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Summary

In this report the contribution of the National Aerospace Laboratory NLR to the ’CFD Drag Pre-

diction Workshop’ organized by the AIAA in Anaheim, CA, on June 9-10, 2001, is presented.

This contribution consists of both the results of all test cases and a discussion on the accurate

computation of drag coefficients. Two approaches are presented and discussed. The first method

performs a grid convergence study using a sequence of nested grids yielding the grid-converged

drag coefficient. To enable this study to be carried out, such a sequence of nested multi-block

structured grids (’NLR’ grid) has been generated. The second method, using one grid only, de-

composes the drag coefficient into its ’physical components’ (vortex, wave and viscous drag). As

a consequence, this method provides the aerodynamic designer with a helpful tool, because of its

diagnostic potential.
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Nomenclature

Symbols�
� � � � � Extrapolation constants

� � Drag coefficient

� � � 	 � Grid-converged drag coefficient

� � entropy Entropy drag coefficient

� �
friction

Friction drag coefficient

� � far-field Drag obtained by ’far-field approach’

� � pressure Pressure drag coefficient

� � viscous Viscous drag coefficient

� � vortex Vortex drag coefficient

� � wave Wave drag coefficient

� � Lift coefficient

� � Pitching moment coefficient


Relative mesh size
�

Turbulent kinetic energy
�

ref Reference length
� �

Free-stream Mach number
� Normal
�

Gas constant
� �

Area of ’Trefftz plane’
�

ref Reference area
� �

Free-stream velocity
�

Velocity vector

� Trefftz Location of ’Trefftz plane’
� � Dimensionless, sublayer-scaled distance

Greek symbols
 Angle of attack

� Specific heats ratio
� �

Entropy increase relative to free-stream condition
�

Potential function
� Density
� �

Free-stream density
� Turbulence time scale (

� �  " # % # ( *
)
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#

Specific dissipation rate
�

Flow field domain
�

Stream function
�

Vorticity
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1 Introduction

The objectives of the AIAA CFD Drag Prediction Workshop are:
� to assess the state-of-the-art computational methods as practical aerodynamic tools for air-

craft force and moment prediction,
� to provide an impartial forum for evaluating the effectiveness of existing computer codes

and modeling techniques using Navier-Stokes solvers, and
� to identify areas needing additional research and development.

This report presents the contribution of the National Aerospace Laboratory NLR to this workshop.

The focus of this report is on the extraction of the grid-converged drag coefficient from grids

with finite mesh widths. Two complementary approaches, i.e. a grid convergence study using a

sequence of nested grids and a breakdown analysis of the drag into its ’physical’ components, will

be discussed.

1.1 Outline of the report

In the next section, the flow solver ENSOLV, which is part of NLR’s flow simulation system

ENFLOW, is outlined. The governing equations (including the turbulence model), the spatial dis-

cretization, the boundary conditions and the solution procedure will be discussed. Next, two meth-

ods to obtain the aerodynamic drag are outlined. The first method computes the grid-converged

drag by extrapolation using a sequence of nested grids. The second method decomposes the drag

into its three ’physical’ components.

In addition to the ’DPW’ grid which has been provided by the ’AIAA Drag Prediction Workshop’,

a multi-block structured grid (’NLR’ grid) has been generated. A complete section is dedicated

to the description of this grid. Both the topology and the grid are discussed. This discussion is

followed by a description of the test cases and the results obtained. The results on the ’DPW’ grid

are for a number of cases compared with those on the ’NLR’ grid. Furthermore, a comparison

with experimental data is provided. In addition, the methods to obtain the grid-converged drag are

illustrated. Finally, concluding remarks are made.
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2 CFD method

In this section a brief description of the flow solver ENSOLV, which is part of NLR’s flow simu-

lation system ENFLOW, is given. The flow solver ENSOLV is capable of solving the Euler and

Navier-Stokes equations on multi-block structured grids for arbitrary configurations. The present

simulations have been performed with version 4.10 of the flow solver ENSOLV. For more details

on the flow solver ENSOLV, see Ref. 4.

2.1 Reynolds-averaged Navier-Stokes equations and turbulence model

The flow solver ENSOLV employs the time-dependent Reynolds-averaged Navier-Stokes equa-

tions which are integrated in (pseudo) time towards a steady-state solution. The equations are

cast into the full conservation form employing the density� , the components of the momentum

vector � � and the total energy per unit volume� � as dependent variables. The equations are

non-dimensionalized using the free-stream static pressure, the free-stream density, the free-stream

temperature and a reference length (for example the aerodynamic mean chord).

Several turbulence models (Cebeci-Smith, Baldwin-Lomax, Johnson-King,
�
-

#
) are implemented

to model the turbulent stress and heat flux term appearing in the equations due to the averaging

process. In the present simulations the
�
-

#
two-equation turbulence model has been used. The

model used is basically the original model as proposed in Ref. 9. The equations are, however,

slightly modified by the introduction of a ’cross diffusion’ term, as proposed in Ref. 10. This

modification has been introduced to resolve the dependency on the free-stream value of
#

(see

Ref. 3).

2.2 Spatial discretization

The equations are discretized in space using a cell-centered, central-difference, finite volume

scheme. For each grid cell of the structured (multi-block) computational grid, the equations are

integrated over the cell volume requiring only the evaluation of convective and viscous fluxes at

the cell surface.

In order to prevent odd-even decoupling in the solution, fourth-order artificial dissipation terms

have been added to the equations (Ref. 4). A second-order artificial dissipation term has been

added for good shock wave capturing. This second-order artificial dissipation term is switched on

near shock waves dependent on the computed value of a shock sensor. The artificial dissipation

terms are in each grid cell scaled with a term depending on the aspect ratio of the grid cell. Finally,

the scalar formulation of the dissipation as described above can be replaced by a matrix formula-

tion (Ref. 4). Matrix dissipation can be independently employed in all three grid directions. For

the simulations presented in this report, the default formulation of the flow solver has been used,
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i.e. matrix dissipation is employed in the ’surface normal’ direction and scalar dissipation in the

other two directions.

2.3 Boundary conditions

In the simulations the following boundary conditions have been employed:
� At the far-field boundaries, a free-stream boundary condition based on Riemann invariants

of the locally linearized one-dimensional Euler equations has been used. Since the flow at

these boundaries is subsonic, the value of the ’incoming’ Riemann invariants is computed

using the free-stream values. The remaining invariants are extrapolated from the computa-

tional domain.
� At the wing and the body, the viscous flow condition of no-slip (Navier-Stokes adiabatic

solid wall) is employed.
� At the symmetry plane, a symmetry boundary condition has been used. For the boundary

condition used, the grid has not necessarily to be orthogonal to the symmetry plane.
� At the two faces coming from the wing trailing edge (see section 5) a smooth internal face

condition for pairs of external faces has been used.

For the
�
-

#
turbulence model, the following procedure has been used. To remove the singular

behavior of
#

at the solid walls, the equations of the
�
-

#
model are reformulated such that in-

stead of
#

the quantity� � �  " # % # ( *
is used. Here

# (
is a positive constant (default value

# ( �
ref

 � � � � �
, with

� �
the free-stream velocity and

�
ref the reference length). At the solid

boundaries, i.e. the wing and the body, both
�

and � are set to zero. For the turbulence equations,

no specific transition point has been prescribed, as required for the workshop. The
�
-

#
model is

used in the first layer of blocks surrounding the geometry, see section 5. To prevent unphysical

high values of
�

near stagnation points, the production term in the
�
-equation has been limited to

a maximum of
� �

times the dissipation term in the
�
-equation.

At the ’inflow’ parts of the far-field boundary, the free-stream values of the turbulent variables are

computed from the free-stream turbulent Reynolds number (
� � � �

in the present simulations) and

the free-stream dimensionless turbulent kinetic energy (
�  � �� � � � � �

in the present simulations).

2.4 Solution procedure

Employing the discretization scheme as described above, a time-dependent system of ordinary

differential equations results. This system of equations is integrated towards a steady-state solution

by an explicit Runge-Kutta scheme. To increase convergence, local time stepping and residual

averaging may been used. Finally, convergence may be accelerated by a multi-grid scheme using

a W-cycle with 5 pre- and post-relaxations on each of the multi-grid levels.
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3 Grid convergence strategy

For non-linear CFD codes, like the flow solver ENSOLV, it is not possible to establish global error

estimates a priori. This observation holds even for the specification of the order of accuracy in

terms of a representative mesh size

. The numerical algorithm incorporated in the flow solver

ENSOLV is locally second-order accurate, except in specific regions near shock waves and near

strong grid non-uniformities where it is first-order accurate. Hence, the algorithm features a mix

of first- and second-order accuracy.

In the absence of a global error estimate, it is assumed that for some neighborhood
� �  �  � � �

,

the global accuracy of the CFD solution on a family of successively refined grids depends on the

relative mesh size

. The total drag coefficient computed on such a sequence of nested grids can

be represented either by a quadratic extrapolation

� �
"  * �

� � � 	 �
% �

�  % �
�  �

(1)

or by

� �
"  * �

� � � 	 �
% �

�  � 

(2)

where
�

� through
�

� denote extrapolation constants and� � � 	 � is the configuration drag coefficient

for vanishing mesh width.

The strategy is to solve the Navier-Stokes equations on three different grids for application of

Eq. 1, or on two different grids for application of Eq. 2, such that these equations allow the

constants (including the grid-converged values� � � 	 � ) to be calculated. The combination of the

grids and the extrapolation method used is given in Tab. 1. The required sequence of nested grids

Equation 1 1 2 2

h=4-grid � - - -

h=2-grid � � � -

h=4/3-grid - � - �

h=1-grid � � � �

Table 1 Grid levels used for grid convergence study.

as displayed in Tab. 1 is best generated through successive grid coarsening of an initial ’fine’ grid,

such that the successive grids feature constant characteristics in terms of the cell angles, cell aspect

ratios and cell stretchings. Therefore, a computational grid (h=1) of sufficient quality is generated

first. The h=2-grid is produced by deleting alternately grid points from the h=1-grid. The h=4-grid

is produced in the same manner from the h=2-grid. An ’intermediate’ (h=4/3) grid belonging to
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the same family (cell angles, cell aspect ratios and cell stretchings) is generated directly by the

grid generator using�
 �

of the number of grid points in each direction compared to the h=1-grid.

Application of Eq. 1 using the h=4-grid holds the risk that the main flow features, such as shock

waves, are insufficiently resolved on the h=4-grid.
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4 Total drag breakdown

An alternative approach to drag calculation, using only one grid level, is the so-called ’far-field

approach’ instead of the (near-field) surface integration. Following this ’far-field approach’ and

making some simplifying assumptions, one can decompose aerodynamic drag into its three ’phys-

ical’ components, i.e. induced or vortex drag (due to trailing, streamwise vorticity), viscous drag

(due to turbulent dissipation in boundary layers and wakes) and wave drag (due to viscous dissi-

pation in shock waves). In addition to these drag components also spurious drag, which is neither

vortex drag, viscous drag or wave drag, may be present. The combination of viscous drag, wave

drag and spurious drag is referred to as entropy drag. It is observed that aerodynamic designers

generally favor this ’far-field approach’ because of its diagnostic potential.

The calculation procedure is as follows (see also Refs. 2, 5 and 7). First, the total drag is split into

its vortex and entropy drag components. The vortex (induced) drag, which is associated with the

generation of lift, can be computed by observing the vorticity component parallel to the free-stream

velocity vector on a so-called ’Trefftz plane’ (denoted by
� �

) located at some distance downstream

of the configuration. A vortex drag algorithm based on the vorticity (
�
)-streamfunction (

�
) for-

mulation is used, because the vorticity is non-zero in only a limited area of the ’Trefftz plane’ and

therefore the integration is to be performed only over this limited area. Also the value of the vor-

ticity/stream function integral is fairly insensitive to the exact streamwise location of the ’Trefftz

plane’. Thus the vortex drag coefficient can be computed from

� � vortex
�

�
�

ref

� � � �

� � �
ref

�

� �  �
ref � �

Since the entropy drag integral over the ’Trefftz plane’ does not allow to distinguish between wave

drag, viscous drag and spurious drag, a methodology has been derived to enable the computation

of each of the three drag types. This is accomplished by the transformation of the surface integral

over the ’Trefftz plane’ into a volume integral over the flow field domain
�

in the following

divergence form

� � entropy
�

�
� � �� �

ref

� � � � 
 � � �

� � �

� �

� � �
� � � � �

with 
 � � �

� � �
� �

�
%

� % " � � � * � ��

� � � ��

� � �

� � �

This volume integral can be evaluated in
�

on a cell by cell basis. In these equations
� �

denotes

the entropy increase relative to free-stream condition,
�

the gas constant and� the specific heats

ratio. An automated zonal detection algorithm is used to assign the drag resulting from each cell
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to either the wave drag, the viscous drag or the spurious drag. If the value of a shock sensor (based

on the local velocity vector and the local pressure gradient) exceeds the threshold value for shock

wave cells, the entropy production in the grid cell is assigned to the wave drag. On the other

hand, the entropy production in a grid cell is assigned to the viscous drag if the value of a viscous

sensor (based on the dissipation function associated with the fluid viscosity) exceeds the threshold

value for boundary layer and wake cells. Finally, if the entropy production in a grid cell can not

be assigned to the wave drag or the viscous drag, it is assigned to the spurious (or non-physical)

drag. This spurious drag is not added to the total drag balance and in this way the contribution

of numerical errors resulting from the flow solver is left out. In this way, this method presents a

complementary approach to the grid convergence strategy described in section 3.

The above described drag classification algorithm has been coded into the code AIRDRAG, Ref.

2, which interfaces to the various block-structured, unstructered and hybrid flow solvers by reading

in the data (state vector) of the 3D flow field in TECPLOT format.
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5 Computational grid

5.1 Topology

For test cases two, three and four (see section 6, a multi-block structured grid has been generated

using the domain modeler ENDOMO and the grid generator ENGRID, both part of the ENFLOW

CFD system. The overall topology of this so-called ’NLR’ grid is an O-O-topology.

The topology around the DLR-F4 wing/body configuration consists of three layers of blocks. The

first layer of blocks has been generated using the ’off-set’ method. This method automatically

creates a block by translating a surface patch (36 in total for the present wing/body configuration)

in the surface normal direction over a specified off-set distance. The off-set distance has been

taken relatively large, i.e.
� �

mm or
� �

�
� �

aerodynamic mean chord lengths. The off-set distance

has been taken this large in order to minimize the effect of block boundaries, which are a potential

source of numerical errors, on the computation of the aerodynamic drag coefficients. See Fig. 1(a)

for the resulting block decomposition. This layer of blocks comprises the viscous boundary layer

around the configuration. During the surface grid generation process, the open trailing edge of the

wing has been closed at the fuselage and at the wing tip to simplify the topology generation. In

contrast to the ’DPW’ grid, the faces leaving the trailing edge converge into one edge.

Both the second and the third layer of blocks have been generated using the ’potential’ method.

This method can be best explained by considering the electrostatic field that is generated by two

perfectly conducting closed surfaces, featuring different constant electric potential values. One of

the surfaces coincides with the surface of the aircraft configuration, whereas the other surface is

the far-field bounding box, which entirely encloses the aircraft configuration. A potential problem

is defined by introducing
�

as a harmonic function satisfying the Laplace equation. The solution

of the Laplace equation yields the potential function
�

. Next, the electric field-lines are calculated

by taking the gradient of
�
. These field-lines can be considered as block-edges. For more details

of this method, see Ref. 8. In order to obtain a smooth convex shape for the exterior surface of

the second layer of blocks, four blocks are added to the first layer of blocks to make the shape of

the exterior surface of this layer of blocks more convex, see Fig. 1(b). The obtained topologies

are illustrated in Figs. 1(c) and 1(d). The resulting topology around the DLR-F4 wing/body

configuration consists of
� � �

blocks; whereas the distance from the configuration to the far-field

boundary equals� � aerodynamic mean chord lengths.

5.2 Grid

Using the above described O-O-topology, a grid has been generated with the grid generator EN-

GRID, part of the ENFLOW CFD system. The first layer of blocks, i.e. the layer used for the

viscous boundary layer computation, contains
� �

grid points in the surface normal direction. The
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width of the first grid cell in the surface normal direction is
� � � � � �

mm. This value was found to

be sufficient to guarantee a value of� � equal to one. The number of grid points in the boundary

layer turned out to be approximately�
�
. The maximum growth rate of the cell width in this layer

of blocks in the surface normal direction equals
� �

� . The second and third layer of blocks both

have
� �

grid points in the surface normal direction.

The resulting grid (see Figs. 2(a)-2(b) for details of the grid in the symmetry plane and around

the configuration nose) contains
� �

�
� � � � 	 �

grid cells. This grid is referred to as the h=1-grid.

In order to perform a grid convergence study (see section 3) additional grids have been created

by alternately deleting grid points from the h=1-grid. In this way, a h=2-grid containing�
� � � � 	 �

grid points and a h=4-grid containing
� � �

� �
�

grid points have been generated. In addition, an

’intermediate’ grid, referred to as the h=4/3-grid and characterized by the same cell angles, cell

aspect ratios and cell stretchings as for the other grids, has been generated directly by the grid

generator using�
 �

of the number of grid points in each direction compared to the h=1-grid. This

’intermediate’ grid contains
� � � �

�
�

�
�

� grid points.
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6 Test cases

Flow field simulations have been performed for the DLR-F4 wing/body configuration. These

simulations include

(i) a single point simulation (
� � � � � 	 �

and � � � � � � � � � � � � � �
) (test case one),

(ii) drag polar simulations for
� � � � � 	 �

and  = �

�
�
, �

� �
, �

� �
,

� �
,

� �
,

� �
(test case two),

(iii) constant-� � -Mach-sweep simulations for� � � � � � � � � � � � � �
(test case three) and

(iv) simulations to obtain the drag rise curve for� � � � � � � � � � � � � �
, � � � � � � � � � � � � � �

(i.e.

identical to test case three) and� � � � � � � � � � � � � �
(test case four).

For all simulations, the Reynolds number
� �

based on the aerodynamic mean chord equals�
� � � �

.

An overview of the simulations for test case one, three and four is given in Tab. 2.

The simulation for test case one has been performed on the ’DPW’ grid which has been provided

by the ’AIAA Drag Prediction Workshop’. The simulations for test cases two, three and four have

been performed on the ’NLR’ grid described in section 5. However, to compare the results ob-

tained with the ’DPW’ grid and the ’NLR’ grid, test case one has also been performed using the

’NLR’ grid, whereas test case three also has been performed using the ’DPW’ grid.

During all simulations, grid sequencing has been used. For the simulations on the ’DPW’ grid

(test case one and three),
� � � �

iterations are performed on the h=2-grid at a fixed angle of attack.

The results of this simulation are input to the simulation on the h=1-grid using the same fixed an-

gle of attack. On this grid
� � �

iterations have been performed. Finally, a constant-� � simulation

using
� � � �

iterations is done on the h=1-grid using the results of the h=1-grid simulation with a

fixed angle of attack as initial condition. The simulations on the ’NLR’ grid (case one to four)

start with
� � � �

iterations on the h=4-grid using a fixed angle of attack. Next, the simulation is

continued at the same fixed angle of attack on the h=2-grid for
� � �

iterations. Then, a simulation

on the h=1-grid is performed. On this grid
� � �

iterations have been performed. Finally, for test

case one, three and four, a constant-� � simulation is carried out on the h=1-grid using the results

of the h=1-grid simulation with the fixed angle of attack as initial condition. For this simulation
� � � �

iterations have been used.

In addition to the above described test cases, a grid convergence study and a total drag breakdown

analysis have been performed for
� � � � � 	 �

and  � � �
. For the grid convergence study using

the ’NLR’ grid an additional simulation on the h=4/3-grid has been performed (see also section

3). For the simulation on this grid
� � � �

iterations have been used.

For all simulations, local time stepping, multi-grid and residual averaging has been used to ac-

celerate convergence. On both the ’DPW’ grid and the ’NLR’ grid, converged solutions were

obtained with the above given numbers of iterations.
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The present simulations have been performed on the NLR NEC SX-5/8B parallel vector super-

computer with 64GByte memory, using one processor.
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7 Results

7.1 General results

The results of the single point (
� � � � � 	 �

and � � � � � � � � � � � � � �
) simulation on the ’DPW’

grid and the ’NLR’ grid (h=1) are shown in Tab. 3. The total drag coefficient obtained on the

’DPW’ grid is
�

�
� �

drag counts higher than that obtained on the ’NLR’ grid (h=1). This difference

is mainly due to a higher (
� � � �

drag counts) pressure drag coefficient on the ’DPW’ grid. The

friction drag coefficient differs slightly on both grids (only
� � �

drag counts).

Tab. 4 summarizes the results of test case two, i.e. the drag polar simulations for
� � �

� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � �

� � � �

� � � �
� � � �

� � 	 �
� � � �

� � 	 �
� � � � �

� � 	 �
� � � �

� � 	 	
� � � �

� � 	
�

� � � �

� �
�

�
� � � �

Table 2 Matrix containing test cases one (� ), three (� ) and four (� ).

� � 	 �
. In Figs. 3(a)-3(c), the results are compared with results of the experiments on the DLR-F4

wing/body configuration performed in the NLR-HST wind tunnel (see Ref. 1). The agreement of

the experimental and numerical results is generally fair. The� � - � � -curve shows good agreement.

Note that the data point for which the free-stream Mach number
� �

equals
� � 	 �

and the angle

of attack  equals
� �

is used to apply the grid convergence study (section 3) and the total drag

breakdown analysis (section 4), see section 7.2.

The results (both on the ’NLR’ grid and the ’DPW’ grid) of the constant-� � -Mach-sweep (� � �

� � � � � � � � � � �
) simulations, i.e. test case three, are displayed in Tab. 5. This table shows that the

total drag coefficients obtained on the ’DPW’ grid for all conditions exceed the drag coefficients

obtained on the ’NLR’ grid. The difference is increasing with increasing Mach number. The

higher total drag values on the ’DPW’ grid are mainly due to a higher pressure drag values on this

grid.

Finally, the results of test case four (drag rise curve for� � � � � � � � � � � � � �
and

� � � � � � � � � � �
) are

shown in Tabs. 6-8. These simulations have been performed on the ’NLR’ grid (h=1).
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7.2 Grid convergence study and total drag breakdown for
� � � � � 	 �

and  � � �

The data point (
� � � � � 	 �

,  � � �
) has been further explored performing both a grid conver-

gence study (section 3) and a total drag breakdown analysis (section 4).

The combinations of the grids and the extrapolation method used for the present grid convergence

study are shown in Tab. 1. Tab. 9 shows the total drag coefficients as well its two components, the

pressure drag coefficient and the friction drag coefficient, on the sequence of grids (’DPW’ grid,

h=2 and 1 and ’NLR’ grid, h=4, 2, 4/3 and 1). The values obtained from grid extrapolation (h=0)

are shown in Tab. 10. These results are also depicted in Figs. 4(a)-4(b), showing the total drag

coefficient as function of the relative mesh size h. Tab. 10 shows that the extrapolated values (h=0)

on the ’NLR’ grid, resulting from the two extrapolations (Eqs. 1 and 2) and various sequences of

grid sizes, agree very well. The difference between the highest and the lowest extrapolated value

is only
� � �

drag counts. The extrapolated value using the ’DPW’ grid (h=1 and 2) is approximately
	

drag counts higher than the values using the ’NLR’ grid.

The results of the total drag breakdown analysis computed by the code AIRDRAG on the ’DPW’

grid (h=1) and the ’NLR’ grid (h=1) are shown in Tab. 11. Two downstream locations for the ’Tre-

fftz plane’ have been used, i.e.� Trefftz
� � � � �

mm (
� � � � �

aerodynamic mean chord lengths behind

the plane) and� Trefftz
� � � � �

mm (�
� � �

aerodynamic mean chord lengths behind the plane), in

order to investigate the influence of this location on the results, in particular the influence of nu-

merical dissipation of vorticity for increasing downstream location. Figs. 5(a)-5(f) (’DPW’ grid

(h=1)) and 6(a)-6(f) (’NLR’ grid (h=1)) present for both location of the ’Trefftz plane’ the dis-

tribution of the non-dimensional streamwise vorticity over the ’Trefftz plane’ (upper figures), the

grid cells which are identified as shock wave cells by the shock sensor at a number of stations

on the wing, including the level of entropy increase with respect to free-stream
� �  �

in each

cell (middle figures), and the grid cells which are identified as viscous cells (both in the boundary

layer and in the wake) by the viscous sensor at the spanwise stations on the wing (lower figures).

Regarding these figures the following remarks can be made:
� The vorticity is dissipated faster in the ’NLR’ grid having an O-O-topology than in the

’DPW’ grid having an H-H-topology (compare Figs. 5(a)-5(b) and 6(a)-6(b) for� Trefftz
�

� � � �
mm), resulting in a larger decrease of the vortex drag when moving the ’Trefftz plane’

from � Trefftz
� � � � �

mm to � Trefftz
� � � � �

mm (
� 	 � �

drag counts on the ’NLR’ grid vs.
� �

drag counts on the ’DPW’ grid).
� The wave drag found using the ’DPW’ grid is slightly higher than that found using the

’NLR’ grid (
� � �

and
� � �

drag counts vs.
� � �

drag count, respectively). The ’DPW’ grid

results, however, show some spurious wave drag contributions at the block boundaries above

the wing.
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� The viscous drag computations show a variation of
� � �

drag counts on the ’DPW’ grid

and
� � �

� drag counts on the ’NLR’ grid. Both grids suffer from spurious viscous drag

contributions in the wake region. For the ’DPW’ grid also some spurious contributions to

the viscous drag at the block boundaries above the wing are present.

The total drag obtained by this ’far-field approach’, i.e.� � far-field , equals
� � 	 �

� drag counts on

the ’DPW’ grid (h=1) and
� � � � �

drag counts on the ’NLR’ grid (h=1) when using� Trefftz
� � � � �

mm, i.e. the solutions with the least amount of vorticity dissipation. These values are higher

than those obtained from the grid convergence study (
	 � �

drag counts higher on the ’DPW’ grid

and
� � � �

�

� � � 	
drag counts higher on the ’NLR’ grid). It should, however, be noted that the

’NLR’ grid is more suited for a grid convergence study based on near-field data than for a ’far-

field approach’, due to its O-O-topology, which clusters the grid points around the aerodynamic

configuration. Applying this ’far-field approach’ to a sequence of nested grids, it yields the same

grid-converged drag results for consistent RANS solvers.
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8 Concluding remarks

In this report the contribution of the National Aerospace Laboratory NLR to the ’CFD Drag Predic-

tion Workshop’ organized by the AIAA in Anaheim, CA, on June 9-10, 2001, has been presented.

Two methods to obtain the drag coefficients have been discussed. The first method extrapolates

the drag coefficient to zero mesh width from a sequence of nested grids. One should, however,

note that in order to obtain good results using this method, the main flow features, such as shock

waves, should be well resolved on all grids used. This method yields the grid-converged drag.

The second approach to calculate the drag coefficients is the so-called ’far-field approach’. This

method is applied to one grid level only. This approach decomposes the aerodynamic drag into its

three ’physical’ components, i.e. vortex drag, viscous drag and wave drag. A good grid quality,

for example in terms of vorticity convection, is required for this method to obtain accurate results.

Because of its diagnostic potential, this method is helpful to aerodynamic designers. If applied to a

sequence of grids, this method yields the same grid-converged drag results as the grid convergence

study for consistent RANS solvers.
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Table 3 Results of test case 1 (
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 � � �
) on the ’DPW’ and ’NLR’ grid

(h=1).
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�

Table 4 Results of test case 2: drag polar (
� � � � 
 � �

) on the ’NLR’ grid (h=1).
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Table 5 Results of test case 3: constant-� � -Mach-sweep (� � � � 
 � � � � � 
 � � �
) on the ’DPW’ grid and

the ’NLR’ grid (h=1).
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Table 6 Results of test case 4: Mach/� � -matrix (Drag rise curve) (� � � � 
 ! � �
) on the ’NLR’ grid (h=1).
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Table 7 Results of test case 4: Mach/� � -matrix (Drag rise curve) (� � � � 
 � � � � � 
 � � �
) on the ’NLR’

grid (h=1).
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Table 8 Results of test case 4: Mach/� � -matrix (Drag rise curve) (� � � � 
 $ � � � � 
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) on the ’NLR’

grid (h=1).
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Table 9 Drag data for
� � � � 
 � �

and '
� � )

on the ’DPW’ grid and the ’NLR’ grid.
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Table 10 Grid convergence study for
� � � � 
 � �

and '
� � )

on the ’DPW’ grid and the ’NLR’ grid

(see also Tab. 1).
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Table 11 Total drag breakdown data for
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and '
� � )

on the ’NLR’ grid (h=1).


























