field variables,
but also for their spatial gradients. This results in a very compact scheme, because it is not
necessary to reconstruct the flow field gradients, necessary to achieve second-order accuracy,
using data in neighboring elements. The present finite element method has shock capturing
capabilities and is easy to parallelize since there is limited communication between neighboring
elements. The local character of the present finite element method is also beneficial for grid
adaptation, which is carried out using anisotropic grid refinement.
The DG finite element method has an inherent ability to handle adaptivity strategies since the
refining and de-refining of the grid is done without taking into account the continuity
restrictions of conventional CFD methods12,28-30. At this point it should be remarked that in the
present research h-refinement is utilized to construct an isotropic grid from an anisotropic,
initial grid. The anisotropy (elements having large aspect ratios) of the initial grid is often a
concomitant feature of efficient, boundary conforming structured grids.
Dynamic motions of multiple moving bodies are simulated using a single, deforming, boundary
conforming mesh. The Euler equations on such a mesh are discretized simultaneously in space
and time, leading to an Arbitrary Lagrangian Eulerian (ALE) formulation, which incorporates
the grid velocities in the flux formulation. Consequently, a conservative scheme that has the
same accuracy as the standard DG method for a rigid mesh is obtained. In addition to the
governing equations used to evaluate the flow field gradients in space, equations are also solved
for the flow field temporal gradients. A clear advantage of this solution method is manifest in its
ability to use non-uniform time steps without sacrificing temporal accuracy. For unsteady rotor
computations (e.g., for a rotor in forward flight), this feature can be used to reduce the overall
required CPU time (number of azimuthal steps) for the computation of a rotor revolution. This
efficiency, of course, is achieved at the expense of increased memory requirement due to the
additional equations being solved for the temporal derivatives of the flow field variables. The
equations are solved implicitly by introducing a pseudo-time and marching the solution to a
steady state using a standard FAS multigrid scheme. In this way, the ALE method using a single
deforming mesh retains the excellent parallelizability properties of the explicit DG method on
rigid meshes.
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3 Rotor trimming

A fair comparison between experimental data and numerical simulations can only be obtained if
for both cases the helicopter rotor is operating at the same thrust coefficient. Since the
experimental thrust coefficient is fixed, the thrust coefficient obtained during the simulations
has to be adjusted in such a way that it matches the experimental one. This adjustment or
trimming procedure means that the pitch, flap and lead-lag schedule are modified in such a way
that the thrust coefficient equals the desired value and both rotor plane moment coefficients are
zero.
For a helicopter rotor the pitch schedule is given by

ψθψθθθ sincos 110 sc ++=

where ψ is the azimuth angle. Note that during the simulation of the Operational Loads Survey
helicopter rotor in forward light the flap schedule has not been modified and no lead-lag
schedule has been used.
The revolution-averaged thrust coefficient CT and rotor plane moment coefficients CMx and CMy

then depend on the collective pitch angle θ0, the cosine-dependent pitch angle θ1c and the sine-
dependent pitch angle θ1s.
The revolution-averaged thrust coefficient CT mainly depends on the collective pitch angle θ0,
the revolution-averaged moment coefficient around the y-axis mainly depends on the cosine-
dependent pitch angle θ1c and the revolution-averaged moment coefficient around the x-axis
mainly depends on the sine-dependent pitch angle θ1s. Note that the x-axis points from the rotor
to the tail-rotor, and that the y-axis points right looking from the tail-rotor to the rotor (pilot's
view). The effect of adjusting the rotor collective and cyclic pitch on the thrust coefficient and
rotor plane moment coefficients follows from taking the linear term of the Taylor-expansion of
these equations, i.e.,
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Here ∆θ0, ∆θ1c and ∆θ1s indicate the small changes in the collective, cosine-dependent and the
sine-dependent cyclic pitch, respectively. The coefficients in the matrix are the sensitivities of
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the thrust coefficient and rotor plane moment coefficients to changes in the collective and cyclic
pitch, with the diagonal terms being the dominant ones.
Since trim simulations are computationally intensive for Euler/Navier-Stokes-based methods, a
lifting line vortex method (CAMRAD/JA18) has been used as a first estimate to calculate the
sensitivities. The lifting line vortex method, however, only supplies the sensitivities of the thrust
coefficient. To obtain the complete sensitivity matrix enabling the proper trimming of the
helicopter rotor, three additional simulations with small variations (order one degree) of either
the collective pitch, the cosine-dependent cyclic pitch or the sine-dependent cyclic pitch are
performed with the Euler-based DG method. These simulations start from a periodic solution
and are continued until the new solution also is periodic. For the simulation of the OLS
helicopter rotor in forward flight, the simulations consisted of one revolution due to the small
transient (only a quarter of a revolution). The second half of this revolution has been used to
obtain the forces needed for the sensitivity calculation.

4 Grid adaptation

The general idea behind grid adaptation is that to minimize the numerical diffusion of the
vorticity and the numerical dissipation in a vortex, the grid within the vortex should be as
isotropic, as uniform and as refined as possible.
The grid adaptation algorithm consists of the following parts:
(i) the grid adaptation sensor. Basically, two types of sensors are available: (1) sensors that

measure differences of flow quantities across element faces, and (2) sensors that
measure the magnitude of a flow variable in an element. An example of the first sensor
type is the standard shock sensor, which measures flow ‘gradients’ (actually
differences) of the five conserved variables and the total pressure loss across element
faces. An example of the second sensor type is the vortex sensor based on, for example,
the vorticity magnitude. In addition to these sensors one can also use a grid quality
sensor, i.e., a sensor that measures the jump in the mesh width in the direction normal to
the element face, an anisotropy sensor, i.e., a sensor that measures the anisotropy
(aspect ratios) of an element, and, a uniformity sensor, i.e., a sensor that measures the
mesh width in each coordinate direction.

(ii) the grid adaptation type. The two basic types of grid adaptation are isotropic and
anisotropic grid adaptation. If a sensor contains directional information (such as the
shock sensor), anisotropic grid adaptation is used. The element is adapted in the
direction associated with the gradient. If a sensor contains no directional information,
isotropic refinement is used.
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(iii) the grid adaptation control. The adaptation control determines for example the
adaptation frequency and the percentage of elements that will be removed or refined.

For the helicopter rotor in hover simulations discussed in the next section the vortex sensor
based on the vorticity magnitude (|ω|) is used, combined with a uniformity sensor, resulting in
uniform meshes of specified widths (typically 0.005 rotor diameters, i.e., 2.5 times the required
width reported by Caradonna9) in the vortex. The grid adaptation sensor used in the forward
flight simulation was a combination of the vortex sensor based on the vorticity magnitude with
the anisotropy sensor or the uniformity sensor, resulting once more in uniform meshes of
specified width (typically 0.005 rotor diameters) in the vortex.
With respect to the adaptation frequency for time-accurate, time-periodic simulations, such as
the simulation of a helicopter rotor in forward flight, two options exist: (i) simply adapt the grid
at each implicit time step or, (ii) integrate the grid adaptation sensor over a complete period
(e.g., corresponding to a user-specified azimuthal travel) and adapt the mesh based on this
integrated sensor after the completion of the period. Both strategies have advantages and
disadvantages. The first strategy is more efficient in terms of number of elements, since
elements are both created and removed at each implicit time step. Moreover, with the grid being
adapted during the period, faster convergence to a periodic flow solution is achieved. However,
since grid adaptation results in a dynamic load-balancing problem, for which currently no
scalable algorithms are known, the parallel efficiency of the flow solver will deteriorate. The
second strategy resembles the classical adaptation strategy used in steady state problems. This
method retains the parallel efficiency of the flow solver, but since the same adapted grid is used
for all time steps the number of elements is larger than in the first strategy. A compromise
between the two grid adaptation strategies is the following. At each implicit, time step the mesh
is only ‘refined’ based on the instantaneous grid adaptation sensor and adaptation type.
However, no elements are removed as is done in the first strategy. This effectively integrates the
sensor in time, and allows for faster convergence to the periodic flow solution. For the
simulation of the helicopter rotor in forward flight presented in the next section this compromise
has been used.
Both adaptation strategies have their disadvantages. Either the number of elements is needlessly
high, or a dynamic load-balancing problem is introduced. A new algorithm that does not suffer
from these problems is presented in van der Ven31.
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5 Rotorcraft simulations

5.1 Caradonna-Tung helicopter rotor in hover
The standard Caradonna-Tung experiment has been conducted at NASA Ames and consists of a
helicopter rotor in hover employing two cantilever-mounted, manually adjustable blades8. At
five radial stations, viz. r/R=0.50, 0.68, 0.80, 0.89 and 0.96, pressure transducers were located.
The experiments were performed for collective settings of 0, 2, 5, 8 and 12 degrees, and angular
velocities ranging from 650 to 2450 rpm.
The flow field around the Caradonna-Tung helicopter rotor using a collective pitch setting of 12
degrees and a tip Mach number of 0.61 has been simulated using the discontinuous Galerkin
finite element method.
The mutli-block grid generated at NLR of one half of the computational domain consists of 55
blocks, with a total of 726,784 elements. Simulations have been performed on this so-called
‘fine grid’. In addition simulations have been performed on a one time coarser grid consisting of
90,848 elements (‘medium grid’) with grid adaptation. After grid adaptation using the vortex
sensor based on the vorticity in combination with the uniformity sensor, the ‘medium grid’
contains 135,280 elements. The grid in the vortex was adapted to a uniform mesh width equal to
0.1c.
In Fig. 1 the surface pressure distribution at the three radial stations are compared with the
experimental data8. The agreement between the simulations and the experimental data is
generally good. The pressure peak at the lower side of the rotor blade is resolved better on the
‘fine grid’. The results coincide very well with the experimental data at the lower side.
Fig. 2 shows the sectional thrust for the ‘medium grid’ with adaptation, the ‘fine grid’ and the
experiment8. Both simulations show higher-than-measured thrust levels. The sectional thrust
obtained on the ‘fine grid’ is higher than the one obtained on the ‘medium grid’ with adaptation,
except for a small region near the rotor tip.
Fig. 3 shows the vorticity contours at the 140 degrees azimuth location behind the blade for the
‘medium grid’ with grid adaptation and the ‘fine grid’. From these results it can be seen that
grid adaptation improves the vortex signature in terms of vorticity. Comparing these results with
those presented by Raddatz23 shows that the discontinuous Galerkin finite element method is
able to carry vorticity over a longer distance and thus provides a clearer vortex signature.
It should, however, be noted that the ‘medium grid’ with grid adaptation consists of 135,280
elements with 20 degrees of freedom per element, resulting in a total of 2,705,600 degrees of
freedom, which is almost twice as much as the 1,433,600 degrees of freedom reported by
Raddatz23.
The local behavior of the grid adaptation is presented in Fig. 4. Here, rotor blade 1, the periodic
plane at z=0 and the plane at x=-3.6 are shown. Clearly visible are the places where the vortex
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intersects these planes. At those positions one can see that the grid has been adapted to obtain a
grid as isotropic and as uniform as possible in the vortex.
Fig. 5 shows iso-contours of the vorticity for the  simulations on the ‘fine grid’. From this figure
it is clear that the discontinuous Galerkin finite element method is able to capture the tip vortex
over a distance of at least one-and-a-half revolution, provided the multi-grid iterations are
continued until all the residuals of the 20 non-linear algebraic equations per element are
sufficiently converged. For the present simulations a convergence of three orders was deemed
sufficient. Note that the distance of one-and-a-half revolution equals the required distance for
accurate blade-vortex interaction predictions. The convergence tolerance for the accurate
capture of trailing vortices is, however, significantly tighter than the equivalent convergence
tolerance needed to capture transonic shock waves.
Finally, Fig. 6 gives a quantitative comparison between the predicted and the experimental
measured vortex trajectory up to an azimuth angle of 540 degrees, i.e., one-and-a-half
revolution behind the rotor blade. The agreement between the measured and the computed
vertical position is good, except for the region close to the blade. The predicted radial
contraction of the tip vortex shows reasonable agreement with the experimental data. The
agreement between the simulation on the ‘medium grid’ with adaptation and the ‘fine grid’ is
generally good.
The presented results, i.e. the surface pressure distributions, the sectional thrust and the vortex
trajectories, are similar to the ones reported in Ahmad1, where the grid dependency of the rotor
wake was studied for the case having a collective pitch setting of 8 degrees and a tip Mach
number of 0.439. Three different (background) grids having uniform mesh spacings (0.2c, 0.1c
and 0.05c) were compared during this study.

5.2 Operational Loads Survey helicopter rotor simulations
The capabilities of the discontinuous Galerkin flow solver with respect to the simulation of a
helicopter rotor in forward flight have been tested against the Operational Loads Survey
helicopter rotor experiment7. The Operational Loads Survey helicopter rotor corresponds to a
1/7-scale model of the AH-1 helicopter rotor. The planform of the AH-1G/OLS rotor is
rectangular and the blade section equals a modified BHT-540 section. The airfoil has been
modified in order to accommodate full-scale pressure instrumentation during the experiment.
The resulting thickness is 9.71% of the chord length. The diameter of the rotor is 1.916m and
the chord length is 0.1039m. The blades have a root cutout at 18.2 % of the rotor radius. The
rotor blades are twisted 10 degrees from the blade root to the blade tip. In rest the blade pitch
angle at the 75% radial station is zero. All blade pitch angles are specified with respect to this
station. The Operational Loads Survey helicopter rotor blades rotate about quarter-chord.
The Operational Loads Survey helicopter rotor experiment has been conducted in the German-
Dutch wind tunnel (DNW) in order to gather rotor-blade pressures and far field radiated noise.
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At five radial stations, viz. r/R=0.75, 0.80, 0.85, 0.91 and 0.975, pressure transducers were
located at the three percent chordwise station on both the upper and the lower side of the blade.
The ranges of the four governing non-dimensional parameters tested are
(1) the tip mach number Mtip: 0.55 …. 0.72,
(2) the advance ratio µ: 0.13 ….  0.35,
(3) the thrust coefficient CT: 0.0047 …. 0.0080, and
(4) the tip-path plane angle αTPP: -5 …. 7 degrees.
The flow field around the Operational Loads Survey helicopter rotor in forward flight has been
simulated for the flow conditions of RUN 30207, i.e., a tip Mach number Mtip of 0.664, an
advance ratio µ of 0.164, a thrust coefficient CT of 0.0054 and a tip-path plane angle αTPP of 2
degrees. This case corresponds to the following flight conditions: (i) a forward velocity of the
rotor of 72 knots, i.e., 37 m/s, and (ii) a rate of descent of approximately 400 ft/min, i.e., 2 m/s.
The simulation has been performed on a multi-block grid generated at NLR consisting of 72
blocks with an initial total of 244,224 elements.
The complete simulation consisted of several revolutions. A constant increment of the azimuth
angle, i.e., 1.25 degrees, has been used. During the simulation the grid has been adapted twice.
During the first adaptation (lasting half of a revolution) the vortex sensor based on the vorticity
magnitude has been used in combination with the anisotropy sensor, resulting in a grid of
488,026 elements. During the subsequent second adaptation (lasting one full revolution) the
vortex sensor based on the vorticity magnitude has been used in combination with the
uniformity sensor. The grid in the vortex was adapted to a uniform mesh width equal to 0.005D.
At each implicit time step the mesh has only been refined. Since no elements are removed, in
this manner the vortex sensor is effectively integrated in time. After adaptation the grid contains
1,297,729 elements.
Several settings for the blade motion coefficients have been used during the simulation. Two
combinations of blade motion coefficients and computational grids will be shown here. Firstly,
on the grid consisting of 488,026 elements a simulation has been performed using the blade
motion coefficients denoted as Schedule 1 in Tab. 1 (no lead/lag schedule has been used).
Secondly, on the grid consisting of 1,297,729 elements a simulation using the blade motion
coefficients denoted as Schedule 2 in Tab. 1 has been performed. To obtain the pitch angles for
this case the previously described trimming procedure using the complete sensitivity matrix for
the pitch angles has been applied.
Fig. 7 shows the differential pressure at the three percent chordwise station at r/R=0.975 for
these two cases. It can be seen that the result obtained using Schedule 2 is significantly closer to
the experiment than the result obtained using Schedule 1. Although the effects of trimming and
grid adaptation intertwine during these simulations, the overall improvement has been obtained
by the trimming.
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The obtained revolution-averaged thrust coefficient and rotor plane moment coefficients are
shown in Tab. 2. Although the revolution-averaged thrust coefficient for Schedule 2 is slightly
higher than the experimental value of 0.0054, the revolution-averaged rotor plane moment
coefficients are small compared with those of Schedule 1 and of Strawn26. In Fig. 8 the
differential pressure at the three- percent chordwise station at r/R=0.975 for Schedule 2,
Strawn26 and the experiment are shown. Note that Strawn26 performed his simulations on a grid
consisting of 1.8 million grid points and that during his simulation a constant increment of the
azimuth angle of 0.25 degrees was used.
In Fig. 9 the differential pressure at the three percent chordwise station for Schedule 2 is
compared with the experimental data obtained at the five radial stations, where pressure
transducers were located. The agreement between the differential pressures obtained during the
simulation and the experiment is generally good. As can be seen in this figure the overall
agreement between the results obtained during the simulation and the experimental results
improves with increasing radial position r/R.  Several blade-vortex interaction events can be
observed. Comparing this figure with previously reported Euler and Navier-Stokes simulations
for the Operational Loads Survey helicopter rotor in forward flight21,26 (see also Fig. 8), one can
see that with the present method a considerable improvement has been obtained.
In Fig. 10, the sectional lift, the differential pressure at the three percent chordwise station and
the derivatives of the sectional lift and the differential pressure at that station with respect to the
azimuth angle are shown. On both the advancing side and the retreating side the present
simulation finds two interactions. Starting from ψ=0° and looking in counter clockwise
direction, the rotor blade first interacts parallel (PI) with a vortex originating from the blade
itself, next it interacts perpendicular (PPI) with the vortex originating from the other blade, then
there is once more an interaction with the vortex originating from the other blade which initially
is perpendicular but develops into an oblique interaction (OI), and finally the blade interacts
with a vortex originating from itself. This final interaction starts as a parallel interaction (PI) but
develops into an oblique interaction (OI). In this figure the effect of the root vortices can be
clearly seen by the interactions around the zero azimuth angle. It is obvious that the presence of
these vortices, which are not present in the experiment due to a different geometry in the hub
region, influences the solution.
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6 Summary

In this report the DG finite element algorithm based on a boundary conforming ALE
formulation in conjunction with unstructured grid refinement of hexahedral grids has been used
for the simulation of rotor wake vortices.
The following simulations have demonstrated the simulation capabilities of this flow solver:
•  the Caradonna-Tung helicopter rotor in hover, showing that this method is able to capture

the tip vortex over a distance of at least one-and-a-half revolution, both on a 726,784-
element grid and a 135,280-element grid with local unstructured grid refinement, and

•  the Operational Loads Survey helicopter rotor in forward flight, showing the methods
ability to perform time-accurate helicopter simulations on a single boundary conforming
grid.

All simulations showed that local grid adaptation, when applied, improves the vortex signature
in terms of vorticity and/or helicity. Comparison with the experimental data is generally good.
For the forward flight simulation, the rotor trimming procedure as developed at NLR has been
used.
It was shown that, using this procedure, one obtains considerably improved results compared
with previously reported Euler and Navier-Stokes simulations. These improvements are due to
the fact that all sensitivity coefficients with respect to the pitching parameters are used, and that
the sensitivity matrix is calculated using the Euler flow solver itself, instead of using a lifting
line vortex method, such as CAMRAD/JA.
The presented discontinuous Galerkin method has the following features that make it well suited
for the simulation of rotor wake flows:
(a) the second-order accurate DG method carries the spatial flow field gradients as explicit,

dependent variables implying that the vorticity is carried as a dependent flow variable;
vorticity components are implicitly related to the three spatial gradients of the state vector
(15 variables per element),

(b) the algorithm allows degenerate, high-aspect ratio elements near leading and trailing edges
for efficiency,

(c) the algorithm has an extremely compact stencil, and as a result possesses an inherent ability
to handle adaptive strategies since the refining and de-refining of the elements (grid) is done
without any need to consider special continuity requirements typical of conventional CFD
methods29, and

(d) the algorithm has an excellent parallelization potential because the communication between
neighboring elements is strictly limited to the flow data exchange at common faces, and will
therefore be well suited for parallel computing platforms.

Furthermore, it should be noted that an extension of the DG algorithm from the Euler equations
to the Navier-Stokes equations is feasible without compromising items (a) through (d) above,
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e.g., see Atkins2 for an analysis in two dimensions. With respect to vortex flow simulations the
main difference between a simulation using the Euler equations and a simulation using the
Navier-Stokes equations is that for the former grid adaptation results in an unlimited increase of
the vortex resolution.

7 Conclusions

The main issue explored in the present report is the ability of the discontinuous Galerkin finite
element approach to capture the tip vortex of a rotor over large distances (with and without grid
adaptation). The conclusion is that the present DG algorithm can capture the tip vortex of a rotor
in hover or forward flight over large distances, provided the multi-grid iterations are continued
until all the residuals of the 20 non-linear, algebraic equations per element are sufficiently
converged. It is found that the convergence tolerance required for the accurate capture of
trailing vortices is significantly tighter than the equivalent convergence tolerance needed to
capture transonic shock waves; i.e., transonic shock waves are easy to capture relative to the far
field signature of trailing vortices.
Comparison of results of the present DG method (with and without adaptation) with the results
of more conventional algorithms21-23,26 shows that the present DG approach yields the same or
better agreement between CFD and experimental data in terms of blade surface pressures,
differential pressures and vortex trajectories.
For accurate prediction of the flow around a rotor in forward flight, it was concluded that
trimming of the rotor is of utmost importance. The trimming procedure developed at NLR
resulted in substantially improved differential pressure distributions when compared with those
presented in literature21,22,26. Pahlke22 remarks the following: ‘It was shown that the viscous
effects are important for the prediction of the global forces but the effect of trim is even more
important’. This remark stresses the above-mentioned importance of proper trimming.
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θ0[°] θ1c[°] θ1s[°] β0[°] β1c[°] β1s[°]
Schedule 1 6.53 0.90 -1.39 2.40 -1.00 0.00
Schedule 2 6.62 2.81 -2.19 2.40 -1.00 0.00
Strawn26 6.14 0.90 -1.39 0.50 -1.00 0.00

Table 1: Pitch and flap angles used in the simulation of the Operational Loads Survey helicopter
rotor in forward flight.

CT (×103) CMx (×103) CMy (×103)
Experiment 5.40 0.00 0.00
Schedule 1 5.440 0.161 0.519
Schedule 2 5.553 0.037 -0.112
Strawn26 5.43 0.11 0.41

Table 2: Force and moment data from the simulation of the Operational Loads Survey
helicopter rotor in forward flight. Experimental data is taken from Strawn 26.

Code name Main technique Flow
conservation

Adaptivity Scalability Accuracy

ASTRA-OG19,20 Chimera/Overset ƺ - - +
FLOWER21 Chimera/Overset ƺ - - ƺ
FLOWER22 Chimera/Overset ƺ - - ƺ

OVERFLOW26 Chimera/Overset ƺ ƺ - ƺ
DG flow solver Boundary

conforming
+ + ƺ +

Code name Rotor type Number
of

blades

Number of
grid points

(×106)

Computing time for one
revolution

Flop
count

(×1012)
ASTRA-OG ATIC AT2 5 17.0 20 hours on NWT/30 1100
FLOWER OLS 2 1.4 107 hours on Cray J916/1 58
FLOWER ONERA 7AD 4 2.0 23.5 hours on NEC SX-5/1 135

OVERFLOW OLS 2 1.8 15 hours on Cray C-90/1 16
DG flow solver OLS 2 1.2 20 hours on NEC SX-5/8 1150

Table 3: Qualitative comparison and computing times of existing rotor codes for forward flight
simulations. NWT: Numerical Wind Tunnel (parallel vector machine with 1.7 Gflop/s peak per
processor), Cray J916: parallel vector machine with 0.5 Gflop/s peak per processor, Cray C-90
parallel vector machine with 1 Gflop/s peak per processor, NEC SX-5 parallel vector machine
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with 8 Gflop/s peak per processor. The flop counts are estimated from the computing times and
an assumed sustained performance of 30 % on vector processors.(- = unsatisfactory, ƺ = fair, +
= good). Data is taken from Kondo19, Ochi20, Pahlke21,22 and Strawn26.
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Figure 1: Surface pressure (-Cp) distribution at the radial stations r/R=0.68 (a), 0.89 (b) and 0.96

(c) for the Caradonna-Tung helicopter rotor in hover (collective pitch angle: 12 degrees, tip
Mach umber: 0.61, Reynolds number: 2.7⋅106). Experimental data is taken from Caradonna8.
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Figure 2: Sectional thrust for the Caradonna-Tung helicopter rotor in hover for the ‘medium grid’

with adaptation (135,280 elements), the ‘fine grid’ (726,784 elements) and the experiment8

(collective pitch angle: 12 degrees, tip Mach number: 0.61).
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Figure 3: Vorticity contours at the 140 degree azimuth location behind the blade for the

Caradonna-Tung helicopter rotor in hover on the ‘medium grid’ with adaptation (a) (135,280

elements) and on the ‘fine grid’ (b) (726,784 elements) (collective pitch angle: 12 degrees, tip

Mach number: 0.61).
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Figure 4: The adapted Caradonna-Tung grid (135,280 elements). Shown are the periodic plane
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Figure 5: Iso-contour of the vorticity for the Caradonna-Tung helicopter rotor in hover on the

‘fine grid’ (726,784 elements) (collective pitch: 12°, Mtip=0.61).

ψ

r z

0 100 200 300 400 500
0

1

2

3

4

5

6 -6

-5

-4

-3

-2

-1

0

Experiment
Medium grid with adaptation
Fine grid

Radial position (r)

Vertical position (z)

Figure 6: Predicted and experimental vortex trajectory of the Caradonna-Tung rotor in hover on

the ‘medium grid’ with adaptation (135,280 elements and on the ‘fine grid’ (726,784 elements)

(collective pitch angle: 12 degrees, tip Mach number: 0.61). The upper lines indicate the radial

position of the vortex and the lower lines indicate the vertical position of the vortex.



-28-
NLR-TP-2002-460

ψ

d
iff

er
en

tia
lp

re
ss

u
re

0 90 180 270 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Experiment
Schedule 1
Schedule 2

Figure 7: Differential pressure -∆CpM2 at the three percent chordwise station at r/R=0.975 for

Schedule 1, Schedule 2 and the experiment. For Schedules 1 and 2 see Tab. 1.
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Figure 8: Differential pressure -∆CpM2 at the three percent chordwise station at r/R=0.975 for

the Schedule 2, Strawn26 and the experiment.
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Figure 9: Differential pressure -∆CpM2 at the three percent chordwise station at the radial

stations r/R=0.75 (a), 0.80 (b), 0.85 (c), 0.91 (d) and 0.975 (e) for the Operational Loads Survey

helicopter rotor in forward flight.
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Figure 10: The sectional lift (a), the derivative of the sectional lift with respect to ψ (b), the

differential pressure -∆CpM2 at the three percent chordwise station (c) and the derivative of the

differential pressure -∆CpM2 at the three percent chordwise station with respect to ψ(d) for

Schedule 2; PI: parallel interaction, PPI: perpendicular interaction, OI: oblique interaction.


