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Summary

An investigation of efficient approximation methods for computationally expensive objective func-

tions in aeronautic multi-disciplinary design and multi objective optimisation is presented. Several

approximation methods based on curve fitting using polynomials and artificial neural networks are

considered. A comparison of these approximation methods in terms of the achieved quality and

accuracy and the required computational cost is presented. The approximation models have been

successfully applied in a preliminary design and multi objective optimisation study of a blended

wing body aircraft.
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List of acronyms

2-OP Second order polynomial approximation method

3-OP Third order polynomial approximation method

3-1-ANN Three inputs, one output ANN approximation method

3-5-ANN Three inputs, five outputs ANN approximation method

ANN Artificial neural network

BWB Blended wing body

CFD Computational fluid dynamics

EC European Commission

EU European Union

GA Genetic algorithm

GM Gradient based optimisation method

ICT Information and communication technology

MDO Multi-disciplinary design and optimisation

MOB Project acronym for EU project: A Computational Design Engine Incorporating

Multi-Disciplinary Design and Optimisation for Blended Wing Body Configuration

MOO Multi objective optimisation

RMSE Root mean squared error
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List of symbols

Cd Drag coefficient

Cdl Aerodynamic performance

Cl Lift coefficient

Mp Pitching moment

MpA Absolute pitching moment (”flight mechanics in-balance”)

Mr Roll moment

Mt Total wing moment

My Yaw moment

� Angle of attack

s Number of design points in training set

Fi Fitted approximation model

a Approximation method indicator
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1 Introduction

Aeronautic design is an area that typically involves a number of different technical disciplines, ref.

1. Some of these disciplines, such as aerodynamics, structural mechanics and flight mechanics,

strongly rely on simulation models and large computational analyses. Usually the aeronautic de-

sign process includes optimisation analysis of certain design objectives. Such a multi-disciplinary

design and optimisation (MDO) process normally leads to multiple, non-linearly related objectives

that arise from the different disciplines’ analyses results. These objectives can only be properly

dealt with when treated separately in a multi objective optimisation (MOO) approach. Such an

MOO approach involves highly frequent evaluation of the design objectives, and therefore requires

reliable and accurate, but also efficient representations of the objective functions. The objective

functions in aeronautic MDO, however, often require computationally expensive design evalu-

ations. Therefore approximation models are used for efficient representation of these objective

functions.

This paper presents an investigation of efficient approximation methods for computationally ex-

pensive objective functions in aeronautic MDO. Several approximation methods based on different

mathematical techniques, such as curve fitting using polynomial functions or artificial neural net-

works, are considered. A comparison of these approximation methods in terms of the achieved

quality and accuracy, and the required computational cost will be presented.

The aeronautic MDO case to which the approximation methods are applied is the design of a

blended wing body (BWB) aircraft. The BWB design data and some of the design analysis tools

used in this study are taken from the EC supported project MOB, ref. 6, where a detailed design

study of the BWB aircraft configuration is performed. In this paper some results of an MOO

study of the BWB design, in which the different approximation models have been applied, will be

shown.
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2 Multi objective optimisation and approximate modelling

Today, a variety of optimisation methods, ranging from traditional gradient based optimisation

methods (GM) to genetic- or evolutionary algorithms (GA), are widely available, refs.3, 4. Most

GM are typically designed for single objective optimisation, while GA are more suitable for multi

objective optimisation. There are however certain possibilities to apply constrained GM to multi

objective optimisation problems. In general, the advantage of GA is that such algorithms have

good global search capabilities, while GM easily get stuck in a local optimum. GM, on the other

hand, are generally more efficient than GA in terms of the number of objective functions evalu-

ations that is required for finding an optimum. Still the number of function evaluations in either

method for MOO is too large for the computationally expensive design evaluations in aeronautic

multi-disciplinary design. For example in the design case considered here, the preliminary design

of a BWB aircraft taken from the MOB poject, the objective functions are based on results of the

CFD simulation of the aerodynamic behaviour of the BWB in cruise flight. These CFD simula-

tions typically take one to several hours of computation on a standard workstation (MIPS R12000),

which is too expensive in the case of MOO where the number of objective functions evaluations is

in the order of 1000 or higher. Hence a computationally much cheaper approximation model for

the objective functions is required.

The approximation models that are evaluated in this study are based on traditional polynomial

functions and on artificial neural networks (ANN). The different models are applied to the BWB

design case and the quality of the approximation and the efficiency in terms of required input

data are compared for the different methods. The approximation models require representative

datasets of the “true” objective functions values in the desired design space. These representative

datasets are obtained by the design evaluations, i.e., the CFD simulations of the air flow about

the BWB, for a number of variants of the BWB. Both the design space, which is spanned by the

considered design parameters, and the objective functions space are multi-dimensional, and the

approximation model provides a mapping between these two spaces. To fit the approximation

model properly to the representative dataset, this dataset is divided into two separate datasets for

“fitting” or “training”, and for validation, respectively.

In the MOB project a detailed MDO study, including high fidelity aerodynamics, structural me-

chanics and flight mechanics analyses and classical single objective response surface optimisation,

is conducted on a new BWB aircraft configuration. Besides the MOB project, also a preliminary

design study of the BWB, in which somewhat simplified analysis are considered, but where multi

objective (instead of single objective) optimisation is applied. The present paper deals with this

preliminary design study of the BWB. In this preliminary design study some key properties of
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Fig. 1 Illustration of the BWB reference configuration, and the design parameters twist, sweep,

and angle alpha used in the BWB preliminary design study.

the BWB in cruise flight are considered: aerodynamic performance (Cdl) structural mechanical

wing loading (Mt) and untrimmed pitching moment (MpA). These properties are considered as

the objective functions in the MOO, and can be derived directly from the design analysis results

that come out of the CFD simulation of the BWB at cruise flight by the following equations:

Cdl =
Cd

Cl

; Mt =
q
M2

r +M2
y ; MpA = jMpj (1)

The design analysis results that are used in these objective functions are the aerodynamic lift and

drag coefficients Cl and Cd, and the roll, yaw and pitching momentsMr,My and Mp, in the centre

of mass of the BWB.

Three design parameters of the BWB have been selected as the design variables in the preliminary

design study: wing twist, wing sweep and angle of attack in cruise flight. A parameter study

has been conducted in which these design parameters are varied relative to a fixed, pre-defined

reference configuration of the BWB, as illustrated in figure 1.

Discrete perturbation values of the three design variables have been used in this parameter study:

seven values uniformly distributed in the range [�3; 3] degrees for twist perturbation, twelve values

non-uniformly distributed in the range [�3; 18] degrees for sweep perturbation, and four values

for perturbation of � : [�1; 2]. Thus a total number of 336 design variants have been generated

for which the design analysis results have been evaluated by CFD simulation. Twelve of these

simulations gave unrealistic results and were rejected.
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3 Approximate models for the BWB and MOO

Because of the high computational cost of the evaluation of the design analysis results (Cl, Cd,

Mp, Mr and My), and the large number of evaluations required by the MOO process, these de-

sign analysis results are approximated by computationally efficient approximation models. The

following approximation methods have been applied to the five individual design analysis results:

second order and third order polynomial fits (identified as 2-OP and 3-OP, respecitvely), and a 2-

layer perceptron ANN, ref. 2, with 3 inputs, 7 hidden nodes and 1 output (identified as 3-1-ANN).

In addition, a fourth approximation method (identified as 3-5-ANN) is used, which is based on a

single two-layer perceptron ANN with 3 inputs, 7 hidden nodes and 5 outputs for all the design

analysis results simultaneously. The ANNs have all sigmoidal activation functions on the hidden

layer and linear activation functions on the output layer. For the second and third order polynomial

fits, the “fitting” data subsets must contain at least 10 and 20 data points, respectively, in order to

avoid an under-determined fit. In the training of the ANNs, 80 % of the points are used for training

and 20 % for validation.

Starting point for the approximation models is the existing data set with 324 data points, which is

available from the parameter study with CFD simulations of the BWB in cruise flight. This data

set consists of the values of the three design parameters (the inputs) and the five design analysis

results (the outputs) in each design point. Both the input and the output data have been scaled to

the [-1,1] range. For the input data this is always easily done when the boundaries of the design

parameters space have been fixed. To scale the output data either the minima and maxima of the

output data used in the approximation or prior knowledge has to be exploited. In order to do a

valid comparison we created here ’prior knowledge’ by taking the minima and maxima of the full

data set (324 data points) to scale the output.

The test procedure is as follows: given a number s 2 f10; 20; 30; :::; 100g, ten sets of s design

points are drawn at random. For each of those ten sets a fit (Fi; i 2 f1; 2; :::; 10g) to the data is

computed with each of the four approximation methods (a; a 2 f1; 2; 3; 4g). For each these 40

fits (Fia) the root mean squared error (RMSEia) using all 324 data points of the existing dataset

is computed. Then the average RMSE for the ten sets per approximation method (RMSEa) is

computed. In figure 2 the RMSEa for each of the five design analysis results for all data points

are displayed for the different methods.

Clearly, for very ’cheap’ data sets, i.e., containing only few (e.g. s = 10 or 20) data points, and

thus requiring only few ’expensive’ design evaluations, RMSEa is of order 100 or 10�1, i.e., none

of the approximation methods is very adequate. The second order polynomial method (2-OP) gives
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Fig. 2 RMSEa plots for the four different approximation methods for each of the five anlysis

results, Cl, Cd, Mp, Mr and My, respectively.
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reasonable results for moderate datasets (e.g. s = 20 or 30) but is limited in maximum accuracy,

even for large data sets. For more accurate approximation, the larger datasets (e.g. s > 40) are

needed and the 3-1-ANN approximation gives the best results, and seems to improve for growing

datasets.
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4 MOO of BWB aircraft

From the dataset available from the BWB parameter study, different approximation models can

be generated and applied in the MOO analysis, in which GA and GM based MOO methods can

be used, ref. 7. The MOO analysis, which leads to the so-called Pareto front, ref. 3, requires up

to thousands of objective functions evaluations, and can be performed within few seconds on a

standard PC when the approximation models are used.

In the present study two approximation models have been applied in the MOO analysis: one

based on the third order polynomial fit (3-OP), and one on the three-inputs-five-outputs-ANN (3-

5-ANN), and both trained with a set of 100 data points from the parameter study dataset. These

approximation models are applied in an MOO analysis of the BWB objective functions using a

GM based minimax optimisation method, ref. 7. The Pareto fronts found in the MOO analysis

using the two approximation models are roughly the same (figure 3).

Furthermore, to qualify the error of both approximations in the points of the Pareto fronts obtained

using the two approximation models, the inputs, i.e. the BWB design parameter values, for the

points of one front, are filled in in the other approximation model, and vice versa. Moreover,

another, more accurate ANN (3-1-ANN) model, which is based on one ANN per design result with

three inputs, one output and between 5 and 12 hidden nodes, has also been used to verify the points

in the Pareto fronts. The results of all three approximations of both Pareto front points are given

in figure 4. The reasonable correspondence in the results of the different approximations indicates

that these approximation models are a reasonable representation of the underlying functions of the

true design results.
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Fig. 3 The Pareto fronts found with the 3-OP and 3-5-ANN approximation models; panel a:

plotted in the 3-D space spanned by the 3 objectives Cdl-Mt-MpA; panels b, c and d:

projections of the Pareto fronts in the Cdl-Mt, Cdl-MpA, and Mt-MpA planes of the ob-

jective space, respectively.
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Fig. 4 Comparison of the points in the Pareto fronts found with the 3-OP, 3-5-ANN and 3-1-ANN

approximation models; panel a and b: 3-OP Pareto front points also evaluated by 3-5-

ANN and 3-1-ANN, plotted in the Cdl-Mt and Cdl-MpA projections of the objective space;

panel c and d: 3-5-ANN Pareto front points also evaluated by 3-OP and 3-1-ANN, plotted

in the Cdl-Mt and Cdl-MpA projections of the objective space.
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5 Discussion and conclusions

The present paper shows a comparitive study of different approximation models for design objec-

tives in aeronautic MDO. The data sets used in this study are based on results of CFD simulations

of a realistic preliminary design case of a BWB aircraft. Polynomial functions of different orders

could be fitted to the considered data with reasonable accuracy. This indicates that the underlying

functions of the true design results are reasonably smooth.

For higher accuracy of the approximation, ANN based approximation models proved more appro-

priate, in particular when one ANN for each of the design results was used (the 3-1-ANN model).

In the case of less smooth datasets, ANN based approximation models are expected to be more

effective, because of the absence of fixed functional behaviour.

The MOO computations, requiring thousands of objective functions evaluations, can be performed

with reasonable accuracy whithin seconds on a standard PC, instead of many hours of computation

time if the CFD analysis would be performed directly in the MOO computation.

The design points in the Pareto fronts found from the MOO analyses could be validated by eval-

uation of the design results by CFD analysis. Furthermore, improvement of the approximation

models could then be achieved by incorporating these CFD results into the training dataset. Itera-

tive continuation of this procedure will enhance the approximation in the interesting design areas

ever further, while computational effort is kept within reasonable and controlable limits. This is

subject of current and near future further investigations.
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