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Summary 

This report is a review of most of the available literature on the fatigue properties of β annealed 
Ti-6Al-4V and titanium alloys with similar microstructures. The emphasis is on β processed and 
β heat-treated titanium alloys because β annealed Ti-6Al-4V ELI plate has been selected for the 
main wing-carry-through bulkhead and other fatigue critical structures, including the vertical 
tail stubs, of advanced military aircraft that are currently intended to enter service with the 
RAAF and the RNLAF. However, some comparisons are made with alloys having different 
microstructures, in particular conventionally (α + β) processed and heat-treated Ti-6Al-4V. 
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Abbreviations 

a   crack size 
CA  Constant Amplitude 
CMU  Controlling Microstructural Unit 
DT&D  Damage Tolerance and Durability 
EBA  Effective Block Approach 
EIFS  Equivalent Initial Flaw Size 
ELI  Extra Low Interstitial 
EPFM  Elastic-Plastic Fracture Mechanics 
FASTRAN short crack growth model 
HCF  High-Cycle Fatigue 
HID  High Interstitial Defect 
ISY  Intermediate Scale Yielding 
Kt  stress concentration factor 
LAD  Low Alloy Defect 
LCF  Low-Cycle Fatigue 
LEFM  Linear Elastic Fracture Mechanics 
LSY  Large Scale Yielding 
M  microstructural unit size 
N  number of cycles  
Ni  number of cycles (life) to fatigue crack initiation 
Nlc  number of cycles (life) during long (large) fatigue crack growth 
Nsc  number of cycles (life) during short/small fatigue crack growth 
Nt  total number of cycles (fatigue life) 
QF  Quantitative Fractography 
rp  crack tip plastic zone size 
R  stress ratio, Smin/Smax 

S  stress 
Smax  maximum (fatigue) stress 
Smin  minimum (fatigue) stress 
SSY  Small Scale Yielding 
STA  (α + β) Solution Treated and Aged 
Y  geometric factor in LEFM description of cracks 
 
α  titanium alloy phase with hexagonal close packed (hcp) crystal structure  
β  titanium alloy phase with body centred cubic (bcc) crystal structure 
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ε  strain 
Δε  fatigue strain range 
ΔK  stress intensity factor range 
ΔKth  fatigue crack growth threshold for long (large) cracks 
ΔS  fatigue stress range 
ΔSe  fatigue stress range endurance limit 
σy

c  cyclic yield stress 
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1 Introduction 

A thick section β annealed Ti-6Al-4V ELI (Extra Low Interstitial) titanium alloy plate was 
purchased by the DSTO1) for investigation of its fatigue properties. This alloy has been selected 
for the main wing-carry-through bulkhead and other fatigue critical structures, including the 
vertical tail stubs, of advanced military aircraft that are currently intended to enter service with 
the RAAF2) and the RNLAF3. 
 
β annealed Ti-6Al-4V ELI has a chemical composition and manufacturing process intended to 
optimise its fatigue and fracture properties, notably in the thick sections required for large 
primary aircraft structure. However, little is known in detail about these properties. 
Furthermore, the DSTO, RAAF and NLR4) have limited or no experience with this alloy. 
 
Since adequate fatigue data are currently publically unavailable for β annealed Ti-6Al-4V ELI, 
it was proposed that the material held by DSTO be used to generate it. Owing to the common 
interest, the DSTO and NLR have agreed to a joint programme of testing, crack growth 
modelling and the development of Damage Tolerance and Durability assessment methods for 
this material. In addition, the DSTO requires specific data to assess the applicability of crack 
growth tools developed for the F/A-18 aircraft to this material. These data require a limited 
amount of specialised testing and crack analysis outside the current standard fatigue analysis 
methods. 
 
Three fatigue life assessment methods will be considered in the joint programme: 
• Strain-based fatigue crack initiation analysis, used to estimate the durability lifetime.  
 
• Fracture mechanics based fatigue crack growth analysis, used both for damage tolerance life 

calculations and residual strength checks. 
 
• Fracture mechanics based fatigue crack growth analysis, using spectrum blocks rather than 

constant amplitude cycles, down into the small crack regime to extend the damage tolerance 
prediction capability to effective crack initiation.  

 
These three methods are highlighted in table 1, which is a survey of fatigue life assessment 
methods. We note here that the combination of the Strain – Life and EBA methods, plus 
                                                      

1)    Defence Science and Technology Organisation, Air Vehicles Division, Victoria, Australia. 
2)    Royal Australian Air Force. 
3)    Royal Netherlands Air Force. 
4)    National Aerospace Laboratory NLR, Aerospace Vehicles Division, The Netherlands. 



  
NLR-TP-2009-036 

  
 10 

consideration of different types of crack growth models, covers most of the items in the holistic 
approach. 
 
In view of the joint programme it is worthwhile to review what is available in the open 
literature about the fatigue properties of β annealed Ti-6Al-4V and titanium alloys with similar 
microstructures. This is the main subject of the present report. The topics to be considered are 
the microstructure of the β annealed Ti-6Al-4V ELI plate, fatigue initiation mechanisms, fatigue 
initiation lives, and short-to-long (or small-to-large) fatigue crack growth. Some comparisons 
are made with alloys having different microstructures, in particular conventionally (α + β) 
processed and heat-treated Ti-6Al-4V. 
 
 
2 Microstructure of the β annealed Ti-6Al-4V ELI plate 

The β annealed Ti-6Al-4V ELI plate has a thickness of 125 mm. Figure 1 gives an example of 
the microstructure near the mid-thickness of the plate. β annealing resulted in a fully lamellar 
microstructure consisting of large colonies of aligned α platelets (Widmanstätten α) within the 
prior β grains. A preliminary survey of the prior β grain size (25 measurements) showed that it 
ranged from about 0.2 mm to 2 mm, with a mean of 1.2 mm. 
 
The aligned α platelets are separated by thin “ribs” of remanent β. These ribs are ineffective 
barriers to slip, since crystallographic parallelism is possible in each colony of α platelets and 
interspersed β (Newkirk and Geisler 1953; Williams et al. 1954). However, the colonies 
themselves have differing crystallographic orientations and are generally effective barriers to 
slip, as are the prior β grain boundaries. These caveats are discussed in subsection 3.2. 
 
 
3 Fatigue crack initiation  

3.1 Microstructural initiation sites: literature 
Fatigue studies of several titanium alloys with fully lamellar or duplex (equiaxed primary α + 
lamellar) microstructures have shown that crack initiation in the lamellar microstructures occurs 
mainly across colonies of aligned α platelets (Wells and Sullivan 1969; Eylon and Pierce 1976; 
Eylon and Hall 1977; Postans and Jeal 1977; Ruppen et al. 1979; Bania et al. 1982; Wojcik et 
al. 1988; Dowson et al. 1992; Evans and Bache 1994; Lütjering et al. 1996; Wagner 1996; 
Hines and Lütjering 1999).  
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The resulting microcracks are faceted with cleavage-like appearances, as are microcracks that 
initiate in equiaxed primary α (Neal and Blenkinsop 1976). Although these faceted cracks were 
initially thought to be due to cleavage, it is now more or less accepted that they are caused by 
intense shear in {0002} slip bands (Wojcik et al. 1988; Evans and Bache 1994; Bache et al. 
1998).  
 
Under constant amplitude (CA) fatigue loading the faceted cracks provide no evidence of cyclic 
crack growth, e.g. fatigue striations. However, fatigue crack growth tests using CA + 
intermittent spike loading result in progression markings within single facets (Paton et al. 1976; 
Pilchak et al. 2009). These progression markings demonstrate that the facets developed during 
many loading cycles.  
 
Other types of initiation sites have been reported: (a) microcracks at the interfaces between α 
platelets and remanent β, especially at prior β grain boundaries (Stubbington and Bowen 1974); 
and (b) along the boundaries between aligned α platelets and primary α (Wells and Sullivan 
1969). 
 
3.2 Microstructural initiation sites: β annealed Ti-6Al-4V ELI plate 
Some preliminary Low-Cycle Fatigue (LCF) tests were done on cylindrical specimens 
machined from the β annealed Ti-6Al-4V ELI plate. After testing, the surface of one of the 
specimens was polished and etched to reveal the microstructural locations of surface 
microcracks. Optical images of the microcracks were obtained using a deep focus image 
processing technique developed by the DSTO (Goldsmith 2000). Figure 2 shows some 
examples. 
 
Most of the microcracks initiated across colonies of aligned α platelets, as would be expected 
from previous studies, see subsection 3.1. Some of these cracks extended with little or no 
deflection across two or more colonies and their boundaries, and a few also crossed the grain 
boundary α. There were also cracks along the interfaces between α platelets and remanent β, 
including colony boundaries; and at least one crack ran along the interface between grain 
boundary α and colonies of aligned α platelets (near the top right corner of figure 2). 
 
Since some microcracks can cross colony boundaries and prior β grain boundaries with little or 
no deflection, we may infer from the studies by Wojcik et al. (1988), Evans and Bache (1994) 
and Bache et al. (1998) that these boundaries are not always effective barriers to slip.  
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3.3 Metallurgical defects 
The occurrence of inclusion-type defects in ingot metallurgy titanium alloys is rare, mainly 
because the ingots are obtained using high purity materials and multiple vacuum-arc melting. 
Titanium powder compacts are, however, susceptible to inclusion defects because of powder 
contamination by foreign particles that are not subsequently melted (Kerr et al. 1976). 
 
Costa et al. (1990) reviewed LCF failures due to metallurgical defects in ingot metallurgy and 
(α + β) processed titanium aeroengine discs. Figure 3 classifies the defect types and categories 
and their relative frequency of occurrence in 22 in-service discs: 
(1) Type I defects are regions of α phase stabilised by high concentrations of the interstitial 

elements nitrogen and oxygen (sometimes called HIDs = High Interstitial Defects). 
Category 1 defects are very hard and brittle; category 2 defects have lower hardness, but 
still higher than that of the matrix. The sources of type I defects are high melting point 
particles of titanium nitride, titanium oxide or complex oxynitride coming from titanium 
sponge (“burnt”sponge), master alloy additions or revert (recycled) material. 

 
(2) Type II defects are regions containing an excessive amount of primary α that is abnormally 

stabilised by segregation of metallic elements, notably aluminium or titanium. Category 3 
defects have hardnesses only slightly above that of the matrix; category 4 defects can have 
very low hardness (these are sometimes called LADs = Low Alloy Defects). 

 
While very informative, it is important to put the foregoing information into perspective. 
Titanium disc failures are rare: of the six engine manufacturers visited by Costa’s Review 
Team, four had a combined total of 25 discs that cracked or failed in service owing to 
metallurgical defects. This is a very small number set against the thousands of discs in service 
up to the time of the review (1990).  
 
Furthermore, as stated at the beginning of this subsection, ingot metallurgy alloys are produced 
using high purity materials and multiple vacuum-arc melting. Hence it is most unlikely that 
fatigue-initiating metallurgical defects will be present in a premium quality material like β 
annealed Ti-6Al-4V ELI plate, although defects such as machining tears, weld defects and 
forging laps are of course possible in manufactured components. 
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4 Fatigue initiation lives 

4.1 Microstructural factors 
The fatigue life behaviour of titanium alloys depends on several microstructural factors whose 
importance differs for conventionally (α + β) processed and heat-treated alloys and β processed 
and β heat-treated alloys. 
 
For (α + β) processed and heat-treated alloys the significant microstructural factors are: 
 
(1) Primary α grain size. A smaller primary α grain size increases the High-Cycle Fatigue 

(HCF) strength (Turner and Roberts 1968; Lucas and Konieczny 1971; Lucas 1973; 
Bowen and Stubbington 1973; Stubbington and Bowen 1974; Lütjering et al. 1996; 
Wagner 1997). 

 
This correlation has been explained as follows. Firstly, a smaller primary α grain size 
results in a higher yield strength, such that higher stresses are required to initiate slip in the 
primary α and cause slip band fatigue cracks (Lütjering et al. 1996; Wagner 1997). 
Secondly, any cracks that do form will be shorter and easier to arrest at the microstructural 
barriers provided by α/α grain boundaries (Demulsant and Mendez 1995) and α/(α + β) 
grain boundaries in duplex microstructures (Bolingbroke and King 1986; Demulsant and 
Mendez 1995). 

 
(2)  Material texture. Crystallographic alignments of primary α grains can have large effects on 

HCF strength (Stubbington and Bowen 1972; Bowen and Stubbington 1973; Larson and 
Zarkades 1976; Peters et al. 1984; Lütjering and Wagner 1988). 

 In general, the highest fatigue strength is obtained for strong textures when the {0002} 
planes are parallel to the principal loading direction (Peters et al. 1984). This orientation 
inhibits slip band cracking in the primary α (Lütjering and Wagner 1988). 

 
(3)  Oxygen content and primary α hardness. Higher oxygen contents increase the yield 

strength and hardness of primary α (Beevers and Robinson 1969; Curtis et al. 1969; 
Sargent and Conrad 1972; Williams et al. 1972; Robinson and Beevers 1973; Yoder et al. 
1984). This correlates with an increase in HCF strength provided that crack initiation 
occurs in the primary α, and not – as can occur – in aligned α platelets in duplex 
microstructures (Lütjering and Wagner 1988; Lütjering et al. 1996; Wagner 1997). See 
subsection 4.2.1 also. 
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 The effect of oxygen on primary α fatigue strength is threefold. Firstly, a higher yield 
strength means that higher stresses are required to cause slip band fatigue cracks: see (1) 
above. Secondly, oxygen restricts {0002} slip compared to {101̄0} and {101̄1} slip up to 
oxygen contents ~ 0.5 wt. % (Curtis et al. 1969; Sargent and Conrad 1972; Williams et al. 
1972), and since fatigue crack initiation in primary α is largely due to intense slip on 
{0002}, increased oxygen content would be expected to inhibit cracking. Thirdly, 
increasing oxygen content changes the slip character from wavy to planar (Curtis et al. 
1969; Williams et al. 1972; Kahveci and Welsch 1989). This means that cross-slip 
becomes more difficult, and it is well known that cross-slip promotes slip band fatigue 
cracking (McEvily and Johnston 1966). 

 
For β processed and β heat-treated alloys the significant microstructural factors are:  
 
(4) Colony and platelet sizes. A smaller colony size increases the LCF (Eylon and Hall 1977) 

and HCF (Farthing 1989) strengths, and narrower aligned α platelets within the colonies 
especially increase the HCF fatigue strength (Wagner 1997). 

 
(5) Prior β grain size. A smaller prior β grain size increases the LCF and HCF strengths 

(Wagner 1997; Evans 1999). 
 
The trends in (4) and (5) may be attributed firstly to less easy nucleation of slip band fatigue 
cracks through the aligned α platelets, since the cracks have to cross through more of the 
remanent β “ribs”. Secondly, any cracks that do form will sooner reach the microstructural 
barriers formed by colony boundaries and prior β grain boundaries, i.e. these cracks will be 
shorter and easier to arrest.  
 
In view of all the foregoing microstructural factors, it is not easy to compare the fatigue 
strengths of conventionally (α + β) processed and heat-treated alloys and β processed and β 
heat-treated alloys. However, some trends have been observed. These are discussed in 
subsection 4.2. 
 
4.2 Fatigue life − microstructure trends 
In this context the available comparisons of fatigue life data are for conventionally (α + β) 
processed alloys subsequently (α + β) or β heat-treated. In each case the cracks grew from 
surfaces free of significant mechanical defects. 
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4.2.1 Unnotched (smooth specimen) fatigue 
Figures 4 – 6 compare unnotched LCF data for Ti-6Al-4V in several microstructural conditions, 
including the as-received mill annealed condition. The following trends may be observed: 
 
(1) A coarse prior β grain size (and hence larger colonies and aligned α platelets) consistently 

results in the lowest fatigue curve, see figures 4 and 5. 
 
(2) A fine prior β grain size (and hence smaller colonies and aligned α platelets) results in a 

fatigue curve 
− slightly lower than that of the original mill annealed microstructure, figure 4, 
− significantly lower than that of duplex microstructures containing 10 – 30 % primary α, 

but slightly better than that of a duplex microstructure containing 82 % primary α, 
figure 6. 

 
Figures 7 and 8 show additional data for fully lamellar and duplex microstructures. These data 
extend the fatigue lives into the HCF regime and show fatigue curve crossovers between 104 
and 105 cycles. 
 
These trends can be explained using a rationale by Hines and Lütjering (1999). They 
distinguished between the LCF and HCF regimes as follows: 
 
Under LCF conditions the key feature is the microstructural scale. Fully lamellar 
microstructures have much larger scales than mill annealed or duplex microstructures, and so 
the slip band length is much longer. This feature causes earlier fatigue crack initiation and 
therefore lower fatigue curves. (Note that this would be especially true for a coarse prior β grain 
size.) 
 
Under HCF conditions the maximum stresses are relatively low, and the slip band length 
becomes less important than the intrinsic lattice resistance to dislocation motion. For duplex 
microstructures the lattice resistance to dislocation motion is affected by alloying element 
partitioning: elements such as aluminium and oxygen tend to partition into the primary α during 
heat treatment, thereby weakening the β matrix and the subsequent lamellar microstructure. In 
this way the transformed β in a duplex microstructure can be weaker than that in a fully lamellar 
microstructure, leading to earlier fatigue crack initiation and LCF → HCF fatigue curve 
crossovers. 
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It is also worth noting that Lütjering et al. (1996) and Wagner (1997) found that larger amounts 
of primary α in duplex microstructures resulted in lower LCF → HCF curves, e.g.  figure 8. 
However, the LCF results in figure 6 are not entirely consistent with this.  
 
4.2.2 Notched fatigue 
Figures 9 and 10 are from two investigations comparing notched LCF → HCF curves for Ti-
6Al-4V in several microstructural conditions, including the as-received mill annealed conditions 
(Eylon and Pierce 1976; Evans 1999). These results are very interesting, not least because the 
trends in each figure are different: 
 
(1) Figure 9 shows that the notched HCF strength of a fully lamellar microstructure was much 

better than the notched HCF strengths of duplex or mill annealed microstructures. 
 
(2) Figure 10 indicates that the notched HCF strength of a mill annealed microstructure was 

far better than that of the other microstructures.  
 
The explanation for these differences most probably lies in the microstructural scale. The 
rankings in figure 9 are probably due to the fine prior β grain size, about 0.25 mm, for the fully 
lamellar microstructure and large elongated primary α grains, 0.1 – 0.15 mm, in the mill 
annealed microstructure. On the other hand, the rankings in figure 10 are probably due to the 
coarse prior β grain size, about 1.5 mm, for the fully lamellar microstructure and much smaller 
primary α grains, 0.02 – 0.04 mm, in the mill annealed microstructure. 
 
We note that this explanation is apparently at variance with Hines’ and Lütjering’s rationale for 
unnotched fatigue rankings, discussed in subsection 4.2.1, since they attributed only LCF 
rankings to the microstructural scale. However, the coarse mill annealed microstructure of the 
material tested by Eylon and Pierce (1976) may well be unrepresentative with respect to later 
mill products.  
 
4.3 Summary 
As stated earlier, it is not easy to compare the fatigue strengths of conventionally (α + β) 
processed and heat-treated alloys and β processed and β heat-treated alloys. However, from the 
information in subsections 4.2.1 and 4.2.2 it appears likely that the β annealed Ti-6Al-4V ELI 
plate, with its rather coarse prior β grain size (averaging about 1.2 mm, see section 2) will have 
relatively low LCF and HCF strengths. The relatively low oxygen content of the ELI material 
(0.13 max. wt. % compared to 0.2 max. wt. % for normal grade Ti-6Al-4V) could also be 
detrimental to the HCF strength, see Starke and Lütjering (1979). 
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5 Short/small fatigue crack growth 

5.1 Introduction 
As is well known, there is considerable evidence that short/small fatigue cracks in metals grow 
at faster rates and lower nominal ΔK values than those characteristic of long/large cracks 
(Ritchie and Suresh 1983; Suresh and Ritchie 1984). In particular, short/small cracks can grow 
at ΔK values well below the long/large crack growth threshold, ΔKth . 
 
Short/small fatigue crack growth is a complex subject, owing to the variety of factors that can 
affect the crack behaviour (McClung et al. 1996). For many aerospace alloys the differences in 
fatigue crack growth behaviour between short/small cracks and long /large cracks disappear for 
crack sizes larger than 0.25 − 0.5 mm (Anstee 1983; Anstee and Edwards 1983). However, there 
are exceptions, including β processed and β heat-treated titanium alloys, as will be discussed in 
subsection 5.2. 
 
5.1.1 Significance of short/small cracks 
The significance of short/small fatigue cracks during the total life of a component or structure 
depends on whether the design and service lives are intended to be in the LCF or HCF regimes. 
To begin with, we may consider the fatigue life to consist of three stages:  
 

Nt = Ni + Nsc + Nlc     (1) 
 
where Nt is the total life; Ni is the life to crack initiation (sometimes contested as non-existent); 
Nsc is the life spent in growing a short/small crack; and Nlc is the life spent in growing a long 
(large) crack.  
 
Whether or not Ni exists, most of the life is spent before entering the long (large) crack growth 
stage. For LCF the estimates vary from 70 – 90 % of Nt , and for HCF it can exceed 95 % of Nt , 
e.g. Schijve (1967), Bania et al. (1982), James and Knott (1985) and Demulsant and Mendez 
(1995).  
 
From these estimates we may reasonably conclude that short/small crack growth should be 
investigated as part of a study of fatigue life assessment methods. 
 
5.1.2 Definitions of short and small cracks 
The terms “short crack” and “small crack” both appear in the literature, sometimes virtually as 
synonyms. However, these terms have acquired distinct meanings, particularly in the United 
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States (McClung et al. 1996). A crack defined as “short” need have only one physical 
dimension that is small, but a “small” crack’s dimensions are all small. 
 
There are also different types of short or small cracks (Ritchie and Suresh 1983; McClung et al. 
1996): 
 
(1) Microstructurally short or small cracks. These are cracks with one or more dimensions 

smaller than a characteristic microstructural dimension, usually based on the grain size. For 
titanium alloys this could be the primary α grain size in conventionally (α + β) processed 
and heat-treated alloys; and the prior β grain size or colony size in β processed and β heat-
treated alloys. 

 
(2) Mechanically short or small cracks. These are cracks with one or more dimensions smaller 

than characteristic mechanical dimensions. These dimensions typically define regions of 
plastic deformation, e.g. crack tip plastic zones or local plasticity at the roots of notches or 
other stress concentrations. 

 
(3) Physically/chemically short or small cracks. These are cracks with one or more dimensions 

larger than characteristic microstructural and/or mechanical dimensions that nevertheless 
can grow significantly faster than truly large cracks at comparable ΔK values.  

 
There is general agreement about the nomenclature for types (1) and (2). Whether type (3) 
should be called physically or chemically short or small is not entirely clear, since justification 
for the existence of this third type depends largely on corrosion fatigue results, see Ritchie and 
Suresh (1983) and McClung et al. (1996). 
 
5.1.3 Size criteria 
Table 2 gives suggestions for classifying small and large crack sizes according to 
microstructural and mechanical criteria (Taylor 1986; McClung et al. 1996): 
 
(1) Cracks are generally considered to be microstructurally small when (a) their size is less 

than 5 – 10 times the microstructural unit size, M, or (b) the crack tip plastic zone size is 
less than or equal to M. For titanium alloys M may be the primary α or prior β grain size, 
or the colony size, as noted in subsection 5.1.1. 

 
(2) Cracks often behave in a mechanically small manner when the ratio of crack size to crack 

tip plastic zone size is less than 4 – 20. 
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Another approach to describing fatigue behaviour in terms of crack size is illustrated in figure 
11. This shows three regimes of fatigue behaviour: crack initiation; irregular crack growth and 
coalescence of any neighbouring short or small cracks; and more or less regular growth of short-
to-long (or small-to-large) cracks. These three regimes are defined by both crack size and cyclic 
stress levels:  
 
● Firstly, relatively high stress amplitudes that exceed the fatigue stress range endurance 

limit, ΔSe , are generally necessary for crack initiation5), and one or several microcracks 
may be initiated. These cracks must overcome microstructural barriers in order to grow, 
and are therefore classified as microstructurally short or small until they reach a certain 
size, a1 , defined by the criteria in table 2 and (1) above. 

 
● Between a1 and a2 , defined by the criteria in table 2 and (2) above, the cracks are classified 

as mechanically short or small. This means that their behaviour cannot be properly 
described by LEFM. As figure 11 indicates, these cracks first grow irregularly, including 
the coalescence of any neighbouring cracks (Demulsant and Mendez 1995). The irregular 
crack growth is mainly due to a persistent but lessening influence of microstructural 
barriers. Also it is no longer necessary that the cyclic stress amplitudes exceed ΔSe in order 
to cause further cracking. This phenomenon was first reported by Kitagawa and Takahashi 
(1976). 

 
● Irregular crack growth gradually gives way to nominally regular crack growth, which 

depends both on crack size and the cyclic stress levels: higher cyclic stress amplitudes 
result in transitions to regular crack growth at shorter or smaller crack sizes.  

 
● Beyond a2 the cracks are classified as long or large. At cyclic stress amplitudes below two-

thirds of the cyclic yield stress, σy
c, the regular crack growth becomes amenable to 

description by LEFM.  
 
5.2 Short/small fatigue crack growth data from the literature 
Most of the short/small fatigue crack growth data for β processed and β heat-treated titanium 
alloys have been obtained for the alloy IMI 685, with some data also for IMI 829, IMI 834, 
Ti65S and IMI 318 (Ti-6Al-4V). There are two reasons for this selection of alloys: 
 
(1) Alloy composition. Table 3 gives the nominal chemical compositions of the alloys. IMI 

685, IMI 829, IMI 834 and Ti65S are near-α alloys, containing predominantly α-stabilizers 

                                                      
5)    Crack initiation below ΔSe occurs in some materials, e.g. carbon steels (De los Rios et al. 1985).   
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(aluminium, zirconium, and tin). They are generally β processed and/or β heat-treated, 
resulting in fully or partially lamellar microstructures of varying coarseness, depending on 
the processing conditions. On the other hand, IMI 318 (Ti-6Al-4V) is an α−β alloy, 
containing the α-stabilizer aluminium and a substantial amount of the β-stabilizer 
vanadium. α−β alloys have conventionally been (α + β) processed and heat-treated, as 
mentioned earlier, because it is more difficult to obtain satisfactory mechanical properties 
from β processing and/or β heat-treating (Coyne 1970; Green and Minton 1970; Donachie 
2000).  

 
(2) Precedence. IMI 685 was the first near-α alloy to be used in the fully lamellar condition, 

and so its fatigue crack growth properties were of pioneering importance. 
 
5.2.1 Coarse-grained fully lamellar IMI 685 
Figures 12 and 13 compare microstructurally short fatigue crack growth data with a long crack 
growth curve for coarse-grained IMI 685 (Hicks and Brown 1982; Brown and Hicks 1983; 
Hicks et al. 1983a). The cracks were up to 3.5 mm long, while the prior β grain size and colony 
size were about 5 mm and 1mm respectively. Although the short crack data encompasses wide 
ranges in crack growth rates, there are clear trends: 
 
● Crystallographic crack growth across aligned α platelets tended to be faster than non-

crystallographic crack growth and cracking along colony boundaries and α/β interfaces. 
 
● Short crack growth could be more than two orders of magnitude faster than long crack 

growth at similar ΔK values, particularly when close to the long crack growth threshold, 
which was 8.7 MPa√m for R = 0.33 (Brown and Hicks 1983).  

 
Hicks and Brown (1982) also observed that although the short cracks arrested (briefly) at grain 
and colony boundaries, they did not slow down before arresting.  
 
More detail about crystallographic crack growth in IMI 685 was obtained from extremely 
coarse-grained IMI 685 that had been β heat-treated for 7 days followed by slow cooling (Bache 
et al. (1998); Wilson et al. 1999). The prior β grain size was about 30 mm and the colony sizes 
ranged from 0.1 – 5 mm. Thin (2 mm) coupons containing 0.25 mm edge notches were fatigued 
to through-crack lengths of about 4 mm. During the first 0.5 mm of cracking the growth rates 
depended strongly on the crystallographic orientation of the initially cracking colony with 
respect to the principal stress axis. Once the cracks grew beyond the initial colony, at about 1 – 
1.5 mm total length, the growth rates gradually converged to similar values.  
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5.2.2 Effects of microstructure: fully lamellar 
Three trends have been reported or proposed for the effects of fully lamellar microstructural 
variations on short/small fatigue crack growth over similar ranges of ΔK: 
 
● Finer prior β grain size reduces the crack growth rates (Hastings et al. 1987). This 

conclusion was obtained from a crude comparison of small crack growth rate data for IMI 
685, grain size ~ 5 mm (Brown and Hicks 1983) and Ti65S, grain size ~ 1.5 mm (Hastings 
et al. 1987). A more representative comparison is given in figure 14, which shows the data 
envelopes for microstructurally short crack growth across aligned α platelets. There is 
indeed a trend of lower crack growth rates for the finer-grained material, but there is also 
considerable overlap. 

 
● A “basketweave”6) microstructure results in lower crack growth rates than colonies of 

aligned α platelets (Hastings et al. 1987). This conclusion was based on the data in figure 
15, notably a comparison of the data for crack sizes within the colony size range of the 
aligned microstructure. The data scatter makes this conclusion dubious, and it is also not 
supported by long/large fatigue crack growth rate data, see subsection 6.3.  

 
● A finer lamellar microstructure results in lower crack growth rates than a coarse lamellar 

microstructure (Wagner and Lütjering 1987). This conclusion was based on the data in 
figure 16. The data scatter makes this conclusion somewhat dubious, but the highest 
overall growth rates do occur in the coarse lamellar material.  

 
5.2.3 Effects of microstructure: different types of microstructures 
Three trends have been reported or proposed for the effects of different types of microstructures 
on short/small fatigue crack growth over similar ranges of ΔK: 
 
● Equiaxed primary α microstructures result in lower crack growth rates than coarse lamellar 

microstructures (Hicks and Brown 1984; Wagner and Lütjering 1987). This conclusion 
was obtained from the data shown in figures 17 and 18. The data scatter in figure 18 makes 
this conclusion dubious for fatigue crack growth at R = -1. 

 
● Under reversed fatigue stressing (R = -1) equiaxed primary α microstructures result in 

lower crack growth rates than duplex and fine lamellar microstructures at ΔK values less 
than 5 MPa√m and 10 MPa√m, respectively (Wagner and Lütjering 1987). This conclusion 

                                                      
6)  “Basketweave” microstructures in titanium alloys consist of fine Widmanstätten configurations of intersecting α platelets 

within the prior β grains. 
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was based on the data shown in figures 16, 18 and 19. The data scatter in these figures 
makes this conclusion dubious.  

 
● Duplex microstructures result in lower crack growth rates than coarse or fine lamellar 

microstructures (Wagner and Lütjering 1987; Dowson et al. 1992; Lütjering et al. 1993). 
This conclusion was based mainly on data shown in figures 16, 19 and 20. Figure 19 
partially supports this conclusion, namely for ΔK values above 10 MPa√m. However, 
figure 20 shows an opposing trend: generally lower crack growth rates occur in duplex 
microstructures only for ΔK values below 10 MPa√m. 

 
The discrepancies between the reported or proposed trends and what figures 16, 18 – 20 indicate 
is due to data interpretation. Wagner and Lütjering reduced their data plots to “best fit” lines, 
thereby discounting the data scatter. Dowson et al. did this also for IMI 685 and Ti65S.  
 
Wagner and Lütjering (1987) and Dowson et al. (1992) provided similar explanations of the 
trends derived from their “best fit” lines. They concluded that finer grain sizes and phase 
dimensions increase the number of microstructural barriers and improve the resistance to 
short/small crack growth. This explanation certainly has merit, but the data scatter shown in 
figures 16, 18 – 20 indicate that other factors should be considered. One likely possibility is the 
effect of local crystallographic orientation on the nucleation and early growth of cracks, already 
discussed in subsection 5.2.1, and also mentioned by Brown and Taylor (1984) and Bache 
(1999). 
 
5.3 Summary 
As mentioned at the beginning of subsection 5.1, short/small fatigue crack growth is a complex 
subject, since a variety of factors can affect the crack behaviour. In particular, the 
microstructures of titanium alloys can strongly influence early crack growth, with some clear 
trends and other not-so-clear trends, see subsection 5.2. 
 
Many, or most, aerospace alloys have average grain sizes less than about 50 µm. In view of the 
criteria in table 2, this approximate grain size limit implies that microstructurally short/small 
fatigue crack growth behaviour should not persist beyond 0.5 mm.  However, β processed and β 
heat-treated titanium alloys can have rather coarse microstructures. For example, the β annealed 
Ti-6Al-4V ELI plate that provides the motivation for this report has a prior β grain size 
averaging about 1.2 mm. For such coarse microstructures short/small fatigue crack growth 
behaviour may be expected to persist to crack sizes of several millimetres, owing to the strong 
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influences of the local crystallographic orientations of grains and colonies of aligned α platelets. 
These influences are also responsible for wide variations in crack growth rates. 
 
The persistence and variability of short/small fatigue crack growth behaviour in coarse-grained 
titanium alloys demonstrate that it must be investigated as part of a study of fatigue life 
assessment methods for the β annealed Ti-6Al-4V ELI plate. 
 
 
6 Long/large fatigue crack growth 

6.1 Introduction 
Long/large fatigue crack growth under constant amplitude loading can be considered in terms of 
the three regions shown in figure 21. In region I there is a threshold value, ΔKth , below which 
cracks do not propagate. Above this value the crack growth rate increases relatively rapidly with 
increasing ΔK. In region II there is a more or less linear log-log relation between da/dN and ΔK. 
In region III the crack growth rate curve rises rapidly towards final failure. 
 
Only regions I and II will be discussed in this report. For titanium alloys region II is often 
characterized by bilinear log-log relations between da/dN and ΔK (Yoder et al. 1977a, 1978, 
1979, 1984; Gross et al. 1988; Wanhill et al. 1989; Saxena and Malakondaiah 1989; 
Ravichandran 1991; Wanhill and Looije 1993; Saxena and Radhakrishnan 1998; Wang and 
Müller 1998).  
 
6.2 Fatigue thresholds  
 
6.2.1 Fully lamellar microstructures 
Figure 22 shows ΔKth values for β annealed Ti-6Al-4V as functions of aligned α colony size and 
R. Although the data are limited, figure 22a indicates that ΔKth is fairly independent of α colony 
size. Ravichandran (1991) provided a detailed explanation of this result. He concluded that there 
was a change in the microstructural units controlling crack growth and threshold. For fast-
cooled fine lamellar microstructures (“basketweave”) the controlling microstructural unit 
(CMU) is the colony size; for relatively slow-cooled coarse lamellar microstructures (aligned α 
platelets) the CMU is the α platelet thickness.  
 
Figure 23 shows ΔKth values for β processed and annealed IMI 685 (Hicks et al. 1983b). The 
values for the coarsest (α colony size 0.21 mm) and finest (“basketweave”) microstructures 
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provide support for ΔKth being fairly independent of α colony size. However, some of the data 
for the intermediate microstructure (α colony size 0.11 mm) are significantly lower.  
 
Both figure 22b and figure 23 show a trend of more or less continuously decreasing ΔKth with 
increasing R. This agrees with a general trend for titanium alloys with different types of 
microstructures (Chan 2004).  
 
6.2.2 Different types of microstructures 
Table 4 gives estimated ΔKth values for different Ti-6Al-4V microstructures. The estimates 
were obtained by extrapolation of near-threshold crack growth data (Irving and Beevers 1974; 
Wagner and Lütjering 1987) down to a crack growth rate of 10-10 m/cycle. Although limited in 
number, the estimates are for widely different R and show that coarse lamellar microstructures 
had the highest ΔKth values, duplex microstructures were intermediate, and equiaxed primary α 
microstructures (usually the mill annealed condition) had the lowest ΔKth values.  
 
6.3 Regions I and II fatigue crack growth in fully lamellar microstructures 
Figures 24 and 25 compare regions I and II long/large fatigue crack growth in coarse lamellar 
and “basketweave” β annealed Ti-6Al-4V and β processed and annealed IMI 685. For both 
alloys the near-threshold crack growth rates were very similar at the same or similar R values. 
These results are important because they imply that near-threshold long/large fatigue crack 
growth in β processed and β heat-treated titanium alloys is insensitive to variations in α colony 
size. This adds further support to Ravichandran’s hypothesis that a change in the CMU is 
responsible for the similar crack growth behaviour, see subsection 6.2.1. 
 
6.4 Regions I and II fatigue crack growth in different types of microstructures 
Figures 26 – 28 compare regions I and II long/large fatigue crack growth in different 
microstructures of Ti-6Al-4V and another α-β alloy, Ti-6Al-4Mo-2Zr-0.2Si. The coarse and fine 
lamellar microstructures tend to result in the lowest crack growth rates until da/dN values of 
about 10-7 m/cycle are exceeded. The crack growth rate curves for the other types of 
microstructures show varying amounts of overlap. 
 
The lower fatigue crack growth rates in fully lamellar microstructures have been attributed to 
extensive crack branching and deflection (Yoder et al. 1976, 1977a, 1977b; Eylon and Bania 
1978; Eylon 1979; Bania et al. 1982) and enhanced roughness-induced fatigue crack closure 
(Halliday and Beevers 1981; Hicks et al. 1983b; Saxena and Radhakrishnan 1998). Both these 
characteristics lower the fatigue crack driving force (Suresh and Ritchie 1982; Suresh 1983, 
1985). 
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6.5 Region II bilinear log da/dN – log ΔK fatigue crack growth 
As mentioned in subsection 6.1, region II fatigue crack growth in titanium alloys is often 
characterized by bilinear log – log relations between da/dN and ΔK. Figure 29 gives examples 
for (a) a β annealed Ti-6Al-4V ELI plate and (b) several alloys in different heat treatment 
conditions (Yoder et al. (1978, 1979). Figure 29a indicates the transition point, T, where the 
bilinear relation changes slope. Figure 29b shows a very wide data band, with a 50-fold 
difference in crack growth rates at ΔK = 21 MPa√m.  
 
The transition points in the bilinear plots (T in figure 29a) correspond to changes in fatigue 
fracture topography. For all these alloys crack growth was predominantly structure-sensitive, 
involving crack branching and deflection, in the hypotransitional region IIa; and predominantly 
structure-insensitive, more or less continuum-mode fracture, in the hypertransitional region IIb. 
 
Much attention has been paid to analysing these and similar results (Irving and Beevers 1974; 
Yoder et al. 1976, 1977b, 1978, 1979, 1980; Gross et al. 1988; Ravichandran and Dwarakadasa 
1989; Wanhill et al. 1989; Wanhill and Looije 1993; Wang and Müller 1998). It was variously 
concluded that the transitions occur at ΔK values where either the monotonic or cyclic plastic 
zone sizes at the crack tips attain and exceed the average CMU dimensions; and the CMUs 
could be the primary α grain size, the fine or coarse lamellar α colony size, or the coarse 
lamellar α platelet thickness.  
 
Be that as it may, an important practical point is that structure-sensitive to structure-insensitive 
transitions in titanium alloys can also occur under variable amplitude loading (Wanhill and 
Looije 1993). Wanhill et al. (1989) and Wanhill and Looije (1993) predicted that visible 
transitions on service fatigue fractures would provide “benchmarks” for analysing local stress 
and stress intensity factor conditions, thereby assisting in the overall analysis of service 
problems. This prediction was confirmed during investigation of a Ti-6Al-4V helicopter rotor 
hub failure (Wanhill 2003).  
 
6.6 Summary 
Long/large fatigue crack growth in titanium alloys is in general a complex subject. This is 
exemplified by the detailed analyses of region II crack growth mentioned in subsection 6.5. 
However, the fatigue threshold and near-threshold fatigue crack growth data for β processed and 
β heat-treated titanium alloys suggest that variations in α colony size have little effect, see 
subsections  6.2.1 and 6.3. This is important with respect to the β annealed Ti-6Al-4V ELI plate 
that provides the motivation for this report. The plate’s thickness of 125 mm may be expected to 
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result in some variations in α colony size, but this is unlikely to significantly affect the fatigue 
threshold and near-threshold fatigue crack growth behaviour.  
 
Another important aspect is the structure-sensitive to structure-insensitive transition during 
region II fatigue crack growth. The ΔK value for this transition may show some variation 
through the plate thickness.  The fracture topography characteristics of this transition should be 
determined. As pointed out in subsection 6.5, the transition can act as a “benchmark” for 
fracture mechanics analyses of service failures. 
 
 
7 Concluding remarks 

This report is a review of most of the available literature on the fatigue properties of β annealed 
Ti-6Al-4V and titanium alloys with similar microstructures. The focus is on β processed and β 
heat-treated titanium alloys. This is because β annealed Ti-6Al-4V ELI plate has been selected 
for the main wing-carry-through bulkhead and other fatigue critical structures, including the 
vertical tail stubs, of advanced military aircraft currently intended to enter service with the 
RAAF and the RNLAF. However, some comparisons are made with alloys having different 
microstructures, in particular conventionally (α + β) processed and heat-treated Ti-6Al-4V. 
 
The review has been necessarily limited to fatigue under constant amplitude loading. There 
appears to be no open-source literature on the fatigue behaviour of β processed and β heat-
treated titanium alloys under variable amplitude loading, in particular load histories 
representative for military airframe components. Also, nothing is known about the ability of 
constitutive and crack growth models to predict this behaviour.  
 
This situation emphasizes the practical usefulness of the DSTO – NLR programme to develop 
Damage Tolerance and Durability assessment methods for  β annealed Ti-6Al-4V ELI plate. 
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Table 1   Survey of fatigue life assessment methods 

Assessment Methods 

 
• Stress – Life (S – N) 

o fatigue stress range endurance limits, ΔSe, unnotched and notched (Kt ) data 
o modifications to ΔSe 
o mean stress effects (R) 
o linear damage rule, also for variable R 
o scatter factors 

 
• Strain – Life (ε – N) 

o strain − life equation, unnotched data, R = -1 
o cyclic stress – strain curve analysis 
o rainflow cycle counting (closed hysteresis loops) 
o stress – strain at critical location (notch analysis) 
o mean stress  effects (R) via equivalent strain equations, leading to equivalent strain 

amplitudes 
o damage accumulation rule 

 
• Damage Tolerance and Durability (DT&D) 

o specified initial flaw sizes (EIFS) 
o back-extrapolation of long crack growth data 
o LEFM long crack growth models (non-interaction, yield zone, crack opening, strip yield) 
o possible use of crack opening model for short cracks (FASTRAN); differences in long and 

short crack thresholds need to be included 
o mainly deterministic: stochastic approach becoming accepted 
 

• DSTO Flight Block Spectrum Loading (Effective Block Approach, EBA) 
o short-to-long crack growth data using marker loads and Quantitative Fractography (QF) 
o data compilations to establish empirical crack growth “laws” 
o deterministic (“upper bound”) and stochastic approaches 
 

• Holistic  
o fatigue initiation mechanisms (also as functions of  notch stress concentrations, Kt ) 
o fatigue initiation lives (S – N and/or ε – N assessments) 
o evaluation and selection of marker load strategies for Quantitative Fractography (QF) of 

short-to-long crack growth 
o short-to-long long crack growth using marker loads and QF 
o establishment, validation and choice of appropriate crack growth models and “laws” 
o deterministic (“upper bound”) and stochastic approaches 
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Table 2   Size criteria for small cracks (McClung et al. 1996) 

Mechanical Size  

Microstructural Size Large: 

a/rp > 4-20 (SSY) 

Small: 

a/rp < 4-20 (ISY and LSY) 

Large: 

a/M > 5-10 and rp/M >> 1 

 

Small: 

a/M < 5-10 and rp/M ~ 1 

 

 

mechanically and microstructurally 

large (LEFM valid) 

 
mechanically large but 

microstructurally small 

 

mechanically small but microstructurally 

large (may need EPFM) 

 
mechanically and microstructurally small 

a = crack size; rp = crack tip plastic zone size; M = microstructural unit size; SSY = Small Scale Yielding 

ISY = Intermediate Scale Yielding; LSY = Large Scale Yielding; LEFM = Linear Elastic Fracture Mechanics 

EPFM = Elastic-Plastic Fracture Mechanics 

 
 
 
Table 3   Nominal chemical compositions of several titanium alloys (wt. %) 

Near-α alloys 

 

 

α−β alloy 

IMI 685                         Ti-6Al-5Zr-0.5Mo-0.25Si-0.1Fe 

IMI 829                         Ti-5.5Al-3Zr-3.5Sn-1Nb 

IMI 834                         Ti-5.8Al-3.5Zr-4Sn-0.7Nb-0.5Mo-0.35Si-0.06C 

Ti 65S                            Ti-6Al-5Zr-0.5Mo-0.25Si-0.2Fe-100ppmHf 

 

IMI 318                         Ti-6Al-4V-0.15Fe-0.17O 
 
 
Table 4   Estimated fatigue thresholds for Ti-6Al-4V with different microstructures 

R Microstructure ΔKth (MPa√m) 

 
-1 

coarse lamellar 

fine lamellar 

duplex 

equiaxed primary α 

7.2 

5.2 

7.2 

4.6 

 

0.35 

coarse lamellar 

duplex 

equiaxed primary α 

5.8 

3.4 

3.1 
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Fig. 1 Example microstructure of the β annealed Ti-6Al-4V plate 
 showing large colonies of aligned α platelets within prior 
 β grains, and grain boundary α delineating the prior β 
 grains: Kroll’s etch

Fig. 2 Microcracks on the cylindrical surface of an LCF-tested 
 specimen taken from the β annealed Ti-6Al-4V plate: 
 Kroll’s etch
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Fig. 4 ε–N fatigue curves for Ti-6Al-4V in three microstructural conditions: fully lamellar (coarse
 prior β grain size), fully lamellar (fine prior β grain size) and mill annealed (Evans 1999)

Fig. 5 ε–N fatigue curves for Ti -6Al-4V in three microstructural conditions: fully lamellar 
 (coarse prior β grain size), duplex (82% α) and mill annealed (Evans 1999)

Fig. 6 ε–N fatigue curves for Ti-6Al-4V in four microstructural conditions: fully lamellar 
 (fine prior β grain size) and duplex (10% α, 30% α, 82% α) (Evans 1999)
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Fig. 7 S–N fatigue curves for Ti-6Al-4V in two microstructural conditions: fully lamellar and 
 duplex (35% α) (Hines and Lütjering 1999)

Fig. 8 S–N fatigue curves for IMI 834 (Ti-5.8Al-log4.0Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C) 
 in three microstructural conditions: fully lamellar and duplex (20% α, 30% α) 
 (Lütjering et al.1999)
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Fig. 9 S–N notched fatigue curves for Ti-6Al-4V plate in four microstructural conditions: fully 
 lamellar, duplex (50% α, 70% α) and mill annealed (Eylon and Pierce 1976)

Fig. 10 S–N notched fatigue curves for Ti-6Al-4V plate in three microstructural conditions: 
 fully lamellar, duplex (82% α) and mill annealed (Evans 1999)
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Fig. 12 Microstructurally short fatigue crack growth in IMI 685: (a) sketches of actual crack 
 paths; (b) crack growth rates compared to a long crack growth rate curve (Hicks and 
 Brown 1982)

Fig. 13 Microstructurally short fatigue crack growth in IMI 685. After Brown and Hicks (1983)
 and Hicks et al. (1983a)
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Fig. 14 Microstructurally short fatigue crack growth across aligned α 
 platelets in IMI 685 and Ti65S. After Brown and Hicks (1983) 
 and Hastings et al. (1987)

Fig. 15 Microstructurally short fatigue crack growth in Ti65S. 
 After Hastings et al. (1987)
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Fig. 16 Microstructurally short fatigue crack growth in Ti-6Al-4V. 
 After Wagner and Lütjering (1987)

Fig. 17 Microstructurally short (IMI 685) and mechanically short (Ti-6Al-4V) 
 fatigue crack growth comparisons (Hicks and Brown 1984)
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Fig. 18 Microstructurally short (coarse lamellar) and mechanically 
 short (equiaxed) fatigue crack growth in Ti-6Al-4V.
 After Wagner and Lütjering (1987)

Fig. 19 Microstructurally short (coarse lamellar) and mechanically short 
 (duplex) fatigue crack growth in Ti-6Al-4V. After Wagner and 
 Lütjering (1987)
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Fig. 20 Microstructurally short (IMI 685 and Ti65S) and mechanically short (IMI 834) fatigue 
 crack growth comparisons. After Brown and Hicks (1983), Hastings et al. (1987) and 
 Dowson et al. (1992)

Fig. 21 Characteristics of the long/large fatigue crack growth rate curve log da/dN versus 
 log ΔK (Ewalds and Wanhill 1984)
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Fig. 22 Dependence of β annealed Ti-6Al-4V ΔKth on (a) α colony size and 
 (b) stress ratio, R.  Solid symbol (●) data from Irving and Beevers (1974), 
 Lütjering and Wagner (1987) and Ravichandran (1991); 
 open symbol (○) data from NLR tests (2008)

Fig. 23 Dependence of β processed and annealed IMI 685 ΔKth on stress 
 ratio, R (Hicks et al. 1983b)
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Fig. 24 Dependence of β annealed Ti-6Al-4V regions I and II long/large 
 fatigue crack growth on α colony size. After Ravichandran (1991)

Fig. 25 Dependence of β processed and annealed IMI 685 regions I and II long/large fatigue 
 crack growth on final microstructure (coarse lamellar and "basketweave") and stress
 ratio, R.  After Hicks et al. (1983b)
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Fig. 26 Dependence of Ti-6Al-4V regions I and II long/large fatigue crack 
 growth on microstructure. After Wagner and Lütjering (1987)

Fig. 27 Dependence of Ti-6Al-4V regions I and II long/large fatigue crack 
 growth on microstructure (Irving and Beevers 1974). STA = (α+β) 
 Solution Treated and Aged
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Fig. 28 Dependence of Ti-6Al-4Mo-2Zr-0.2Si regions I and II long/large fatigue crack growth 
 on microstructure (Saxena and Radhakrishnan 1998). STA = (α+β) Solution Treated 
 and Aged
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Fig. 29 Examples of region II fatigue crack growth for (a) a β annealed Ti-6Al-4V ELI plate and
 (b) several titanium alloys in different heat treatment conditions (Yoder et al. 1978, 1979)
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