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Summary

By now, safety is recognised as a key quality on which to select/design advanced ATM concepts,

even when capacity and efficiency are the drivers of the development. The safety target is often

described as ‘equal or better’ in comparison with existing practice, allowing a large freedom in

how safety is expressed, let alone measured. In effect, new CNS/ATM concept developments are

typically accomplished without the use of feedback from appropriate safety assessments. ATM

concept design teams (e.g. of Free Flight, or 4D-ATM) try to realise capacity-efficiency enhance-

ments by exploiting new technology, changing human controller roles and introducing new proce-

dures, while relying on the established safety-related indicators in ATM such as conflict rates and

types, workload of human operators and failure rates and effects of technical systems.

ATM, however, is the result of complex interactions between multiple human operators, proce-

dures and technical systems, all highly distributed. This yields that providing safety is more than

making sure that each of the ATM elements functions properly safe; it is the complex interaction

between them that determines safety. The assessment of isolated indicators falls short in covering

the complex interactions between procedures, human operators and technical systems in safety-

critical non-nominal situations. In order to improve this situation, this paper outlines a novel

probabilistic risk assessment methodology which has specifically been developed for application

to ATM. In addition, this paper presents risk assessment results which have been obtained with this

approach for two en-route streams of RNP1 equipped traffic flying in opposite direction within two

conventional ATM concepts and two airborne separation assurance based concepts. These results

illustrate that our new methodology supports safety-based ATM design.
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1 Introduction

ATM is the result of complex interactions between human operators, procedures and technical

systems (hardware and software), all highly distributed. Providing safety is more than making

sure that each of these elements functions properly safe. The complex interactions between the

various elements of ATM significantly determine safety. Therefore it is imperative to understand

the safety impact of these interactions, particularly in relation with non-nominal situations. Tradi-

tional ATM design approaches tend first to design advanced ATM that provides sufficient capacity,

and next to extend the design with safety features. The advantage of this approach is that ATM

developments can be organised around the clusters of individual elements, i.e. the communication

cluster, the navigation cluster, the surveillance cluster, the automation tools cluster, the HMIs, the

advanced procedures, etc. The key problem is that safety effects stay unclear. A far more effective

approach is to try to design an ATM system that is inherently safe at the capacity level required.

From this perspective, safety assessment should be one of the primary filters in ATM concept de-

velopment. An early filtering of ATM design concepts on safety grounds can potentially avoid

that a costly development programme turns out ineffective, or that an even more costly implemen-

tation programme fails. Although understanding this idea is principally not very difficult, it can

only be brought into practice when an ATM safety assessment approach is available that provides

appropriate feedback to the ATM designers already at an early stage of the concept development

(figure 1).

ATM
design

Safety / Capacity
Assessment

Fig. 1 Safety feedback based ATM design

This feedback should not only provide information on whether the design is safe enough, it should

also identify the safety-capacity bottlenecks. By now, consensus is building that appropriate ATM

safety modelling approaches are needed to understand the mechanisms behind designing advanced

ATM. It is also recognised that, once such an ATM safety modelling approach is available, a safety
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feedback based design approach of future ATM will become feasible (Haraldsdottir et al., 1997;

Odoni et al., 1997; EVAS, 1998).

Safety is a general notion, which is typically studied from one of three different perspectives:

� Safety perception (e.g. by pilot, controller, passenger, human society, etc.). An ATM design

that is perceived as being unsafe will not easily be accepted by the humans involved. Fact is

that a positive perception about the safety of an ATM design is an implementation-critical

requirement. By its very nature, however, safety perception is a subjective notion, and

therefore insufficient to really approve safety-critical changes in ATM.

� Dependability of a technical system (e.g. of a computer program, an aircraft navigation sys-

tem, a satellite based communication system, etc.). Dependability metrics are definitively

objective. They are widely studied in literature (e.g. Randell, 1995; DAAS, 1995). However,

they have been developed to cover technical systems only (e.g. SAE, 1994, 1995; EATCHIP,

1996), and not the human operators and procedures of ATM (Klompstra and Everdij, 1997).

� Accident risk (e.g. for 1st, 2nd and 3rd parties in air transport) metrics definitively are ob-

jective and are commonly in use for other human controlled safety-critical operations such

as chemical and nuclear industries (Royal Society, 1983). Two well known ICAO adopted

accident risk metrics are for collision of an aircraft with another aircraft during en-route

phase, or with fixed obstacles during landing. A recent review of various accident risk

metric possibilities in air transport is given in (Moek et al., 1997).

In view of the ATM safety assessment needs, the accident risk perspective has the best joint char-

acteristics: 1) It implies the use of objective risk metrics, 2) It has proven its usability to human

controlled safety-critical operations, and 3) It is supported by ICAO. As such, in this paper ATM

safety will be considered from an accident risk perspective, with emphasis on risk of collision

between two aircraft.

For air traffic the fatal accident risks should be of the order of 10�7 - 10�10 per aircraft flight

hour. To develop some feeling of the difficulty to assess such rare events, it is quite helpful to

understand why the well known fast time simulators like NASPAC, RAMS or TAAM fall short for

that purpose. One major shortcoming of these tools is that they are not really capable of modelling

the aviation safety-critical combinations of non-nominal events, they often do not even model the

single non-nominal events. Another major shortcoming is that an accident rate of, say, 10�9 per

aircraft flight hour can not in a practically reasonable way be reached through a straightforward

simulation, since this would require a simulation of 1010 aircraft flight hours. This problem is well

illustrated by the ATM safety iceberg (figure 2). To assess a catastrophic accident rate, one really
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needs to decompose the risk assessment problem into an effective hierarchy of simpler conditional

assessment problems, where simplicity means an appropriate combination of scope (e.g. volume

of airspace) and depth (i.e. level of model detail) at each conditional assessment level. Indeed,

tools like TAAM apply to assessments that address a broad scope in combination with a low level

of non-nominal detail.

Catastrophic accidents (≈10-9 /fl.hr.)

Technical failures (≈10-4 /fl.hr.)

ATCo actions (≈10 /fl.hr.)

Pilot actions (≈100 /fl.hr.)

Accident Risk Modelling

Dependability
modelling

Fast-time
simulation

Real-time
simulation

Assessment approach Events

Fig. 2 ATM safety iceberg

In general, the accident risk assessment problem has been widely studied for other safety-critical

operations, such as the nuclear and chemical industries, and for these applications, numerous tech-

niques and tools have been developed. In order to take maximal advantage of this existing body

of knowledge, we made a thorough study of the applicability of these techniques to accident risk

assessment in air traffic (Everdij et al., 1996a). A large variety of techniques has been identi-

fied, varying from qualitative hazard identification methods such as Preliminary Hazard Analysis

(PHA), Common Cause Analysis (CCA) and Failure Mode and Effect Analysis (FMEA), through

static assessment techniques such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA),

to dynamic assessment techniques such as Petri net and Markov chain modelling, dynamic event

trees, etc. (Aldemir et al., 1994). Each of these techniques has advantages and disadvantages,

but these appear to be minor in comparison to what is required for modelling ATM related risk.

The key finding is that the established techniques fail to support a systematic approach towards

modelling stochastic dynamical behaviour over time for complex interactions of highly distributed

ATM (see figure 3).

The established techniques would therefore force one to adopt a rather heuristic type of argumen-

tation in trying to capture the complex interactions inherent to ATM.
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Fig. 3 Potential fatalities and distribution level of ATM and other safety critical activities.

The basic ATM safety assessment needs have already been identified in (Blom, 1992b). This

finding motivated the development of an adequate safety assessment approach within a project

named TOPAZ (Traffic Organization and Perturbation AnalyZer). The scientific basis for this was

the idea to explore a stochastic analysis framework (Blom, 1990) which supports stochastic models

where both discrete and continuous variables evolve over continuous time, possibly affected by

probabilistic disturbances, and the knowledge that this framework would be sufficiently general to

properly model and evaluate ATM safety problems.

In the mean time, from parallel conducted studies on advanced ATM it became crystal clear that

without an appropriate accident risk model it would be difficult to ever manage a cost-effective

design of advanced ATM. In these studies three complementary perspectives have been considered:

1) the selection of route structures perspective (Blom and Bakker, 1993), 2) a stochastic dynamical

game perspective (Blom et al., 1994) and 3) an ATM overall validation perspective (Blom et al.,

1995).

The accident risk assessment results obtained through stochastic analysis studies have initially

been exploited for an RLD/LVB project towards the assessment of accident risk for staggered

landings on converging runways (Bakker et al., 1995; Everdij et el., 1996c). All this contributed

to the development of both the TOPAZ assessment methodology, and a growing suite of TOPAZ

tools. In this paper, emphasis is on the former, for the reason that an effective usage of the suite of
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tools requires firm background in the novel methodology.

Recently, by a joint effort of Eurocontrol and FAA, in collaboration with some key developers

of aviation risk assessment tools, an overview has been produced that outlines the relevant ap-

proaches currently in development and /or in use for the safe separation assessment of advanced

procedures in air traffic (Cohen et al., 1998). In addition to TOPAZ, four other collision risk di-

rected approaches, ABRM, ASAT, ICAO’s Collision Risk Model (CRM) and RASRAM (Sheperd

et al., 1997), have been identified and reviewed; TOPAZ appeared to be most advanced in going

beyond established approaches.

This paper is organised as follows. Section 2 gives an overview of the methodology. Next, section

3 outlines the principles of the underlying stochastic dynamical framework. Section 4 presents for

several RNP1 example scenarios the results of TOPAZ based risk assessments. Section 5 gives

concluding remarks on the methodology. The paper ends with references and acronyms.
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2 The TOPAZ methodology

The TOPAZ methodology has been developed to provide designers of advanced ATM with safety

feedback following on a (re)design cycle. An illustrative overview of how such safety feedback is

obtained during a TOPAZ assessment cycle is given in figure 4.
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Fig. 4 TOPAZ assessment cycle

During such assessment cycle two types of assessments are sequentially conducted: first a qualita-

tive safety assessment (illustrated by the upper drawings in figure 4), and then a quantitative safety

assessment (illustrated by the middle and lower drawings in figure 4). The qualitative assessment

starts with a systematic gathering of information about nominal and non-nominal behaviour of

the concept design considered, concerning the human roles, the procedures, the technical systems,

etc., and with involvement of all relevant experts. For the gathering of non-nominal information,

explicit use is made of structured hazard identification sessions with a variety of experts, and haz-

ard data bases. The resulting list of identified potential hazards is subsequently analysed using

established qualitative hazard analysis techniques in order to identify the safety-critical encounter

scenarios and associated hazards, to select one or more of those safety-critical encounter scenarios

for quantitative safety assessment, and to develop a modular system engineering type of represen-

tation of the ATM design (see upper right corner of figure 4). Such modular representation is easily

recognisable and understandable for ATM designers, thus supporting an effective communication

between ATM designers and safety analysts.

From this point on, the TOPAZ assessment cycle continues with the quantitative phase, which is
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based on stochastic modelling, stochastic analysis and numerical evaluation. First, an appropriate

stochastic dynamical model instantiation is developed in an iterative way and with verification

against the results of the qualitative safety assessment phase. Next, the accident risk is assessed

for this stochastic dynamical model, and the safety criticalities are identified. Finally, these results

are fed back to the designers (see lower left corner of figure 4).

In order to form a natural balance between the creative mode of the designers and the critical

mode of the safety analysts, we have identified a definitive need for the safety analysts to use a

conservative approach when adopting assumptions during the risk analysis. Obviously, the design

team need not always agree with these conservative assumptions and should be aware that a neg-

ative outcome of a conservative assessment cycle does not mean that the design is unsafe; it just

means that sufficient safety has not been proven during that cycle. This natural balance between

designers and safety analysts means that both parties should be open to accept each others views

as being of mutual use. Conservatism could be reduced by refining the instantiated stochastic

dynamical model on the appropriate issues identified by the designers. For the designers it could

even be more effective to relax potential safety criticalities through redesign, rather than awaiting

a potential TOPAZ modelling based improvement.

Underlying to a TOPAZ cycle there is a stochastic analysis framework, which allows to distinguish

the following five activities:

a. Develop a stochastic dynamical model for the situation considered,

b. Where necessary develop appropriate cognitive models for human operators involved,

c. Perform the stochastic analysis necessary to decompose the risk assessment,

d. Execute the various assessment activities (e.g., through Monte Carlo simulation, numerical

evaluation, mathematical analysis, or a combination of these),

e. Validation of the risk assessment exercise.

More details on these five activities are given below.

a. Develop a stochastic dynamical model

The aim of this development is to represent for the selected encounter scenarios the results from

the qualitative safety assessment in the form of a Stochastic Differential Equation (SDE) on a

hybrid state space. The reason to aim for such SDE representation is twofold: 1) It provides a very

widely applicable class of causal models for stochastic dynamical situations such as in ATM, and

2) It allows the exploration of powerful mathematical tools from the theory of stochastic analysis

(e.g. Elliott, 1982; Davis, 1984; Blom, 1990). Unfortunately, the direct identification of the SDE
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model would be very complicated for most ATM situations. In addition to a very large state space

of the corresponding SDE, there are many interactions between the many state components. This

asks for a systematic approach to develop an SDE instantiation for such complex situations. Such

approach has been introduced through the development of a specific type of Petri Net (Everdij

et al., 1997b; Everdij and Blom, 1998), to which we refer as Dynamically Coloured Petri Net

(DCPN). Through a DCPN instantiation an SDE instantiation can be done systematically while

the result is transparent. Once a DCPN instantiation has been completed, the result defines an

SDE on a hybrid state space. Obviously, a logical part of the DCPN instantiation is to verify the

resulting DCPN against the information that is gathered during the qualitative safety assessment

phase.

b. Cognitive human modelling

When assessing ATM safety, a key role is played by procedures, human operators, and their re-

sponsibilities. At present, the view on human reliability has shifted from a context-free error

centred approach, in which unreliability is modelled through failures of human information pro-

cessing, towards a contextual perspective in which human actions are the product of human inter-

nal states, strategies and the environment. By now, it is a widely accepted belief (Amalberti and

Wioland, 1997; Hollnagel, 1993; Bainbridge, 1993) that for the modelling of the human the es-

tablished Human Reliability Analysis (HRA) techniques fall short for complex situations, and that

one should rather aim for contextual performance models that are based on generally-applicable

human cognition and responsibility principles. It should also be noticed that the in HRA widely

used skill-, rule- and knowledge-based errors (Reason, 1990) essentially fall short to pay proper

respect to, for example, situations where the operator chooses to let an even more urgent problem

receive attention when the subjectively available time is short or when high workload causes one

to make quick decisions, without bothering excessively about the quality of those decisions. It

should be noticed that these effects are inextricably bound up with human flexibility and the abil-

ity of humans to deal with unforeseen situations. When assessing ATM safety, it is necessary to

take these aspects of human performance into account.

The main benefits expected from contextual models is that they provide better feedback to design-

ers and that they remove the need to use overly conservative individual sub-models for relevant

operator actions that may blur understanding of how safety is achieved in ATM. In order to develop

appropriate models for this, mathematicians and psychologists are jointly developing high-level

models of cognitive human performance, through a sequence of studies (e.g., Biemans and Daams,

1997; Daams and Nijhuis, 1998). At this moment this collaboration has led to a novel contextual

human task-network model, which is formulated in terms of a DCPN, and which effectively com-
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bines the cognitive modes of Hollnagel (1993) with the Multiple Resources Theory of Wickens

(1992), the classical slips/lapses model (Reason, 1990) and the human capability to recover from

errors (Amalberti and Wioland, 1997). In addition, we have developed a model for the evolution

of situational awareness errors. Compared with those considered in a recent study by (Hart et al.,

1997), our approach shows to be an innovative one.

c. Perform stochastic analysis

Although it definitively is possible to realise a straightforward Monte Carlo simulation of the SDE

model, it will be clear from the earlier discussion that this will not be really effective for the

assessment of catastrophic risks in aviation. In order to develop an effective approach to the nu-

merical evaluation of an SDE model, the SDE should be analysed first by mathematicians with

the appropriate background in the theory of stochastic analysis. At this moment this is done on

a case by case basis. For each case the aim is to analyse the SDE model such that its numerical

evaluation can be done by decomposition into a logical sequence of fast-time simulations, Monte

Carlo simulations and/or analytical evaluations. The aim always is to first decompose the risk as-

sessment problem into several conditional assessment problems for which appropriate assessment

techniques are available or feasible. The main principle we are using for identifying an appropri-

ate decomposition is the following: under quite general conditions, the solution of an SDE is a

strong Markov process. This means that the Markov property also holds true for stopping times

(sometimes called Markov times). These stopping times serve as the mathematical powertool to

decompose the risk assessment for an SDE model. So far this approach appeared to work satisfac-

torily for all situations evaluated.

d. Execute the various assessment activities

Typically, the resulting sequence of conditional assessments reads as follows:

1. Run a conventional fast time simulation (e.g. with TAAM) to identify traffic densities and

encounter type frequencies.

2. Input these traffic densities and encounter type frequencies to a safety-directed human sim-

ulator to identify appropriate pilot and/or controller characteristics.

3. Input these conditional human characteristics to a Monte Carlo simulation that identifies

and statistically analyses critical conditional events, such as incidents.

4. Input these critical conditional event characteristics to a Monte Carlo simulation that iden-

tifies potential accident characteristics.

5. Input these potential accident characteristics to a conditional collision risk analyser.

6. Transform all results from the preceding conditional assessments into appropriate safety

metrics.
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7. Identify the safety-separation and/or safety-modelling bottlenecks, of the specifically mod-

elled ATM concept/scenario.

For each of these activities, except 1., dedicated computer tools have been and are being further

developed within the TOPAZ project. The splitting of activities 3, 4 and 5, from each other usually

appears to be the most challenging one, for the very reason that often there are many dependencies

between various elements of a hazardous air traffic situation. In order to handle this in a valid way,

we make use of a mathematical framework, the basis of which is explained in section 3.

e. Validation of the risk assessment exercise

A crucial issue concerns the validation that a risk assessment exercise is performed to an acceptable

degree, without the need to first employ very expensive large scale real time simulations of new

concepts. Due to our underlying stochastic analysis framework, such a validation can be done

through executing the following activities:

� Judge the level of conservatism of the assumptions adopted for the development of the

DCPN instantiation for the situation considered. This should be done through active in-

volvement of operational and design experts.

� Verify the correctness of the instantiated DCPN versus the results of the qualitative assess-

ment and the assumptions adopted. This should be done by stochastic analysis TOPAZ

experts, with at least one who has not been involved with the DCPN instantiation.

� Verify the correctness of the mathematical transformations applied to the instantiated stochas-

tic dynamical model. This should be done by applying mathematical tools from stochastic

analysis theory.

� Verify that the various assessment activities have been executed according to the unambigu-

ous mathematical model developed, including the decomposition. This should be done by

stochastic analysis experts.
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3 The mathematical framework

Each DCPN instantiation can be represented by an SDE on a hybrid state space (Everdij and Blom,

1998), which has a strong Markov process f�tg on a hybrid state space as its unique solution. The

hybrid state process f�tg has two components, i.e. �t = (xt; �t); with xt the component assuming

values in a Euclidean space and with �t the component assuming values in a discrete space. From

the theory of Markov processes it then follows that it is possible to characterise the evolution of

the density-distribution p�t(�) of the joint process through a well-defined differential equation in

function space:

d
dt
p�t(�) = Lp�t(�)

with L an operator defined by the Markov process f�tg. Due to the strong Markov property, this

differential equation also applies under the condition of an f�tg-adapted stopping time � (also

referred to as Markov time):

d
dt
p�tj� (�) = Lp�tj� (�); for t > �:

It is particularly relevant to notice that the above equations are well known for Markov chains,

i.e. Markov processes with discrete state space, which processes have shown to be very useful

in the development of advanced dependability and performability assessment methodology (e.g.

Pattipati et al., 1993; Fota et al., 1997). For hybrid state Markov processes, this equation is well

known in Bayesian estimation theory (e.g. Blom, 1990) and this has a.o. led to advanced multi

target multi sensor tracking applications (e.g. Blom et al., 1992a).

The above equations imply that once the scenario to be assessed on collision risk has been repre-

sented through a DCPN instantiation, all probabilistic properties are well-defined, including the

collision risk. Let yit and vit be the components of xt that represent the 3D location and 3D velocity

of aircraft i, i 2 f1; : : : ; ng. Let yijt
�
= yit � y

j
t , let vijt

�
= vit � v

j
t and let Dij be the area such

that yijt 2 Dij means that at moment t the physical volumes of aircraft i and j are not separated

anymore (i.e. they have collided). Each time the process fyijt g enters the area Dij , we say an in-

crossing occurs, and each time the process fyijt g leaves the area Dij , we say an outcrossing occurs.

The first incrossing for the pair (i; j) is a collision for that pair. If we assume that the relative speed

v
ij
t is very rapidly going to zero as long as y

ij
t resides in Dij , the chances are zero that there is

more than one incrossing per aircraft pair, and thus the expected number of incrossings equals the

expected number of collisions. Following (Bakker and Blom, 1993) the expected number R[0;T ]

of incrossings, or collisions, between aircraft pairs in the time-interval [0; T ] satisfies:

R[0;T ] =
nX

i=1

nX
j>i

Z T

0

'ij(t) dt
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with 'ij(t) the incrossing rate, which is defined by:

'ij(t)
�
= lim

�#0
Pfy

ij
t =2 Dij; y

ij

t+� 2 Dij
g=�

In (Bakker and Blom, 1993) it is also shown that 'ij(t) is well-defined, and can be evaluated under

non-restrictive assumptions as a function of the probability density of the joint relative state (yijt ,

v
ij
t ). In general, a characterisation of this probability density is complex, especially since there are

combinatorially many types of non-nominal events. A plausible way out of this is by conditioning

on classes of non-nominal events, where those non-nominal events are placed in the same class

if they have a similar impact on the subsequent evolution of the relative state process fyijt , vijt g.

This is done through 1) defining an appropriate event sequence classification process f�tg, such

that the joint process f�t; �tg is a strong Markov process as well, and 2) subsequently identifying

an appropriate f�t; �tg-adapted stopping time �ij such that there is a zero probability that the pair

(i; j) collides before �ij . With this, the above equations can be transformed into:

R[0;T ] =

nX
i=1

nX
j>i

X
�

Z T

� ij

'ij(t j �ij
� ij = �) dt � Pf�ij

� ij = �g

with 'ij(t j �ij
� ij = �) the conditional incrossing rate, being defined for t � �ij by:

'ij(t j �ij
� ij = �)

�
= lim

�#0
Pfy

ij
t =2 Dij ; y

ij

t+� 2 Dij
j �

ij

� ij = �g=�

In figure 5, the equation for R[0;T ] is presented in the form of a tree, in which fij(�) is short forR T
� ij 'ij(t j �ij

� ij = �) dt � Pf�ij
� ij = �g. This tree has some resemblance with the well known

fault tree. However, due to the underlying stochastic and physical relations, our new tree differs

significantly and is named Collision Risk Tree.

R[0;T ]

m++

f ij(�)

� � � � � �m� m� m�

R
'ij(tj�) dt Pf�g

Fig. 5 Collision Risk Tree
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For the quantification of the boxes in the collision risk tree, use is made of three types of evalua-

tions:

� Monte Carlo simulations of the DCPN to quantify Pf�
ij

� ij = �g and the statistical properties

of the relevant DCPN components at the stopping time �ij .

� Evaluations of the evolution of the relative aircraft states from stopping time �ij on, and

for each �
ij

� ij = �. If complexity requires, this process can even be done for a sequence of

increasing stopping times.

� Numerical evaluation of
R T

� ij '
ij(t j �ij

� ij = �) dt, using the Generalized Reich equation of

(Bakker and Blom, 1993), see also (Kremer et al., 1998).
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4 RNP1 in conventional and airborne separation assurance scenario examples

In this section, the TOPAZ approach is used to evaluate a simple scenario of two en-route traffic

streams of RNP1 equipped traffic, flying in opposite direction, all at one single flight level. This

rather hypothetical scenario has been developed by Eurocontrol with the aim to learn understand-

ing how ATC influences accident risk, and how far the nominal separation S between opposite

RNP1 traffic streams can safely be reduced. The specific details of this scenario are (Everdij et al.,

1997a):

� Straight route, with two traffic lanes (figure 6),

� Flight plans contain no lane changes

� Parameter S denotes distance between the two lanes,

� Opposite traffic flows along each lane,

� Aircraft fly at one flight level only

� Traffic flow per lane is 3.6 aircraft/hour,

� All aircraft nominally perform RNP1,

� None of the aircraft are TCAS equipped,

� Target level of safety is 5:10�9 accidents/flight hour.

S

Fig. 6 Opposite direction traffic in a dual lane route

This simple scenario is considered for the following four ATM concepts:

A) Procedural separation only. In this case there is no ATC surveillance system. This is the

type of situation encountered with traffic over the North Atlantic.

B) STCA-only based ATC. In this case there is radar based surveillance and R/T communica-

tion, but it is assumed that ATC is doing nothing unless its STCA system issues an alert;
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thus assuming no monitoring by the ATCo. It should be noticed that this differs significantly

from conventional ATC, where an executive controller autonomously monitors and issues

corrective actions, while STCA is a safety net only.

C) Basic airborne separation assurance. In this case there is ADS-B surveillance and R/T be-

tween aircraft, but there is no ATC. For this concept it is assumed that aircraft behave co-

operatively, in the sense that when an aircraft’s CDR (Conflict Detection and Resolution)

system detects a conflict with another aircraft, then its pilot will try to make an avoidance

manoeuvre. Thus, in most cases both pilots will try to make an avoidance manoeuvre.

D) Negotiated airborne separation assurance, a design that is explicitly due to the feedback re-

ceived from TOPAZ based safety assessments conducted for A), B) and C). For this concept

it is assumed that aircraft also behave co-operatively during conflict-free trajectory planning.

Thus in addition to ADS-B surveillance and R/T there also is a data link between aircraft to

exchange and negotiate conflict free trajectory plans that are assumed to extend five minutes

or more into the future.

Obviously, for each of these four ATM concepts there are various traffic navigation and encounter

scenarios that deserve an accident risk evaluation. We believe, however, that it is most effective

to learn understanding the safe separation issues for a simple traffic navigation and encounter

scenario first, before considering other and more complicated scenarios.

For each of the four ATM concepts the TOPAZ methodology and tool set have been used to

conservatively assess accident risk for the above scenario, as a function of the spacing parameter

S. The resulting accident risk curves are presented in figure 7. Since all four curves are based

on conservative modelling assumptions for the ATM situations considered, they provide an upper

bound for the true accident risk.

These results are obtained over a period of two years during three subsequent studies. The first

en-route study (Everdij et al., 1997a) was conducted for Eurocontrol, and covered ATM concepts

A) and B). The assessment of concept A) was rather straightforward, and could also have been

done with ICAO’s CRM. For the assessment of the other three concepts, however, full use has

been made of the TOPAZ methodology. Concept B) has been assessed during an initial study

for Eurocontrol (Everdij et al., 1997). Concept C) has been developed (Hoekstra et al., 1997)

and assessed (Daams et al., 1997) during studies within NASA’s Free Flight research programme.

The safety assessment results from concepts A), B) and C) have subsequently been fed back (Van

Gent et al., 1997) to enable the safety based design concept D), and subsequently to assess it with

TOPAZ (Daams et al., 1998).



- 20 -
NLR-TP-99015

0 10 20 30 40 50 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

A

B

CD

TLS

5 10 15 20 25 30

 km

 Nm

 Spacing S

 E
xp

ec
te

d 
nu

m
be

r 
of

 a
cc

id
en

ts
 p

er
 f

lig
ht

 h
ou

r

Fig. 7 Accident risk for the opposite traffic scenario, as a function of spacing parameter S, for

the four ATM concepts considered: A) Procedural separation, B) STCA-based ATC, C)

Basic airborne separation assurance, D) Negotiated airborne separation assurance. The

accident risk unit used is from ICAO, where one collision between two aircraft counts for

two “accidents”.

The risk curves in figure 7 show that for RNP1 performing aircraft, the ATM concept may have

quite an impact on the selection of the spacing parameter S within a straight dual lane route

structure. For the four ATM concepts considered it has been shown that the spacing S can safely

be reduced to 31 NM, 22 NM, 16 NM and 7 NM for ATM concepts A), B), C) and D) respectively.

The large value of 31 NM for concept A) does not come as a real surprise, such large values are

well known for procedural traffic situations over the ocean. The results for concept B) show that

STCA really is a safety net which provides at least a factor 15 in safety when compared with

concept A) for sufficiently large S. Apparently, this STCA safety net alone falls short to support

the kind of spacings necessary for busy fixed route traffic situations. This finding confirms the

prior expectation that concept B) is not representative for conventional ATC.

Rather unexpectedly, the co-operative Basic airborne separation concept C) appears to perform

better than concept B). The reason appeared to be that with the ground-based concept B) there is

one single monitoring and decision-making loop (surveillance-STCA-ATCo-R/T-pilot-a/c), while

for the co-operative airborne-based concept C) each of the two encountering aircraft has a mon-
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itoring and decision-making loop (surveillance-CDR-pilot-a/c) which are partly independent. As

a result, the safety net of concept C) leads to a factor 5 lower risk than concept B) for the same

spacing, or allows to safely reduce S from 22 NM to 16 NM. Obviously, such improved safety

net still falls short to support the kind of spacings necessary for busy fixed route traffic situations.

Thus in view of their safe spacing values of 22 NM and 16 NM, concepts B) and C) do not support

spacings that are required for busy fixed route situations over the continent.

Finally, the co-operative Negotiated airborne separation assurance concept D) allows such low

spacing values. This is not a coincidence, but the result of effectively making use of TOPAZ based

safety feedback from A), B) and C). It appeared that for all these three concepts, the safe spacing

was determined by the effects of the exponential tails of large deviations due to non-nominal

situations. Thus the design objective for concept D) was to reduce those non-nominal effects

to a level below the TLS. To accomplish this, the two monitoring and decision-making loops of

concept C) have been extended with a largely independent and co-operative conflict-free-planning

loop. The curve for concept D) shows that this worked out successfully, by which the safe spacing

value for concept D) is governed by the RNP1-Gaussian navigation error characteristics, rather

than by the exponential tails due to non-nominal situations.
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5 Concluding remarks

This paper has given an outline of the TOPAZ methodology to assess advanced ATM on mid-air

collision risk, and has illustrated that this approach may provide effective feedback to designers

of advanced ATM. From this outline it has become clear that this methodology exhibits several

remarkable features, such as:

� It applies established techniques during a qualitative assessment phase only;

� Quantification is based on stochastic dynamical modelling;

� Uses powerful tools from the theory of stochastic analysis;

� Handles complex interactions between different ATM elements;

� Incorporates advanced human cognitive modelling;

� Incorporates the Generalized Reich collision risk model;

� Provides effective feedback to ATM concept designers;

� Validation of a risk assessment exercise forms part of the methodology.

It has also become clear that currently a high level of expertise in stochastic analysis is required

for an effective application of the methodology. One should however be aware that the need

for sophisticated mathematical expertise is well accepted in other complex design areas of civil

aviation, such as the area of aerodynamic optimisation of aircraft structures.

Obviously, within an overall ATM concept a large variety of relevant aircraft encounter scenarios

can be identified. As such, it is important to notice that our DCPN instantiation for a particular

ATM concept mainly depends on the ATM concept and only marginally on the encounter sce-

nario. Thus, the DCPN instantiations for the four RNP1 based ATM concepts of section 4 can

relatively simply be extended to other encounter scenarios. This also means that it should be pos-

sible to identify classes of encounter scenarios such that it is sufficient to perform an accident risk

assessment for one scenario from each class only.

In this paper the TOPAZ methodology has been concentrated on the risk of mid-air collision. Due

to the generality of the methodology, however, we believe it is also applicable to other accident

risks in air traffic, such as risk induced by runway incursion, controlled flight into terrain, etc. We

have, for example, already made good progress in the extension of the TOPAZ methodology with

a probabilistic model for wake vortex induced accident risk (Blom and Speijker, 1998).
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Acronyms

4D 4-Dimensional

ABRM Analytic Blunder Risk Model

ADS-B Automatic Dependent Surveillance-Broadcast

ASAT Airspace Simulation and Analysis for Terminal instrument procedures

ATC Air Traffic Control

ATCo Air Traffic Controller

ATM Air Traffic Management

CCA Common Cause Analysis

CDR Conflict Detection and Resolution

CNS Communication, Navigation and Surveillance

CRM Collision Risk Model

DCPN Dynamically Coloured Petri Net

ETA Event Tree Analysis

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

HMI Human Machine Interface

HRA Human Reliability Analysis

ICAO International Civil Aviation Organisation

NASPAC National Airspace Systems Performance Analysis Capability

NLR Nationaal Lucht- en Ruimtevaartlaboratorium

NM Nautical Mile

PHA Preliminary Hazard Analysis

RAMS Reorganized ATC Mathematical Simulator

RASRAM Reduced Aircraft Separation Risk Assessment Model

RNP1 Required Navigational Performance (95% of time within 1 NM)

R/T Radio Telephony

SDE Stochastic Differential Equation

STCA Short Term Conflict Alert

TAAM Total Airspace and Airport Modeller

TCAS Traffic alert and Collision Avoidance System

TOPAZ Traffic Organization and Perturbation AnalyZer


