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Problem area 
Knowledge of the scattering 
characteristics of a platform is of 
great interest for military aircraft 
design and operation. The 
knowledge can for instance be 
applied to target identification. High 
range resolution profiles (HRRP) 
are considered to be the basis of 
reliable target identification 
algorithms. Next to experimental 
measurements, computational 
methods are increasingly being used 
as viable prediction tools. 
Prediction of HRRP with a 
frequency-domain method requires 
a significant number of radar 
frequencies to be simulated. Time-
domain methods are expected to be 
more efficient. 
 
Description of work 
In order to extend the applicability 
of numerical tools, a promising 
method that is fully formulated in 
time-domain will be used to 
complement frequency-domain 
packages. The design of a robust 
time domain boundary integral 
equation (TDIE) method is a 
challenging task. In this report, 
available mathematical theory will 
be adapted and extended to obtain 
practical requirements for the 
choice of numerical parameters. 
 

Results and conclusions 
The two most popular discretization 
methods for TDIE methods are 
marching-on-in-time (MOT) and 
space-time Galerkin (STG). While 
MOT schemes are more efficient 
because of available accelerators, 
the STG scheme has been analysed 
thoroughly with mathematical 
theory. In particular, a stability 
proof has been derived for the STG 
scheme. In this report the stability 
proof for the STG scheme will first 
be summarized. Then, the STG and 
MOT schemes will be related with 
each other on a continous and 
discrete level. This allows for the 
translation of the STG stability 
proof into practical requirements for 
the choice of basis functions in the 
MOT scheme. The presented 
analysis is an important step 
towards robust numerical schemes 
that make this new computational 
method more reliable. 
 
Applicability 
Marching-on-in-time methods 
promise to extend the applicability 
of standard computational methods 
to radar absorbing materials and 
high range resolution profiles. 
 
 



UNCLASSIFIED 

 
 
 
UNCLASSIFIED 

 

A provably stable marching-on-in-time scheme based on quadratic spline 
basis functions 
  

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR 
 
Anthony Fokkerweg 2, 1059 CM Amsterdam, 
P.O. Box 90502, 1006 BM  Amsterdam, The Netherlands 
Telephone +31 88 511 31 13, Fax +31 88 511 32 10, Web site: www.nlr.nl 

http://www.nlr.nl/


Nationaal Lucht- en Ruimtevaartlaboratorium 
National Aerospace Laboratory NLR 

 

  
  

 

  
NLR-TP-2012-335 

 

A provably stable marching-on-in-time scheme 
based on quadratic spline basis functions 
  

E. van 't Wout, H. van der Ven, D. R. van der Heul1 and C. Vuik1 

 

1 TU Delft 
  

 
 
 
 
 
 
 
This report is based on a presentation held at the IEEE International Symposium on Antennas and Propagation, 
Chicago, IL, USA, 12 July 2012. 
 
The contents of this report may be cited on condition that full credit is given to NLR and the authors. 
This publication has been refereed by the Advisory Committee AEROSPACE VEHICLES. 
 
Customer National Aerospace Laboratory NLR 
Contract number ---- 
Owner NLR 
Division NLR Aerospace Vehicles 
Distribution Unlimited 
Classification of title Unclassified 
 December 2012 
Approved by: 

Author 
Elwin van ‘t Wout 
 
 
 

Reviewer 
Harmen van der Ven 
 
 
 

Managing department 
Koen de Cock 
 
 
 

Date:  Date:  Date:  



  
NLR-TP-2012-335 

  
 2 

 

Abstract

Computational methods are widely used in the engineering community for the analysis of elec-

tromagnetic scattering phenomena. To achieve the robustness required for industrial application

the numerical scheme has to be provably stable. The existing stability proof of the space-time

Galerkin scheme will be augmented such that it can be used for the more popular marching-on-

in-time scheme. These extensions lead to a provably stable scheme that is easy to implement in

existing marching methods.
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1 Introduction

Electromagnetic scattering phenomena occur in many fields of engineering science, for example

in the modification of the radar signature of an aircraft. Computational methods have widespread

application in the analysis and design of scatterers. When the response has a nonlinear charac-

ter, formulations in time-domain are preferred, for instance the Time Domain Integral Equation

(TDIE) method.

Computational methods have to be robust in order to be applicable for engineering problems of

industrial interest. In particular, stability of the underlying numerical scheme has to be guaran-

teed. This necessitates a mathematical basis of the discretization method that results in clear con-

ditions for numerical stability.

Two of the discretization schemes for TDIE methods are the Marching-on-in-Time (MoT) scheme

(Ref. 5) and the space-time Galerkin scheme (Ref. 1). The MoT scheme has been more popular

because of its intuitive implementation and the inception of accelerators based on plane-wave

and fast-Fourier techniques which have improved the efficiency to a great extent. On the other

hand, late-time instabilities are still present in modern MoT schemes, depending on the applica-

tion. Many methods have been introduced to remedy the instabilities, including filtering, accu-

rate quadrature schemes and smooth basis functions (Ref. 5), (Ref. 2). Due to the lack of a thor-

ough mathematical foundation for MoT schemes the present stabilization methods are mainly ad

hoc and do not provide a provably stable discretization scheme. Hence, numerical stability has

been experimentally demonstrated with extremely long experiments or an a posteriori eigenvalue

analysis.

This paper aims to derive an a priori stability proof for the MoT scheme. We will build on the

existing stability proof of the space-time Galerkin scheme for TDIE methods (Ref. 1). As op-

posed to the MoT scheme, a mathematical foundation for the space-time Galerkin scheme has

been derived in (Ref. 3). This proves that the space-time Galerkin scheme is an unconditional

stable scheme provided that test and basis functions are chosen carefully. Within this functional

framework numerical stability is achieved regardless of the mesh sizes in space and time.

Although there is a resemblance between both numerical schemes, the available stability proof

for space-time Galerkin schemes cannot be applied directly to MoT schemes. In this paper we

will use the functional framework of stable space-time Galerkin schemes as a guideline for the

design of temporal basis functions in the MoT scheme.

UNCLASSIFIED 3
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The main contribution of this paper is thus the extension of the existing stability proof for the

space-time Galerkin scheme such that it can be applied to the more popular MoT scheme. With

this novel approach of tackling the late-time instabilities we will show that the MoT scheme

based on quadratic spline basis functions is provably stable.

2 Model equations

The TDIE method will be used to model the transient electromagnetic scattering of a PEC object.

Scattered electromagnetic fields can be represented by the Stratton-Chu integral formulation in

terms of the electric surface current density J on the scattering surface Γ. For R = |r − r′|,
τ = t− R

c the retarded time, and c = (µε)−
1
2 the speed of light one has

E(r′, t) =
∫

Γ

(
µ

∂
∂tJ(r, τ)

4πR
−∇′

∫ τ
−∞∇ · J(r, t̄)dt̄

ε 4πR

)
dr, (1)

Ė(r′, t) =
∫

Γ

(
µ

∂2

∂t2
J(r, τ)
4πR

−∇′∇ · J(r, τ)
ε 4πR

)
dr (2)

the scattered field and its time derivative, respectively. The Electric Field Integral Equation (EFIE)

is obtained by equating the tangential components of the scattered and incident field on the sur-

face. The differentiated EFIE uses the differentiated fields and contains no integral in time.

3 Stability analysis

In this section the stability proof for MoT schemes will be derived. First, the conclusions of

the existing stability proof for space-time Galerkin schemes will be summarized. Then we will

present the two novelties of the proof, namely the relation between the original EFIE and the dif-

ferentiated EFIE, and the relation between the two discretization schemes.

3.1 Space-time Galerkin scheme
Space-time Galerkin schemes reformulate the model equation into a variational problem. That is,

define function spaces Hsol and Htest and search for a solution J ∈ Hsol of

b (g,J) =
〈
g,Einc〉

σ
∀g ∈ Htest. (3)

The bilinear form b represents an inner product of the test function g and the original EFIE oper-

ator (1). A weighted inner product

〈p,q〉σ =
∫ ∞

0
e−2σt

∫
Γ

∫
Γ
p · q dsds′ dt (4)
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is used with σ > 0. It has been proven that the variational problem (3) admits a unique solution

for the spaces Hsol = H
1
2 and

Htest = H− 3
2 with Hs = Hs

σ

(
R+,H− 1

2 (div,Γ)
)

(5)

specific Sobolev spaces as defined in (Ref. 3). Moreover, the solution is bounded by the incident

field, i.e.,

||J||Hsol
≤ CΓ

1
σ

∣∣∣∣Einc∣∣∣∣
Hinc

. (6)

Since the norm is related to the electromagnetic energy, the boundedness of the continuous solu-

tion results in unconditional stability for a conforming Galerkin method (Ref. 1).

3.2 Relation between original EFIE and differentiated EFIE
The stability proof for space-time Galerkin schemes has been derived for the original EFIE. It

cannot be applied readily to the differentiated EFIE which corresponds to a different bilinear

form b̃ and the variational problem

b̃ (h,J) =
〈
h, ∂

∂tE
inc〉

σ
∀h ∈ H̃test. (7)

To show this is equivalent with (3), use integration by parts. Because of the weighted inner prod-

uct one obtains b(∂h
∂t − 2σh,J) = 〈∂h

∂t − 2σh,Einc〉σ. For

g =
∂h
∂t

− 2σh (8)

it can be shown that for all g ∈ H− 3
2 there is an h ∈ H− 1

2 and vice versa. This shows the equiv-

alence between the two variational problems (3) and (7). Therefore, boundedness result (6) holds

for the spaces Hsol = H
1
2 and H̃test = H− 1

2 . So a conforming Galerkin method based on these

Sobolev spaces is unconditionally stable for the differentiated EFIE.

3.3 Relation between space-time Galerkin and collocation
The MoT scheme uses collocation or point matching as discretization in time. This boils down

to using a Dirac delta distribution as test function in the space-time Galerkin scheme. Uncondi-

tional stability of MoT schemes can therefore only be achieved if the Dirac delta is an element of

H̃test. Unfortunately, δ /∈ H− 1
2 and stability of the MoT scheme cannot be proven for the differ-

entiated EFIE directly. Still, this does not imply instability of the MoT scheme. In fact, we will

show that for specific basis functions the MoT scheme is yet provably stable for the differenti-

ated EFIE.

First, let us consider a stable choice of test and basis functions in the space-time Galerkin scheme,

namely the step and hat functions, respectively. Because space-time Galerkin and collocation

UNCLASSIFIED 5



  
NLR-TP-2012-335 

  
 7 

 

UNCLASSIFIED
NLR-TP-2012-335

schemes have the same marching structure, the schemes can be compared at a discrete level.

For MoT schemes with quadratic spline basis functions (Ref. 4) exactly the same discrete equa-

tions are obtained as for the stable choice in space-time Galerkin methods. Therefore, the use of

quadratic spline basis functions results in a provably stable MoT scheme.

Now, let us use this extension of the stability proof to analyze the prevailing quadratic Langrange

basis functions for MoT schemes (Ref. 2). The discrete equations are equivalent to the space-

time Galerkin scheme using step and shifted hat functions as test and basis functions, respec-

tively. As depicted in Fig. 1 the shifted hat function is discontinuous and is therefore no element

of Hsol = H
1
2 . So, even with the extension of the stability proof, MoT schemes with quadratic

Lagrange basis functions cannot be proven to be stable with the present analysis.
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Fig. 1 Corresponding space-time Galerkin basis functions for the quadratic Lagrange and

spline basis function.

3.4 Remark on stability
The variational problem corresponding to the original EFIE has been proven to be uncondition-

ally stable for specific Sobolev spaces in (Ref. 3). This report uses this functional framework to

obtain different Sobolev spaces for which the variational problem of the differentiated EFIE is

stable. The MoT scheme with quadratic spline basis functions has been shown to fit within this

functional framework. However, additional conditions are necessary to proof stability on a dis-

crete level. These so-called inf-sup conditions can be elaborate and are outside the scope of this

report.
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4 Numerical validation

The stability of the MoT scheme with quadratic spline basis functions for the differentiated EFIE

has been validated on a number of test cases and compared with the quadratic Lagrange basis

functions. The common RWG functions are used for spatial discretization and the inner two spa-

tial integrals have been computed analytically (Ref. 2) whereas 7 quadrature points are used for

the outer two. As example, the surface current density depicted in Fig. 2 clearly shows a late-

time instability for the quadratic Lagrange basis function whereas for the quadratic spline basis

function the stability is confirmed.

0 4 8 12
x 10

5

10
−15

10
−10

10
−5

10
0

time (lm)

el
ec

tr
ic

 c
ur

re
nt

 d
en

si
ty

 (
A

/m
)

 

 

Lagrange
spline

Fig. 2 The electric surface current density computed with the MoT scheme for the quadratic

Lagrange and spline basis function.

5 Conclusion

The continuous variational problem of the differentiated EFIE has been proven to be uncon-

ditionally stable for specific Sobolev spaces. The quadratic spline basis functions used in the

MoT scheme are elements of these stable function spaces.
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