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Abstract

This research paper was inspired by the difference of findings in empirical learning-curve-data

collected by ourselves and those of Newell and Rosenbloom (1981), who analysed empirical

data-sets from other investigators to prove the ubiquity of the Power Law of Practice. The aim

of this paper is to show some fundamental statistical and numerical flaws associated with Power

Law analysis in this research literature. Additionally, we present the results from analysis of

empirical data that reveals the low predictive value of the Power Law of Practice, using least-

squares non-linear regression technique to find the best fitting estimate for the free parameters

of the Power Law. These exercises lead us to the recommendation to take account of these

flaws, for example, when considering application of the Power Law of Practice in adaptive

training or intelligent tutoring.
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1. Introduction

We have been searching for some time for a psychological model that successfully predicts the

learning curve for students acquiring complex skills in the aviation domain. An example of this

is the prediction of the learning curve of military pilots who learn to fly a specific mission. The

model we were looking for would be able to predict the course of trainees’ future task

performance on the basis of past performance, that is, on the basis of a series of previous trials

performed on the task. With future task performance, we mean the performance level that is

reached at the end of the training, i.e. after a specified number of training trials or after a

specified amount of training time.

When used in an adaptive training device (e.g. a suitably equipped flight simulator), it would be

possible, with the use of such model, to optimally adapt the learning environment. We could, for

example, adapt the complexity of the training task or we could adapt the feedback to the trainee.

An accurate prediction of future task performance could lead to the optimal adaptation. In fact, a

predictive model would actually be indispensable in an adaptive training device (or intelligent

tutoring device) for training complex skills. After all, from a didactical point of view, the

ultimate aim of a training system is to influence future task performance-- that is, to deliver a

skilled operator after training. In this respect, a training provider could either attempt to attain

the highest skill-level possible for its trainees, given the training time available, or alternatively,

attempt to reach a specified skill-level in the shortest training time possible. In either case, the

output variable that must be controlled by the adaptive logic is future task performance, rather

than momentary task performance. For example, special instructional feedback that is

automatically generated on the basis of momentary task performance may temporarily improve

this performance, but transfer-of-training to future task performance is by no means guaranteed,

other than by trial-and-error, as long as it is unknown how longer-term learning behaviour is

affected. When we encountered the well-known “Power Law of Practice” we initially had the

impression that we had found an almost perfect model for implementation in an adaptive

training device and to predict the future course of performance in skill learning. The Power Law

of Practice is a quantitative formulation of the learning curve that predicts the time (speed) to

perform a practice trial from the number of trials previously performed. The Power Law in its

most simple form is based on two free parameters, that may be interpreted as learning speed and

initial trial time, and can be adjusted for the particular data under examination. Given a history

of trial times, those two parameters could be estimated through curve fitting (using regression

analysis for finding the best fit) and with the parameter estimations, future trial times could be

predicted. The literature (see Newell and Rosenbloom, 1981) reported extremely good fits (most

often 90% to 100% of the variability accounted for) of the Power Law model to a wide range of

experimental data-series. In fact, unusually good fits for a psychological model, especially for

the fuzzy, relatively ill-understood, realm of learning behaviour. If this was true, one could

make almost perfect predictions on the basis of the Power Law.
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Roessingh (1993) implemented the Power Law model in a training device used for training

complex perceptual-motor skills and conducted a practical training experiment with it. Analysis

of the resulting data-set revealed the weak predictive power of the Power Law, despite the great

deal of empirical evidence (Newell and Rosenbloom, 1981, Logan, 1988, 1992) supporting its

use.

2. Measuring on learning processes

The learning process during repetitive practice training is reflected in the performance measured

over a limited number of (most often) equal time periods or time intervals. The graphical

depiction hereof is generally called the learning curve. Since Bryan and Harter (1899)

investigated the learning processes of telegraph operators (the auditory receiving of coded

messages and the simultaneous typing thereof), there has been a search for characteristic

features of learning curves for complex skills (see e.g. Hilgard, 1962, Pew, 1966, Newell and

Rosenbloom, 1981, Spears, 1985, Damos, 1991). Some of those features are:

- slowing down of improvement after a first few trials

- improvement over extensive periods of time

- unstable, variable performance during the early stage of practice

- false asymptotes (plateaux)

Performance data is most often based on a quantitative or quantitised variable, such as, in the

case of the telegraph operators, the ‘count’ of correct received Morse code signals per unit time

or time period.

With performance measurements on the basis of such counts, the time period over which the

count is derived, will also determine the ‘shape’ of the learning process. For example, if we

would choose, for the case of a telegraph operator, a time period of two hours over which

correct received Morse signals would be counted, then after ten hours of training we would have

collected five counts and maybe conclude that the learning curve of a particular operator is

steadily rising. While, if we would base our counts on five-minute-periods for the same

telegraph operator, the 120 collected data-points might reveal several dips, peaks, plateaux and a

bearing towards an asymptote of the learning curve.

From this trivial example, it is obvious that the question “learning or not learning?” from

practice can not unambiguously be answered by just analysing the learning curve, since its

appearance will be determined by the time intervals or periods over which performance is

counted, integrated or averaged.
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Curve-fitting techniques have been used in research to discover functional relationships between

(change in) performance and practice trials undertaken. For example, Spears (1985) used

logistic and exponential curves. These functions seemed to describe the learning curve fairly

well. These functions can only be considered as compact descriptions of data; Spears did not

assign a psychological meaning to the parameters in the functions and thus did not provide a

clarification for the learning process.

The time required to complete a self-paced task is generally seen to decrease with practice. In

this case, clarifications have been provided for the widely observed regularity in learning

processes that time-periods to complete practice trials on a certain task decrease with a power

function with the number of trials practised. The “power speed-up” in practice-trials has been

observed with the learning of various perceptual motor skills, for example in Crossmans’s

(1959) data on the manufacture of cigars by female operators using a cigar-making machine.

Power speed-up has been observed also in more cognitive oriented skills such as elementary

decision making, i.c. the time needed to react to specific events, given a number of alternatives

(Seibel, 1963), problem solving (the time needed to finish a solitaire game), recognition (the

time needed to recognise word combinations in changing contexts) and many more skills. An

inherent restriction of the Power Law is its applicability to self-paced tasks only. If the pace

with which the fixed task must be performed is dependent on external factors or determined by

an external agent, than the Power Law will not apply. For example, an air pilot that flies a

standard pattern around an airfield must follow Air Traffic Control directives in terms of speed

and position. Trial-times on this task (flying a standard pattern) will be fairly constant and not or

only marginally depend on the skill level of the pilot. The Power Law will therefore not apply.

Newell and Rosenbloom (1981) provide an overview of clarifications based on cognitive

learning theory. Logan (1992) even remarks that every serious learning theory should account

for “power speed-up”.

3. Power Law of Practice

The power speed-up has been formulated as the Power Law of Practice. The general form of

this model is:

TN = TA + b (N + N0)
-a

In which:

- the independent, discrete variable N, is the number of trials that has been performed to

(successfully) complete specific task (for example, to manufacture a cigar, as in the

Crossman-example). Thus N is the count or rank-number of the trial (N ≥ 1);
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- the dependent variable TN [seconds] is the time to perform the Nth trial, e.g. the time to

manufacture a cigar in the Nth trial. It must be noted that the Power Law only considers the

times to (successfully) achieve trials on a fixed task. Thus, the Power Law takes into

account speed-based performance only, and therefore, successful achievement of a fixed

task or trial should be defined such that accuracy is fixed (not variable) from trial to trial.

For example, in the case of cigar-manufacturing, it must be specified what accuracy is

required in manufacturing a cigar.

- Parameter TA [seconds] is the asymptotic lower bound for the time to perform a trial. That

is, after infinity trials it would take a particular operator TA seconds to manufacture a cigar.

- Parameter N0 is a measure for previous experience, expressed in number of trials. If a

learner has already practised with a similar skill this would be taken into account by

parameter N0.

- Parameter b [seconds] is that part of the time to perform a trial that can be eliminated

through practice. After infinity trials, the trial time would diminish with b seconds, when

compared with the first trial. If we suppose that N0=TA=0, then b can be considered as the

trial time for the first trial, that is, a measure for initial performance.

- Parameter a is a measure for the rate with which trial times diminish (the learning rate

parameter). On the basis of the analysis of numerous experimental data sets Newell and

Rosenbloom estimated a-values to be in the range from zero to 1 (depending on the

characteristics of the task and the operator).

Fig. 1  Power Law: TN = b * N-a  (a=0.5; b=100 s)

To keep the discussion sufficiently basic, we will use the simple (and original) form of the

Power Law (see figure 1) throughout this section. That is, without the parameters TA and N0.

The current discussion is relevant for either form of the Power Law, but since the two extra

parameters have additional associated complexity and difficulties, these parameters will not be

discussed here.
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Now that we have introduced the Power Law to the reader, we will specifically address two

flaws encountered in the literature. In our view, these flaws have led to overly optimistic

conclusions about its ubiquity in skill learning and hence its applicability and importance for

cognitive psychology.

4. Log-log transformation and goodness-of-fit

We checked the models’ goodness of fit using our own data sets, to help assess the usefulness of

the model. The goodness-of-fit of the Power Law, and thereby its validity as a description of

learning behaviour, has in the empirical literature been measured by the value of r2 (that is the

squared ‘coefficient of correlation’, or, when multiplied by 100%, the ‘percentage of the

variance accounted for’ or ‘coefficient of determination’). Newell and Rosenbloom but also

Anderson (1983) and others have found values of r2 that are close to 1 (100%) for Power Law

curve fitting to experimental learning curve data. Thus, these researchers found an almost

perfect fit of the Power Law model to the data for a large number of different skills.

The first question that arises is: what method is used in establishing these high values of r2 ? The

answer is as straightforward as complicating. The Power Law is transformed to a linear function

using log-log transformation as follows:

- TN              = b * N –a  the power function can be rewritten as:

- log(TN ) = log(b * N -a ) or:

- log(TN ) = log(b) - a * log(N) or:

- log(TN ) = b’ - a * log(N)

Thus, following this procedure the power function becomes a linear function when plotted in

logarithmic co-ordinates (see figure 2), that is a straight line with intercept b’ = log(b) and

slope a.

Fig. 2  Power Law (a= 0.5, b=100) plotted in normal (left side) and logarithmic (right side) co-

ordinates
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Having achieved this, the parameters a and log(b) can be estimated using the method of least

squares, using the logarithmic transformed raw data and assuming a simple linear regression

model.

A second question then immediately arises; why should one use log-log transformation? The

most probable answer is that to estimate free parameters a and b in the Power Law: TN = b * N -a

is rather complicated, requiring a non-linear regression technique, where estimation of a and b’

= log(b) in the “log-log linear” model is fairly easy when least squares linear regression is used.

Thus, the analysis of log-log linear model in combination with least squares linear regression

has led to good results in the literature: a high percentage of data variance accounted for.

An additional reason for the log-log linear model could be the easy graphic representation and

visual inspection of the deviation of raw data points with respect to the model (see figure 3,

bottom).

Newell and Rosenbloom refer to the log-log linear law as if it were identical to the Power Law

Fig. 3  Observed trial times plotted in normal and logarithmic co-ordinates
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(‘we shall refer to this law variously as the log-log linear learning law or the power law of

practice’, Newell and Rosenbloom, 1981, page 3). We comment on this practice by considering

the consequences of log-log transformation. Our argument is that logarithmic transformation of

the observations (trial times) smoothes errors in the observations in a non-linear way (see figure

3). It is easy to contemplate that observations with a positive deviation (or residual) with respect

to the best fitting power law curve will shrink more than observations with an equally negative

deviation. For example, if the predicted time to perform a trial is 50 [seconds] and we would

observe a value of 75 [s], then the relative deviation would be 50%. And if we would observe a

value of 25 [s], then the relative deviation would also be 50%. Though, in the log-log world, the

predicted value would be log(50)≈1.70. The observed values would be log(75)≈1.88, resulting

in a relative deviation from the predicted value of 11%, and log(25)≈1.40, resulting in a relative

deviation of 18%.

Thus, through log-log transformation, observations with positive deviations with respect to a

predicted mean are more attenuated than observations with negative deviations. It is clear that

the distribution of the data set will change through log-log transformation and will in general

closer resemble the normal distribution, since trial times (and reaction times and the like) tend

to have a skew distribution: it is more likely to observe higher-than-average trial times than

lower-than-average trial times.

As a result, if we estimate the best fitting parameters a and b for the log-log linear model using

least square linear regression, it is well possible that these estimates are different from estimates

that would have been made for the Power Law model using non-linear least squares regression

or another estimation technique. In summary: if the log-log linear model is used in combination

with least squares linear regression to estimate a and b, then estimates for a and b on the basis

of the log-log linear model log(TN )=log(b)-a*log(N) will not necessarily fit the Power Law

TN=b*N-a, depending on the nature of error variability.

What does the log-log linear law mean? It predicts the logarithm of a trial time TN, given the

logarithm of a trial number N. Since this entails a non-linear deformation of time, an entity that

is essentially known or dealt with as being linear in normal life, it is on itself meaningless1.

We could do an inverse transformation on the predicted value log(TN) to make it meaningful.

However, as argued, we may have not estimated our parameters a and b right in the first place.

The adverse consequence could be that small errors in the predicted value of log(TN) will

become large errors in the predicted value of TN, and in a non-linear way, such that small

negative deviations become large negative deviations and small positive deviations become

huge positive deviations. Thus, predictions for TN will not be very reliable, despite the high

                                                     
1
 Unless one would like to take specific advantage of expressing a functional relationship in its logarithmic form. Multiplicative

relationships become additive such that doubling an initial value or cutting it into half amounts to adding or subtracting a fixed
number to its logarithm, like, for example, is done with sound intensities.
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percentage of variance accounted for by log-log linear model. The question may arise whether

Newell and Rosenbloom have estimated parameters a and b on the basis of non-linear

regression, using the Power Law model. It is unlikely that non-linear regression was used, since

the co-efficient of determination r2 is in this case not a reliable measure for goodness-of-fit.

Firstly, the model is non-linear in its parameters. Secondly, with this type of data, data-points

(trial times) measured at the end of the learning process will be arranged around the flat tail of

the Power Law curve. These data-points will therefore not add to the variability accounted for

by the model (r2), since the predicted trial times at the flat tail of the curve are principally

invariable, while the measurements will have some variability due to additive error sources.

This error will thus predominantly lower r2. Thus, the longer the learning process, the more

data-points will be arranged at the tail of the curve and the lower will be the value for r2.

In general, the complementary case will also be true. Trial times measured at the start of the

learning process, that is, at the steep part of the curve, where trial times have a relatively long

duration and will decrease quickly from trial to trial, will yield larger values of variance

accounted for (r2).

In summary: the log-log linear law may well be different from the Power Law in real

applications. We conclude that Newell and Rosenbloom probably applied the calculations of r2

to the log-log linear model and the logarithmic transformed data log(TN) and reported high

values of r2 for the log-log linear law, but did not establish goodness-of-fit for the actual Power

Law.
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5. The Power Law and the speed of learning

In this section we focus on the shape of the learning curve and how this shape is affected by the

value of the “learning rate” parameter a (see figure 4).

Fig. 4  The Power Law of Practice for three values of the learning rate parameter a (0.4, 0.5,

0.6), parameter b (trial time for the first trial) is 15 sec..

According to Newell and Rosenbloom, the parameter a can take any value on the interval [0,1],

predominantly depending on task characteristics. A value of zero denotes zero learning from

trial to trial and a value of 1 denotes “hyperbolic” learning (TN = b/N).

Estimating the parameters of the Power Law in its simplest and most often used form, that is,

without the parameters for asymptote TA and previous experience N0, Newell and Rosenbloom

found indeed values for a on the interval [0,1]. For example, parameter a has been estimated as

0.81 in the data from Neisser et al (1963). The percentage of variance accounted for by  the

simple Power Law was 97.3%.
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In which:

i = the rank-number of the trial,

N = the total number of trials that fits in the total time-on-task Tt.

For ease of exposition we will consider i as a continuous variable and replace Eq. (1) by an

integral (cf. Newell and Rosenbloom, 1981, page 14), such that:

We put that A=(1-a)/b. Eq. (2) will then convert into:

From Eq. (3), we can solve N, the total number of trials that fits into the total time-on-task Tt:

We define Tt = s⋅Ts, that is, we subdivide total time-on-task Tt in s even intervals with duration

Ts. Since we are interested in the count or performance f(s) of the trainee during each

subsequent time interval, we have to determine the number of trials f(s) that fit on each of the

intervals Ts, which can be derived by solving f(s) from Eq. (5), which is a variation of Eq. (1):

Analogous to Eq. (4), Equation (5) will then yield the total number of trials N(s) that will fit into

s subsequent intervals:

We can now determine the number of trials that fits on interval Ts , that is, solving f(s) from Eq.

(5), by determining N(s) - N(s-1):

ib=T+T+...+T+T=T a-
N

1=i
N1-N21t ∑ (1)
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b
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t ∫≈ (2)
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1
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1
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The graph of the obtained performance function f(s) (Eq. 7) is a learning curve, i.e. performance

as a function of time (-interval), on the basis of the Power Law. Hence, the course of learning

over time can be predicted, provided that parameters a and b are known (or estimated). In figure

5 we have sketched three Power Law learning curves for different values of the learning rate

parameter a, that is, for a smaller than 0.5, equal to 0.5 and greater than 0.5.

Fig. 5  The Power Law of Practice plotted as a function of time, for three values of the learning

rate parameter a (0.4, 0.5, 0.6) and two values for TA (0.0 sec., 0.5 sec.), b is 15 sec. for

all curves. Note the improbable shape of the curve for a > 0.5.
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of s will neutralise each other and performance f(s) is linear with time (see the curve in figure
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(a > 0.5) that are assumed in literature (for example, Logan, 1992, page 883) cast some doubt

upon the overall validity of the Power Law.

Note: when the asymptote parameter TA is introduced into the model, a clear deceleration of

performance in the time domain is observed (see figure 4, a=0.5, TA=0.5). However, the

introduction of this additional parameter precludes linearisation of the Power law through the

log-log approach. Using other estimation methods it was found that the cross-correlation of the

estimates of each parameter within the extended Power Law is high, resulting in multiple

solution sets for given input data. Further analysis with parameter TA in the time domain is

outside the scope of this article.

6. Another empirical test for the Power Law

An experiment, suitable for testing the Power Law model, was conducted by Roessingh (1993).

The results presented in this section are based on the data collected in this experiment. The task

that was used was the Space Fortress game (Donchin, 1989). This is a laboratory PC-game,

specifically defined and designed for training research and well described and examined in

literature (Mané and Donchin, 1989, Foss et al., 1989, Frederiksen and White, 1989, Gopher et

al., 1989, Gopher et al., 1992). We select this task for Power Law research since the top-level

strategy of this task essentially requires speed-based performance (‘destroy the fortress as

quickly as possible’). Moreover, like the Power Law, this game is generally associated with

skill, in particular with perceptual-motor skills.

One trial in this game is defined as one destruction of the space fortress using a manual

controlled space ship. With this task and this definition, time-on-task corresponds exactly to the

sum of trial times TN. Thirty-six subjects (male university undergraduates) participated in the

experiment. Time-on-task varied between subjects from 2.5 hours to 16 hours, with 20 minute

breaks between every 40 minutes time-on-task and maximum 80 minutes per day.

Subjects with fewer than 16 hours time-on-task received similar training on simpler versions

(part tasks) of the Space Fortress game, such that all trainees received 16 hours of practice

training over 12 days. Subjects were paid Dfl. 540 (245 Euro) plus Dfl. 150 (68 Euro) bonus

upon completion of the experiment. Laboratory-equipment consisted of the soft- and hardware

needed to host the game, i.e. DOS-PC’s of type 80386SX with a joystick to control the space

ship and a mouse to conduct additional tasks and additional software to record time-on-task Tt

and trial- times TN.

With respect to the data-analysis we restrict ourselves here with the determination of the

accuracy with which the Power Law can be used to predict the number of trials that will fit into
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a fixed amount of time-on-task Tt. In this procedure we use non-linear regression to estimate the

four parameters a, b, TA and N0 for each individual subject on the basis of all observed

TN-values for this subject. For non-linear least squares regression we use the Marquardt-

Levenberg process2 (Press et al., 1989), an iterative process that is advised (Mooiweer, 1991)

when model parameters have a strong cross-correlation.

After convergence of the iterative process we use the estimates of the four parameters, a, b, TA

and NO, to numerically solve the variable N (i.e. the total number of trials fitting in the time-on-

task Tt) for each subject, using the equation:

Subsequently, we compare this predicted Npred with the actual observed total number of trials

Nobs that were performed in time-on-task Tt through calculation of the percentual (relative) error

in Npred with:

The results of this exercise are depicted in the bar-graph of figure 6. Each bar represents the

relative error in Npred for one subject. The subjects have been grouped along the horizontal axis

according to their part-task experience. For example 10/50 is an indication that 10 ‘units’

previous experience was gained on part-task 1 and that 50 ‘units’ previous experience was

gained on part-task 2. Thus, in the 0/0 condition (control condition – 6 subjects), subjects spent

16 hours time-on-task, while in the other conditions subjects spent less time on task (but at least

2.5 hours). Average time-on-task was 10 hours. Average error percentage in Npred is 17%. The

error percentage seems to be larger for subjects with a longer time-on-task (left side of the

bar-graph), although the estimation/calculation of Npred is based on more data for these subjects.

All errors are positive (Npred > Nobs) which points at a systematic error, either in our estimation

or calculation procedure or in the Power Law model.

                                                     
2 We found this non-linear least-squares regression technique lacking robustness for this application. Moreover, convergence of the
iterative process was problematic, making the process rather unsuitable for automatic adaptive training. An improved method is
under study.
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Fig. 6  Errors in power law predictions for the number of trials that can be performed in time-on-

task of known duration. Errors are relative to actual observed numbers for 36 subjects

It is important to realise that this analysis concerns individual data (no group- or averaged data)

and that through this procedure of calculating accumulated trials N over time-on-task Tt, we

eliminated the effects of trial-to-trial variability. It is clear that these results, with considerable

errors between predicted and observed values, do not justify the claim of ubiquity. This analysis

of empirical data has shown that the Power Law is actually a fairly poor predictor in practical

applications with off-the-shelf statistical techniques.

7. Conclusion

For our purposes (adaptive training) we investigated the suitability of the Power Law as a

learning curve model. We checked the Power Law on three aspects: (1) goodness-of-fit, (2)

learning rate parameter, and (3) predictive value.

Firstly, we challenge its supposed goodness-of-fit as reported in the literature (primarily Newell

and Rosenbloom, 1981). We provide a clarification for the unusually high percentages of

variance accounted for by the log-log-linear model by considering the characteristics of log-log

transformation. It is argued that the log-log-linear model is different from the Power Law model

and that the predictions of trial-times using the log-log-linear model is erroneous.

Secondly, we transformed the Power Law into a time curve (performance as a function of time)

and conclude that this curve is super-linear (accelerated performance increments, which is

contrary to the notion of learning) for values of the learning rate parameter a greater than 0.5.

Surprisingly, Newell and Rosenbloom established, on the basis of empirical data, that parameter

relative error (%) per subject in power law prediction
Average error is 16.8% (stdev is 6.2%)

Average time-on-task  is 10 hrs
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a could take any value between zero and 1. For example parameter a has been estimated as 0.81

in the data from Neisser et al. (1963). The percentage of variance accounted for by the Power

Law (or more likely, the log-log linear law) was here 97.3%. This is a second line of evidence

that the curve-fitting technique used by Newell an Rosenbloom may not be appropriate (finding

improbable estimates for parameter a) and that the Power Law does not fit the data very well.

Moreover, this result questions the validity of the Power Law, since both theorists (Logan,

1988, 1992, 1995) and empiricists that assumed ‘power speed-up’ have found values for the

learning rate parameter greater than 0.5.

Thirdly, with respect to the predictive value of the Power Law, we have found large systematic

deviations in its predictions on the basis of empirical data, where we used a non-linear least-

squares regression technique, rather than a linear one.

On the basis of our checks on those three aspects the Power Law, we comment on Logan’s

(1992) statement that ‘every serious learning theory should predict power speed-up’ by stating

that this power speed-up is not necessarily implying the Power Law of Practice in its current

form. We were not able to apply the Power Law as could be expected from literature, which

restricts its application in adaptive training or intelligent tutoring, where a reliable student

learning model is indispensable.
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