
Nationaal Lucht- en Ruimtevaartlaboratorium 
National Aerospace Laboratory NLR 

 
 

 

 
 

NLR-TP-2004-120 

Tracking Multiple Manoeuvring Targets by 
Joint Combinations of Interacting Multiple 
Models and Probabilistic Data Association 
 

H.A.P. Blom and E.A. Bloem 
 
 
 
 
 
 
 
  

This report has been based on a paper presented at (and published in the Proceedings 
of) the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, U.S.A., 
December 9-12, 2003. 
This research has been performed with support of the European Commission through 
the HYBRIDGE project. 
This report may be cited on condition that full credit is given to NLR and the authors. 
 
Customer: National Aerospace Laboratory NLR 
Working Plan number:  AT.1.A.3 
Owner: National Aerospace Laboratory NLR 
Division: Air Transport 
Distribution: Unlimited 
Classification title: Unclassified 
 February 2004 
   
 
 
 

  

 





- 3 -
NLR-TP-2004-120

Summary

For the problem of tracking multiple manoeuvring targets in false and missing measurements the

paper develops a characterization of the exact Bayesian equations of the conditional density. Since

in these exact equations both Interacting Multiple Models and Probabilistic Data Association are

Jointly performed over all targets, we also develop two Joint Interacting Multiple Model Proba-

bilistic Data Association type of filters and compare them with other combinations of Interacting

Multiple Models and Joint Probabilistic Data Association through Monte Carlo simulation for a

simple example.
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1 Introduction

Particle filtering [1] forms an elegant approach towards the numerical evaluation of the exact con-

ditional density in nonlinear filtering and manoeuvring target tracking. As such the aim of this

paper is to develop such a particle filter and to compare its performance with those of Gaussian

approximation type of filters.

A prerequisite for developing a Particle filter is to first characterize the exact conditional density.

In order to prepare for this, the multitarget tracking problem is shown to be one of filtering for a

descriptor system with both i.i.d. and Markovian coefficients [2], [3]. For this descriptor system

we develop a Bayesian characterization of the evolution of the exact conditional density function.

The specialty of this exact equation is that both the IMM step and the PDA step are performed

jointly for all targets. Next, from these exact equations we develop a Joint IMMPDA Particle filter

which evaluates the exact density through using the bootstrap approach of [4]. In addition, a Joint

IMMPDA filter is obtained by adopting a Gaussian approximation of the conditional density for

the joint target state given the joint target mode.

Through Monte Carlo simulations for a simple example, the Joint IMMPDA Particle filter is com-

pared with the JIMMPDA filter and also with the IMMJPDA of [5] and the IMMJPDA* (track

coalescence avoiding IMMJPDA) of [2], [3]. The last two approaches perform the PDA step

jointly for all targets, but the IMM step per single target. Table 1 provides an overview of the

characteristics of these different filtering algorithms, including the single target IMMPDA of [6],

[7]. The paper is organized as follows. Section 2 formulates the filtering problem considered.

Table 1 Characteristics of different filtering algorithms

Joint Joint Hypotheses Hypotheses Particle
measure- manoeuvre merging pruning filter

ments modes

IMMPDA [6],[7] - - yes - -

IMMJPDA [5] yes - yes - -

IMMJPDA* [2],[3] yes - yes yes -

JIMMPDAP [10] yes yes - - yes

JIMMPDA yes yes yes - -

Section 3 develops an exact Bayesian characterization of the evolution of the conditional density

for the state of the multiple targets. Section 4 develops the Joint IMMPDA Particle filter. Section

5 considers the single Gaussian assumption for the joint targets per joint mode value, and presents

the Joint IMMPDA algorithm. Section 6 shows Monte Carlo simulation results.
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2 Problem formulation

Following [2], [3] the problem of tracking multiple linear Markovian mode switching targets in

false and missed detections is formulated in terms of filtering for a jump linear descriptor system

with both Markovian switching and i.i.d. coefficients:

xt+1 = A(θt+1)xt +B(θt+1)wt (1.a)

zt = H(θt)xt +G(θt)vt (1.b)

Φ(ψ∗
t )yt = v∗t if Lt > Dt, (2)

Φ(ψt)yt = χ
t
Φ(φt)zt if Dt > 0 (3)

Target evolution eq. (1.a) and potential measurements (1.b)

The underlying model components of (1.a) are as follows:

xt
4
= Col{x1

t , ..., x
M
t },

θt
4
= Col{θ1

t , ..., θ
M
t },

A(θ)
4
= Diag{a1(θ1), ..., aM (θM )},

B(θ)
4
= Diag{b1(θ1), ..., bM (θM )},

wt
4
= Col{w1

t , ..., w
M
t },

where xi
t is the n-vectorial state of the i-th target at moment t, θi

t is the mode of the i-th target at

moment t and assumes values from M = {1, .., N} according to a transition probability matrix Πi,

ai(θi) and bi(θi) are (n× n)- and (n× n′)-matrices, wi
t is a sequence of i.i.d. standard Gaussian

variables of dimension n′ with wi
t , wj

t independent for all i 6= j and wi
t ,xi

0, x
j
0 independent

for all i 6= j. With this, xt is a vector of size Mn, A(θ) and B(θ) are of size Mn ×Mn and

Mn ×Mn′ respectively, and {θt} assumes values from M
M according to transition probability

matrix Π = [Πη,θ]. If the M targets switch mode independently of each other, then:

Πη,θ =
M
∏

i=1

Πi
ηi,θi , for every (η, θ) ∈ M

M

The coefficients in eq. (1.b) are:

H(θ)
4
= Diag{h1(θ1), ..., hM (θM )},

G(θ)
4
= Diag{g1(θ1), ..., gM (θM )},

hi(θi) is an (m× n)-matrix,

gi(θi) is an (m×m′)-matrix,

vt
4
= Col{v1

t , ..., v
M
t },
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where vi
t is a sequence of i.i.d. standard Gaussian variables of dimension m′ with vi

t and vj
t inde-

pendent for all i 6= j. Moreover vi
t is independent of xj

0 and wj
t for all i,j.

Measurements

We next describe the relation between the potential measurement vector zt and the measurement

vector yt.

yt

4
= Col{y1,t, ..., yLt,t

} is the measurement vector that contains a random mixture of target- and

false measurements within a given volume V . Here yi,t denotes the i-th m-vectorial measurement

at moment t, Lt denotes the number of measurements at moment t within volume V , and Dt de-

notes the number of detected targets at moment t.

False measurements eq. (2)

The number of false measurements at moment t, Ft, is assumed to be Poisson distributed

pFt(F ) = (λV )F

F ! exp
(

−λV
)

, F = 0, 1, 2, . ..

= 0, else

where λ is the spatial density of false measurements (i.e. the average number per unit volume).

Thus λV is the expected number of false measurements in volume V .

v∗t is a column vector of Ft i.i.d. false measurements within volume V . The prior density of these

false measurements is assumed to be uniform on V .

ψ∗
t

4
= Col{ψ∗

1,t, ..., ψ
∗
Lt,t} is a false indicator vector of size Lt (= Ft +Dt) with ψ∗

i,t ∈ [0, 1] the

false indicator at moment t for measurement i. It assumes the value one if measurement i is a false

measurement and zero if measurement i belongs to a target.

In order to select the false measurements by simple matrix multiplication, a matrix operator Φ

is defined, producing Φ(ψ′) as a (0, 1)-valued matrix of size D(ψ′) ×M ′ of which the ith row

equals the ith non-zero row of Diag{ψ′}, where D(ψ′)
4
=

∑M ′

i=1 ψ
′
i for an arbitrary (0,1)-valued

M ′-vector ψ′. To take into account the measurement vector sizem, Φ(ψ∗
t ) needs to be ”inflated” to

the proper size of Dtm by means of the tensor product with Im. To this end, Φ(ψ′)
4
= Φ(ψ′)⊗ Im

with Im a unit-matrix of size m, and ⊗ the tensor product. Hence Φ(ψ∗
t )yt is a column vector that

contains only false measurements from yt.

Target measurement eq. (3)

Equation (3) is a descriptor system [8], with stochastic i.i.d. coefficients Φ(ψt) and χ
t
Φ(φt).

ψt
4
= Col{ψ1,t, ..., ψLt,t} is the target indicator vector, where ψi,t ∈{0,1} is a target indicator at

moment t for measurement i, which assumes the value one if measurement i belongs to a detected
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target and zero if measurement i is false.

To select the target measurements, which are indicated by the target indicator vector, by simple

matrix multiplication, the matrix operator Φ is used again. Hence Φ(ψt)yt is a column vector that

contains target measurements from yt only, in a random order.

φt
4
= Col{φ1,t, ..., φM,t} is the detection indicator vector, where φi,t ∈{0,1} is the detection

indicator for target i, which assumes the value one with probability P i
d > 0, independently of φj,t,

j 6= i, where P i
d denotes the detection probability of target i. {φt} is a sequence of i.i.d. vectors,

and Dt
4
=

∑M
i=1 φi,t denotes the number of detected targets. Hence Lt −Dt is the number of false

measurements. As before, by using the matrix operator Φ, Φ(φt)H(θt)xt is a column vector of

potential detected measurements of targets in a fixed order.

Finally the detected target measurements in the observation vector yt are in random order. Hence

the potential detected measurements of targets need to be randomly mixed. To perform this by a

simple matrix multiplication, a sequence of independent stochastic permutation matrices {χt} of

size Dt×Dt is defined and assumed to be independent of {φt}. To take into account the measure-

ment vector size m, χt needs to be ”inflated” to the proper size of Dtm by means of the tensor

product with Im. To this end, χ
t

4
= χt ⊗ Im with Im a unit-matrix of size m, and ⊗ the tensor

product. Hence χ
t
Φ(φt)H(θt)xt is a column vector of potential detected measurements of targets

in random order.
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3 Exact filter equations

In this section a Bayesian characterization of the conditional density pxt,θt| Yt
(x, θ) is given where

Yt denotes the σ-algebra generated by measurements yt up to and including moment t. In prepa-

ration to this eq. (3) is first transformed following [9].

Because χt has an inverse, (3) can be transformed into

χT

t
Φ(ψt)yt = Φ(φt)zt, if Dt > 0 (4)

We introduce an auxiliary indicator matrix process χ̃t of size Dt × Lt, as follows:

χ̃t
4
= χT

t Φ(ψt) if Dt > 0. (5.a)

and an auxiliary measurement process

ỹt

4
= χ̃

t
yt (5.b)

With this we get a simplified version of (4):

ỹt = χ̃
t
yt = Φ(φt)zt, if Dt > 0, (6)

where the size of χ̃
t

is Dtm× Ltm and the size of Φ(φt) is Dtm×Mm.

The right-hand side of (6) shows that all relevant combinations of detected potential target mea-

surements can be covered by φt hypotheses. The left-hand side of (6) shows that all relevant

selections of sets of target originating measurements out of the set of all measurements, can be

covered by χ̃t hypotheses. Thus from (6), it follows that for Dt > 0 all relevant measurement-to-

target associations can be covered by (φt, χ̃t)-hypotheses. We extend this to Dt = 0 by adding

the combination φt = {0}M and χ̃t = {}Lt . Next, by defining the weights

βt(φ, χ̃, θ)
4
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt},

the law of total probability yields:

pxtθt|Yt
(x, θ) =

∑

χ̃,φ

βt(φ, χ̃, θ)pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) (7)

The terms in the last summation are characterized in the following Proposition.

Proposition 1. For any φ ∈{0, 1}M , such that D(φ)
4
=

∑M
i=1 φi ≤ Lt, and any χ̃t matrix

realization χ̃ of size D(φ) × Lt, the following holds true:

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) =

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1

(x | θ)

Ft(φ, χ̃, θ)
(8)
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βt(φ, χ̃, θ) = Ft(φ, χ̃, θ)λ
(Lt−D(φ)) · [

M
∏

i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1
(θ)/ct (9)

where χ̃
4
= χ̃⊗ Im , and Ft(φ, χ̃, θ) and ct are such that they normalize pxt|θt,φt,χ̃t,Yt

(x | θ, φ, χ̃)

and βt(φ, χ̃, θ) respectively.

Proof: See proof of Theorem 1 in [10].
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4 Joint IMMPDA Particle filter

In this section a JIMMPDA Particle filter of the exact filter characterization of Proposition 1 is

developed following [10].

In order to prepare for a particle filter approach, substituting (8) and (9) into (7) yields

pxt,θt|Yt
(x, θ) =

∑

χ̃,φ

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1

(x | θ)

Ft(φ, χ̃, θ)
·

·Ft(φ, χ̃, θ)λ
(Lt−D(φ)) · [

M
∏

i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1
(θ)/ct (10)

Simplifying (10) and rearranging terms yields:

pxt,θt|Yt
(x, θ) =

∑

χ̃,φ

pỹt|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt,θt|Yt−1

(x, θ) ·

·λ(Lt−D(φ)) · [
M
∏

i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ]/ct (11)

with

pỹt|xt,θt,φt
(ỹ | x, θ, φ) = N{ỹ; Φ(φ)H(θ)x,Φ(φ)G(θ)G(θ)T Φ(φ)T }) (12)

Define

F̃t(φ, χ̃, x, θ)
4
= pỹt|xt,θt,φt

(χ̃yt | x, θ, φ) (13)

Hence from (12) we get:

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]
− 1

2 ·exp{−
1

2
µ̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)
−1µ̃t(φ, χ̃, x, θ)}

(14)

where

µ̃t(φ, χ̃, x, θ)
4
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
4
= Φ(φ)

(

G(θ)G(θ)T
)

Φ(φ)T

Substituting (13) into (11) and rearranging terms yields

pxt,θt|Yt
(x, θ) =

1

ct

∑

χ̃,φ

F̃t(φ, χ̃, x, θ)·λ
(Lt−D(φ))·[

M
∏

i=1

(1−P i
d)

(1−φi)(P i
d)

φi ]·pxt,θt|Yt−1
(x, θ) (15)
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With this we are prepared to specify a particle filter for JIMMPDA. One cycle of this JIMMPDA

Particle filter consists of the following seven steps, where a particle is defined as a triplet (w, x, θ),

w ∈ [0, 1], x ∈ R
Mn, θ ∈ M

M .

JIMMPDA Particle filter Step 1: Start with the mode probabilities

γ̂t−1(θ)
4
= pθt−1|Yt−1

(θ)

and for each θ ∈ M
M a set of Sθ particles in [0, 1] × R

Mn × M
M , i.e.:

{(wθ,j
t−1, x

θ,j
t−1, θ

θ,j
t−1 = θ); j ∈ [1, Sθ], θ ∈ M

M}

with

wθ,j
t−1 = γ̂t−1(θ)/S

θ

Thus in total there are S =
∑

θ S
θ particles.

JIMMPDA Particle filter Step 2: (Interaction) Determine the new set of particles (the weights

wθ,j
t−1 are not changed)

{(wθ,j
t−1, x

θ,j
t−1, θ̄

θ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}

by generating for each particle a new value θ̄θ,j
t according to the model

Prob{θ̄θ,j
t = θ̄ | θθ,j

t−1 = θ} = Πθ,θ̄

JIMMPDA Particle filter Step 3: Determine the new set of particles (the weights wθ,j
t−1 are not

changed)

{(wθ,j
t−1, x̄

θ,j
t , θ̄θ,j

t ); j ∈ [1, Sθ], θ ∈ M
M}

by running for each particle a Monte Carlo simulation from (t− 1) to t according to the model

x̄θ,j
t = A(θ̄θ,j

t )xθ,j
t−1 +B(θ̄θ,j

t )wt−1

JIMMPDA Particle filter Step 4: Determine new weights for the set of particles, i.e.

{(w̄θ,j
t , x̄θ,j

t , θ̄θ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}
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with for the new weights

w̄θ,j
t = wθ,j

t−1 ·
1

ct

∑

χ̃,φ

F̃t(φ, χ̃, x̄
θ,j
t , θ̄θ,j

t ) · λ(Lt−D(φ)) · [
M
∏

i=1

(1 − P i
d)

(1−φi)(P i
d)

φi ]

where

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]
− 1

2 ·exp{−
1

2
µ̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)
−1µ̃t(φ, χ̃, x, θ)}

(16)

with

µ̃t(φ, χ̃, x, θ)
4
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
4
= Φ(φ)

(

G(θ)G(θ)T
)

Φ(φ)T

and ct such that

∑

θ∈MM

Sθ
∑

j=1

w̄θ,j
t = 1

JIMMPDA Particle filter Step 5: θt conditional filter estimates:

γ̂t(θ) =
∑

η∈MM

Sη
∑

j=1

w̄η,j
t 1

θ̄
η,j
t

(θ)

x̂t(θ) ∼=
∑

η∈MM

Sη
∑

j=1

w̄η,j
t x̄η,j

t 1
θ̄

η,j
t

(θ)

P̂t(θ) ∼=
∑

η∈MM

Sη
∑

j=1

w̄η,j
t [x̄η,j

t − x̂t(θ)][x̄
η,j
t − x̂t(θ)]

T 1
θ̄

η,j
t

(θ)

JIMMPDA Particle filter Step 6: θ dependent resampling: Generate the new set of particles

{(wθ,j
t , xθ,j

t , θθ,j
t ); j ∈ [1, Sθ], θ ∈ M

M}

by applying the following equations per θ value:

θθ,j
t = θ

wθ,j
t = γ̂t(θ)/S

θ
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xθ,j
t is the j-th of the Sθ samples drawn from the particle spanned joint conditional density for

(xt, θt) given Yt:

∑

η∈MM

Sη
∑

l=1

w̄η,l
t 1

θ̄
η,l
t

(θ)δ
x̄

η,l
t

(x)

JIMMPDA Particle filter Step 7: MMSE output equations:

x̂t =
∑

θ∈MM

γ̂(θ)x̂t(θ)

P̂t =
∑

θ∈MM

γ̂(θ)
(

P̂t + (θ)[x̂t(θ) − x̂t][x̂t(θ) − x̂t]
T
)
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5 Joint IMMPDA

Although in theory not as optimal as a good particle filter, for practical applications Gaussian ap-

proximations have been proven to be of use. In this section we develop a new one, which adopts

the assumption of a single joint Gaussian per joint target mode. To accomplish this, we use the

following Theorem from [3]:

Theorem 1. For each θ ∈ {1, ..., N}M , let pxt|θt,Yt−1
(x | θ) be Gaussian with mean x̄t(θ)

and covariance P̄t(θ) and let βt(φ, χ̃, θ) and Ft(φ, χ̃, θ) be defined by Proposition 1. Then

Ft({0}
M , {}Lt , θ) = 1, whereas for φ 6= {0}M :

Ft(φ, χ̃, θ) = [(2π)mD(φ)Det{Qt(φ, θ)}]
− 1

2 ·exp{−
1

2
µT

t (φ, χ̃, θ)Qt(φ, θ)
−1µt(φ, χ̃, θ)} (17)

where

µt(φ, χ̃, θ)
4
= χ̃yt − Φ(φ)H(θ)x̄t(θ)

Qt(φ, θ)
4
= Φ(φ)

(

H(θ)P̄t(θ)H(θ)T +G(θ)G(θ)T
)

Φ(φ)T

Moreover, pxt|θt,Yt
(x | θ) is a Gaussian mixture, with overall weight pθt|Yt

(θ), mean x̂t(θ) and its

covariance P̂t(θ) satisfying:

pθt|Yt
(θ) =

∑

φ,χ̃

βt(φ, χ̃, θ) (18)

x̂t(θ) = x̄t(θ) +
∑

φ

φ6=0

Kt(φ, θ)

(

∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)

)

(19)

P̂t(θ) = P̄t(θ) −
∑

φ

φ6=0

Kt(φ, θ)Φ(φ)H(θ)P̄t(θ)

(

∑

χ̃

βt|θ(φ, χ̃)

)

+

+
∑

φ

φ6=0

Kt(φ, θ)

(

∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)µ
T
t (φ, χ̃, θ)

)

·KT
t (φ, θ) +

−









∑

φ

φ6=0

Kt(φ, θ)

(

∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)

)









·

·









∑

φ′

φ′ 6=0

Kt(φ
′, θ)

(

∑

χ̃′

βt|θ(φ
′, χ̃′)µt(φ

′, χ̃′, θ)

)









T

(20)
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with:

Kt(φ, θ)
4
= P̄t(θ)H(θ)T Φ(φ)TQt(φ, θ)

−1 if φ 6= 0,
4
= 0 else

(21.a)

βt|θ(φ, χ̃)
4
= βt(φ, χ̃, θ)/pθt|Yt

(θ) (21.b)

Theorem 1 provides a conditional characterization for the joint targets modes and states given that

for each θ ∈ M
M , the conditional density pxt|θt,Yt−1

(x | θ) is Gaussian. Although this condition is

usually not satisfied, the resulting characterization can be used as an approximation in a recursive

algorithm. We refer to this recursive algorithm as the Joint IMMPDA (JIMMPDA) filter, which

consists of the following six subsequent steps.

JIMMPDA Step 1: Interaction:

For all θ ∈ M
M , starting with the weights

γ̂t−1(θ)
4
= pθt−1|Yt−1

(θ),

the means x̂t−1(θ) and the associated covariances P̂t−1(θ) one evaluates the mixed initial condi-

tion for the filter matched to θt = θ as in IMM [12]:

γ̄t(θ) =
∑

η∈MM

Πη,θ · γ̂t−1(η)

x̂t−1|θt
(θ) =

∑

η∈MM

Πη,θ · γ̂t−1(η) · x̂t−1(η)/γ̄t(θ)

P̂t−1|θt
(θ) =

∑

η∈MM

Πη,θ · γ̂t−1(η) ·

·
(

P̂t−1(η) + [x̂t−1(η) − x̂t−1|θt
(θ)] · [x̂t−1(η) − x̂t−1|θt

(θ)]T
)

/γ̄t(θ)

JIMMPDA Step 2: Prediction for all θ ∈ {1,...,N}M :

x̄t(θ) = A(θ)x̂t−1|θt
(θ) (22.a)

P̄t(θ) = A(θ)P̂t−1|θt
(θ)A(θ)T +B(θ)B(θ)T (22.b)
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JIMMPDA Step 3: Gating, based on [13].

Evaluate for each i and θ the following covariance:

Q̄t(θ) = H(θ)P̄t(θ)H(θ)T +G(θ)G(θ)T

Let Q̄i
t(θ) be the i-th m×m diagonal block matrix of Q̄t(θ).

Subsequently identify for each target the mode for which Det Q̄i
t(θ) is largest:

θ∗it = Argmax
θ

{Det Q̄i
t(θ)}

and use this to define for each target i a gate Gi
t ∈ IRm as follows:

Gi
t

4
= {zi ∈ IRm; [zi − hi(θ∗it )x̄i

t(θ
∗i
t )]T Q̄i

t(θ
∗i
t )−1[zi − hi(θ∗it )x̄i

t(θ
∗i
t )] ≤ γ}

with γ the gate size. If the j-th measurement yj
t falls outside gate Gi

t; i.e. yj
t /∈ Gi

t, then the j-th

component of the i-th row of [Φ(φ)T χ̃] is assumed to equal zero at moment t. This reduces the set

of possible detection/permutation hypotheses to be evaluated at moment t for various φ to X̃t(φ).

JIMMPDA Step 4: Evaluation of the hypotheses by using (9) and (17) as approximation:

βt(φ, χ̃, θ) = Ft(φ, χ̃, θ)λ
(Lt−D(φ)) · [

∏M
i=1(1 − P i

d)
(1−φi)(P i

d)
φi ] · γ̄t(θ)/ct for χ̃ ∈ X̃t(φ),

= 0 else

(23.a)

Ft(φ, χ̃, θ) ∼= [(2π)mD(φ)Det{Qt(φ, θ)}]
− 1

2 ·exp{−
1

2
µT

t (φ, χ̃, θ)Qt(φ, θ)
−1µt(φ, χ̃, θ)} (23.b)

with ct normalizing βt(φ, χ̃, θ), and

µt(φ, χ̃, θ)
4
= χ̃yt − Φ(φ)H(θ)x̄t(θ) (23.c)

Qt(φ, θ)
4
= Φ(φ)

(

H(θ)P̄t(θ)H(θ)T +G(θ)G(θ)T
)

Φ(φ)T (23.d)

JIMMPDA Step 5: Measurement-based update equations, using (18), (19) and (20) as approxima-

tions:

γ̂t(θ) =
∑

φ,χ̃

βt(φ, χ̃, θ) (24)
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x̂t(θ) ∼= x̄t(θ) +
∑

φ

φ6=0

Kt(φ, θ)

(

∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)

)

(25)

P̂t(θ) ∼= P̄t(θ) + other four right hand terms of (20) (26)

with Kt(φ, θ) and βt|θ(φ, χ̃) as in (21a,b).

JIMMPDA Step 6: Output equations:

x̂t =
∑

θ∈MM

γ̂t(θ) · x̂t(θ) (27)

P̂t =
∑

θ∈MM

γ̂t(θ)
(

P̂t(θ) + [x̂t(θ) − x̂t] · [x̂t(θ) − x̂t]
T
)

(28)
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6 Monte Carlo simulations

In this section some Monte Carlo simulation results are given for the JIMMPDA Particle filter, the

JIMMPDA, IMMJPDA* and IMMJPDA filter algorithms, and for an IMMPDA which updates an

individual track using PDA by assuming the measurements from the adjacent targets as false. The

JIMMPDA Particle filter ran on a total of S = 10000 particles, with for each of the four modes

Sθ = 2500 particles.

The four scenarios and underlying model equations are the same as in [2], [3], [10]. The Monte

Carlo simulation results for the four scenarios are presented in Table 2.

Table 2 Monte Carlo simulation results.
Average % Average % Both Tracks

Both Tracks O.K. O.K. or Swapped

1 2 3 4 1 2 3 4

IMMPDA 19 10 6 4 28.34 18.9 8.5 5.6

IMMJPDA 66 56 63 41 99.96 92.5 99.8 76.6

IMMJPDA* 73 68 69 50 100 96.8 100 80.96

JIMMPDAP 75 70 72 57 96.2 94.6 95.8 82.3

JIMMPDA 54 47 52 35 79.6 77.3 80.1 65.6

Average number of Average CPU time

Coalescing scans per scan (in milliseconds)

1 2 3 4 1 2 3 4

IMMPDA 9.7 11.0 18.9 14.5 16 38 14 38

IMMJPDA 1.5 2.1 1.7 2.6 22 54 20 61

IMMJPDA* 0.4 0.3 0.5 0.5 23 48 20 56

JIMMPDAP 1.3 1.4 1.3 1.5 439 7959 438 7810

JIMMPDA 3.3 3.7 3.4 3.8 42 70 37 85

As expected, there is a significant CPU-time increase for JIMMPDA Particle filter relative to the

others. The increase is one order of magnitude for the scenarios without false measurements and

two orders of magnitude for the scenarios with false measurements. For the example considered,

the averages in the tables show that JIMMPDA performs less well than all others except IMMPDA.

In contrast with this, the JIMMPDA Particle filter (JIMMPDAP) outperforms the other filter algo-

rithms when it comes to ”Both tracks O.K.”. Nevertheless, IMMJPDA* performs slightly better

regarding the ”both tracks O.K. or swapped” criterion on scenarios 1-3 and on track coalescence

avoidance for all scenarios.
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Appendices

A Acronyms

CPU Central Processing Unit

IMM Interacting Multiple Model

IMMJPDA Interacting Multiple Model Joint Probabilistic Data Association

IMMJPDA* Track-coalescence-avoiding IMMJPDA

IMMPDA Interacting Multiple Model Probabilistic Data Association

IMMPDAP IMMPDA Particle

JIMMPDA Joint IMMPDA

JIMMPDAP Joint IMMPDA Particle

JPDA Joint PDA

JPDA* Track-coalescence-avoiding JPDA

MMSE Minimum Mean Square Error

NLR Nationaal Lucht- en Ruimtevaartlaboratorium

PDA Probabilistic Data Association
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B List of symbols

ai(θi) Target i’s state transition matrix of size n× n as function of mode θi

A(θ) Joint target state transition matrix as function of joint mode θ

bi(θi) Target i’s state noise gain matrix of size n× n′ as function of mode θi

A(θ) Joint target state noise gain matrix as function of joint mode θ

Dt Total number of detected targets at moment t

Ft Total number of false measurements at moment t

gi(θi) Target i’s measurement noise gain matrix of size m×m′ as function of mode θi

G(θ) Joint target measurement noise gain matrix as function of joint mode θ

hi(θi) Target i’s state-to-measurement transition matrix of size m× n as function of mode θi

H(θ) Joint target state-to-measurement transition matrix as function of joint mode θ

Im Unit-matrix of size m×m

Lt Total number of measurements at moment t

M Total number of targtes

N Total number of modes of a target

P i
d Detection probability of target i

S The total number of particles

Sθ the number of particles for mode θ

vi
t Sequence of i.i.d. standard Gaussian variables of dimension m′ representing the

measurement noise for target i

v∗t Column-vector of Ft i.i.d. false measurements

V Volume of the validation region

wi
t Sequence of i.i.d. standard Gaussian variables of dimension n′ representing the

system noise of target i

xi
t n-vectorial state of target i at moment t

xt Joint target state vector at moment t

yk
t k-th measurement at moment t

yt Measurement vector at moment t, containing all measurements at moment t

ỹt Measurement vector at moment t, containing in the upper part the

measurements of all detected targets at moment t in a fixed

order and in the lower part the false measurements at moment t

zi
t m-vectorial potential measurement of target i at moment t

zt Joint measurement vector at moment t, containing the potential measurements of all

targets at moment t

z̃t Joint measurement vector at moment t, containing the measurements of all

detected targets at moment t in a fixed order
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˜̃zt Joint measurement vector at moment t, containing the measurements of all

detected targets at moment t in a random order

θi
t Mode of target i at moment t

θt Joint targets mode at moment t

φi,t Detection indicator for target i at moment t

φt Detection indicator vector at moment t, containing the detection indicators for all

targets at moment t

Φ Matrix operator to link the detection indicator vector with the measurement model

χt Stochastic permutation matrix of size Dt ×Dt

ψi,t Target indicator for measurement i at moment t

ψt Target indicator vector at moment t, containing the target indicators for all

measurements at moment t

ψ∗
i,t Clutter indicator for measurement i at moment t

ψ∗
t Clutter indicator vector at moment t, containing the target indicators for all

measurements at moment t




