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Abstract.
The procedures to assess the critical aeroelastic state of an
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of aeroelastic simulation methods. Experience with recent
applications is reported.

Key words: Aeroelasticity, MIMO, Prony, AESIM,
DOULAT, NASTRAN, GUL, Structural Dynamics

1. Introduction

The subject is being addressed because of the
industrial need for an e�cient aeroelastic simula-
tion system able to improve aircraft design with
adequate and e�cient assessment of aeroelastic
behaviour (
utter and/or dynamic responses) for
transonic 
ight or other nonlinear conditions.
Today's industrial aeroelastic studies are per-
formed mainly with a set of classical methods
restricted to linear assumptions due to their e�-
ciency in assessing the critical state cases for a large
state space.
For transonic 
ow these results are questionable
and the aforementioned methods are often matched
with data obtained from experiment and or other
CFD methods.
The NLR AESIM method is developed with the
objective to assist in the design of future aircraft
which are subjected to increases in 
exibility, aero-
dynamic loading and nonlinearity and might be of
value in the early design and development phase for
assessing 
ight stability and control, safety and risk
valuation and ride qualities. The method focuses
primarily on aeroelasticity at transonic and mildy
separated 
ows where aerodynamic nonlinearity is
a non-negligible factor which cannot be estimated
with extrapolating current methodology which is
suited for 
ight at subsonic and low angle-of-attack
supersonic speeds.
Over the past 20 years research centres and uni-
versities have put e�ort in the development and

validation of advanced time-accurate aerodynam-
ic CFD methods for the aforementioned purposes,
resulting in a variety of methodologies for mostly
clean wings and for rigid motions using the modal
way of coupling. The recent algorithms are already
very e�cient and a further signi�cant reduction of
turn-around time from algorithm improvements is
not expected. Also, the industry seems to be reluc-
tant in taking on these new technologies due to
the fact that in many occasions attention was giv-
en only to the modelling of the physical unsteady
aerodynamic phenonema and much less to the com-
plete aeroelastic problems more relevant to indus-
try. This is supported by the fact that almost no
methods have been reported which deal with the
interpolation issues at the 
uid-structure interface
for non-
at plate geometries 1, that the coupling
methodology is occasionally investigated [3] and
the fact that hardly nothing (methods and strate-
gy) has been reported that deals with the system
identi�cation in computational aeroelastic simula-
tion.
One of the fundamental tasks in an aeroelastic
analysis is the determination of the frequency and
damping of aeroelastic modes (e.g. to detect if one
of the generalized displacements becomes unsta-
ble and 
utter will occur) which is a subset of the
afore-mentioned system identi�cation.
In most time domain aeroelastic applications the
analysis of the time signal is a closing entry which
does not get much attention and is often left out in
presentations. For the well-known Isogai case any
analysis method is good enough in contrast with
more realistic multi-DOF structures. To single out
a few modes for analysis from a multi-modes sys-
tem is not good enough compared to classical p- or
pk-methods of 
utter analysis that give the user a
complete analysis of every mode. As many di�erent
time response signals may have to be analyzed, sev-

1 The volume spline method has been introduced in 1994
[1, 2] for that purpose.



eral methods for curve-�tting should be available.
The analysis can be sensitive to light damping sys-
tems, the number of analyzed modes, coinciding
modes and the signal being non-physical. To over-
come these problems a number of solution strate-
gies is needed.
Stability analysis with time-accurate CFD meth-
ods is usually performed with one of the following
two strategies:

� P- or pk- method analysis. The aerodynamic
data required for these methods might be sup-
plied by: i.Harmonic excitation which is ine�-
cient when the state space 2 is large; ii. Impuls-
response which is prone to noise and is also ine�-
cient when the state space is large; iii. Diverging
rate method [4]. This method is based on the lin-
earized form of the equations and is suitable in
a design cycle because the turn-around time can
be brought back to the minimum.

� Fully-coupled simulation. This method is
especially useful in case of strong non-linearities
at low frequencies and a large state space. For
a single 
ight condition the turn-around time
is always less than the turn-around time when
method 1.i or 1.ii are used for the study of a
general stability problem. For a restrictive study,
methods 1.i and 1.ii might be more e�cient than
method 2. It should be mentioned that method
1.iii can be embedded in a reasonably easy way
in a time-accurate CFD method.

The main innovation in this presentation
is the adoption of MIMO-class [5] tech-
nology, with the objective to predict the
system state at multiple 
ight conditions
from a MIMO identi�cation of a fully-
coupled simulation at a single 
ight condi-
tion, by extracting useful data (e.g. Gener-
alized Forces) from the coupled simulation
which can be used for other purposes.

By the aforementioned continuation it is expected
to increase e�ciency, so that industrial aeroelas-
tic studies might be performed with fully-coupled
CFD methods in assessing the critical state cases
for a large state space.
This presentation describes the experience with the
currently available �tting methods and strategies
in applications.

2 The state space here is the union of the geometrical
state (Vibration modes etc.), the structural state (Mass,
sti�ness, eigenfrequencies etc.) and the 
uid state( Airspeed,
altitude, etc.)
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Figure 1. AEroelastic SIMulation system

2. Aeroelastic Simulation System

At NLR much e�ort has been spent to cre-
ate a complete AEroelastic SIMulation system,
to be used primarily for the 
utter certi�cation
of transport-type aircraft in the transonic speed
regime. Time-accurate simulation of 
uid and air-
frame structure interaction is emphasized. The
AEroelastic SIMulation system is referred to as
AESIM, after the name of the core program.
The AEroelastic SIMulation system is built around
the AESIM core and consists of six independent
main program modules, see �gure 1:
� FOLDIT: surface grid generation.
� BLOWUP: grid generation.
� NASAES: elastomechanical data manipula-
tion.

� AESIM core.
� Output interfacing e.g. to NASTRAN or MIMO.
� Linear methods library.
The AESIM core program is divided into 5 individ-
ual modules and contains those subroutines which
are CPU intensive and make it possible to run the
core in stand alone mode:
� Interpolation: Interpolation of elastomechan-
ical and aerodynamic data (Volume Spline
Method [1, 2]).



� Aero solver: Time-accurate solving of aerody-
namic equations (Full Potential and TLNS3).

� Motion: Either description of motions, seeded

ows, or solving of elastomechanical equations
with or without external loadings.

� Monitoring: Visualization of simulated data.
� Postprocessing: Recollection and assimilation
of facts and �gures of past simulation(s).

Recently activities have been started to extend
the AESIM method in the direction of 
ows and
geometries which are encountered in military air-
craft. Then the code will be ready to prove its val-
ue in applications with mild 
ow separation which
is primarely responsible for inducing strong limit
cycle oscillation structural responses, which might
restrict the 
ight envelope of the aircraft.
In this paper we give attention to the time-analysis
and strategies to use the method e�ciently. The
other parts have been presented in [8].

3. Time signal analysis

The fundamental task in an aeroelastic analysis is
the determination of the frequency and damping of
aeroelastic modes (e.g. to detect if one of the gen-
eralized displacements becomes unstable and 
ut-
ter will occur). As many di�erent time response
signals may have to be analyzed a comprehensive
set of methods for curve-�tting should be avail-
able. In general each time response signal exists
of contributions of various modal modes, of which
the frequency and damping of each one have to be
determined.
Therefore, during an unsteady simulation the data
must be analyzed on-line in the time domain in
order to determine the behavior of a coupled sys-
tem. The main purpose of this analysis is to deter-
mine the frequency and damping characteristics of
the discrete time signal. To ful�l that task the fol-
lowing methods have been embedded (see section
3.2):

� The exponential sine �t,[9]
� Prony's method,
� Fast Fourier Transform analysis,
� Curve-�tting of transfer functions.

Very recently, in a cooperation with TUDelft a fea-
sibility study has been started to apply the promis-
ing MIMO-class techniques [5] for that purpose

3 Recently the TLNS methodology as reported in [6, 7]
has been embedded as there is enough evidence that with
the Thin-Layer Navier-Stokes equations complemented by a
simple turbulence modelling the needs of the industry can
be met for many con�gurations.

too. They will enhance the analysis capability as
depicted in �gure 2.
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Figure 2. Deployment time-analysis methods with respect to
aeroelastic sytems

Since a wide array of time response signals is avail-
able several ways exist to make use of the afore-
mentioned time-�tting tools. The most common
time response signals which can be used to deter-
mine the frequency and damping characteristics of
the discrete time signal consist of:

� � For every modal mode separately:
� the generalized coordinate,
� the velocity of the generalized coordinate,
� the generalized force.

� � Also a combination of modal modes and/or the
pressure or deformation data at selected points
can be analyzed.

Experience has learned that for a fail safe analy-
sis of an elastomechanical system the above men-
tioned �tting routines are applied �rst to the non-
aerodynamically loaded system and next to the
system loaded using linear aerodynamics, [10],
through convolution of transfer functions, [4]. The
data from these analyses might act as a guide-
line for the analysis of the non-linear time signal,
originating from the coupled non-linear 
uid struc-
ture simulation. The analysis process has been ful-
ly automated through use of scripts. This facility
allows the analysis process to be repeatible and to
be documented.
It should be noted that also the analysis might pro-
vide a prognostic way to speed up the simulation by
allowing for larger time steps [3].

3.1. MIMO-class system identification

The main innovation in this presentation is the
adoption of MIMO [5] technology. This permits a



black box 4 evaluation of the aeroelastic system in
such a way that after a single fully-coupled sim-
ulation for one 
ight condition the system state
for other 
ight conditions (e.g. qdyn) might be pre-
dicted and to extract useful data (e.g. Generalized
Forces) from the coupled simulation which can be
used for other purposes.
The main purpose is to extend the single point
application of coupled simulation methods to mul-
tiple points and wayhead is given to perform
postprocessing activities, pk-, k-method etc, with
extracted data from an application of a fully-
coupled simulation.
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Figure 3. Generic 2 mode aeroelastic system

A 2-DOF example is presented in �gure 3 where we
want to assess the transfer functions (generalized
forces) from the coupled simulation. From the cou-
pled responses x; u at a �xed qdyn the MIMO anal-
yses will deduct the A;B;C;D;Q11; Q12; Q21 and
Q22. The condition of the system is equivalent to
the amount of proportional feedback. The symbols
used in the �gure are explained in the appendix.
In order to obtain an estimate for the 
utter condi-
tion from a single time simulation, the aerodynam-
ics that relate the generalized aerodynamic forces
to the generalized displacements are to be mod-
elled and identi�ed. Since the system operates in a
closed loop with the elastomechanical system, mul-
tivariable algorithms for closed-loop identi�cation
are required. The data that is to be used is obtained
by simulation, so the signals are not contaminated
by measurement noise. However, a small amount
of process noise is present, since round-o� errors
are introduced on the propagation of the signals
through the two systems.
The complicated dynamics that govern the sys-
tem for a large number of modes, suggest the use
of frequency-domain methods. This class of algo-
rithms is well applicable to systems where sever-

4 No knowledge is assumed of coe�cients of the structural
and aerodynamic system

al closely located poles have to be distinguished.
However, the closed-loop character of the identi�-
cation problem poses a major problem. Since there
is no external input or reference signal, the aero-
dynamical model that is identi�ed will converge to
the inverse of the mechanical model. This e�ect is
due to the absence of an external signal that drives
the systems. In addition, the aerodynamic model is
insu�ciently excited to use stochastic theories on
which frequency-domain identi�ers are based. In
fact, the input signal is completely deterministic
and contains only the system dynamics.
Finally, frequency-domain analysis is mainly useful
for signals that are distorted by large amounts of
noise and where speci�c frequency ranges are of
interest. Both are not the case for the problem at
hand.
Therefore time-domain analysis has been select-
ed. The use of time-domain methods to estimate
the aerodynamic model, allows for the isolation of
causal and non-causal relations between the inputs
and the outputs. Non-causal e�ects are not to
be modeled, since these are caused by the elas-
tomechanical system in the closed loop. Because
the structure of the mechanical system is known
to be strictly non-causal, i.e. there is no direct
feedthrough from the forces to the displacements,
both a �lter model and a prediction model can be
used for the aerodynamic system.
For identi�cation, a multivariable regression model
is chosen for the more general �lter case. Details of
the aforementioned procedure will be published in
a forthcoming publication.

3.2. Data analysis methods embedded in

AESIM

The methods described in this section obtain the
frequencies and dampings of a dataset with con-
stant time step:

xl = x(l�t) j l = Lb : : :Le; (1)

where Lb denotes the beginning and Le denotes the
end of the data set. Furthermore the time is de�ned
as:

tl = t = l�t j l = Lb : : :Le: (2)

3.2.1. Exponential sine �tting and determination
of dampings and frequencies

The data set is approximated in time in a least
squares sense by the real valued function Xf(t)



de�ned by [9]:

Xf(t) =
NfX
k=1

ake
�kt: (3)

Nf is the order of the �t which is less or equal to
twice the number of modal modes Nh. The coe�-
cient ak is complex. For every such term there is
a companion term which is the complex conjugate,
so that the components of the sum are real. Such
a sum arises as the homogeneous solution of a lin-
ear system of ordinary di�erential equations with
constant coe�cients. In particular dynamical sys-
tems with symmetric mass, sti�ness and damping
matrices.
The complex �k is de�ned as follows:

�k = �k + |�k; (4)

from which the frequencies and dampings of Xf(t)
are de�ned:

Damped natural frequency = �k; (5)

Characteristic damping coe�cient = �k : (6)

In the least squares �t the squared error di�erence
between the output �t Xf(t) and the input time-
history xi given by:

E =
LeX

l=Lb

(Xf (tl)� xl))
2; (7)

is minimized.
The dampings and frequencies are obtained with
the following methods:
A. Prony :
The Prony formulation derived by Prony in

1790 [11] to analyze elastic properties of gasses is
described below.
The �k are obtained with the following procedure:
Determination of �k :

A.1: Introduce the parameter:

�k = e�k�t: (8)

Which can be written as:

�k = rke
|(�k+2�l): (9)

From which the characteristic damping coe�-
cient and the damped natural frequencies can be
obtained as:

�k =
1

�t
log(j rk j);

�k =
�k + 2�l

�t
j l = 0:

� is de�ned by:

�k = arctan

�
�|

�k � ��k
�k + ��k

�
; (10)

where �# denotes the conjugate part.
From the de�nition of �k it is clear that �k is not
uniquely de�ned. Here l = 0 is taken.
A.2: �k are the roots of the polynomial equation:

�N
f

+ pNf �N
f
�1 + : : :+ p1 = 0: (11)

The zeros of the polynomial equation 11 which
occur in complex conjugate pairs are determined
using a general root �nding routine, see [12]. A.3:
The coe�cients pk j k = 1 : : :Nf are de�ned by
the matrix equation, see [13]:

0
BBB@

c1 : : : cNf

c2 : : : cNf+1
...

. . .
...

cNf : : : c2Nf�1

1
CCCA

0
BBB@

p1
p2
...

pNf

1
CCCA =

0
BBB@
�cNf+1

�cNf+2
...

�c2Nf

1
CCCA :(12)

The coe�cients in the matrix of equation 12 are
de�ned as follows:

cl = (13)

=

8>>>>><
>>>>>:

xl j (l = Le � 2Nf + 1 : : :Le

^Le � 2Nf + 1 = Lb);
1
r

Pr
i=1 xl�i+1 j (l = Le � 2Nf + 1 : : :Le

^Le � 2Nf + 1 > Lb);
r = 2 _ : : :_ Le � Lb � 2Nf + 1

;

where Ie denotes the end of the selected time inter-
val.
In principle a set of 2Nf equally spaced values of
the function x(t) is su�cient to determine the func-
tion Xf (t).
However, a more robust procedure is obtained
according to [13] when the set of data points con-
tain more than 2Nf points and the coe�cients are
obtained by averaging the evenly spaced values of
x(t).
The ak 's parameters are obtained as explained
below.
B. Levenberg-Marquardt Method :
Previous obtained �k's can be improved by the
Levenberg-Marquardt Method, see [14]. This iter-
ative non-linear �t procedure is applied here using
frozen ak parameters.
A reasonable guess to the aforementioned �k and
ak parameters is necessary for reliable results. The
initial guesses for �k are provided by:

1. the aforementioned Prony method.

2. the natural harmonic frequencies (eigenfre-
quencies) of the structure.



3. obtained by the curve �tting method
explained later on.

The ak 's parameters are obtained as explained
below.
C. Complex curve �t :
When the assumption can be made that after l =
Lb no external forces are applied (the input-signal
to the system is zero). The �0ks can also be derived
by the procedure below.
After applying the discrete Fourier transform to
the data:

xf = Fx; (14)

the data is approximated by a complex curve �t[15]
and the coe�cients of the rational polynomials are
obtained:

xf(|!) '

PNa

i=0Ai(|!)
i

PNb

i=0Bi(|!)
i
; (15)

where:
B0 � 1: (16)

Na; N b are the order of the polynomials. N b is
equal to twice the number of modal modes N b =
2Nh and in general Na � N b.
The �0ks are the roots of the denominator polyno-
mial which again are obtained by a general root
�nding method.

With the �k's determined as indicated above, it
only remains to determine the ak's. The following
system of equations remains to be solved for deter-
mining the ak's:2
66664

1 1 : : : 1
�1 : : : �Nf

...
. . .

...

�
Le�Lb
1 : : : �

Le�Lb
Nf

3
77775

0
BBBB@

a1e
�1t

a2e
�2t

...

aNfe�Nf t

1
CCCCA =

0
BBB@
xLb
x2
...

xLe

1
CCCA :

(17)

Equation 17 is solved by a General Linear Least
Squares method in which the design matrix is
inverted by one of the following procedures:
� Gauss elimination, [16]
� LU Decomposition, [17]
� SVD, singular value decomposition [17]. If the
system of equations is numerically very close to
singular, Gaussian elimination and LU decom-
position may fail to give satisfactory results. In
that case SVD is a more powerfull tool.

It can be concluded from the aforementioned proce-
dure that a strategy has to be developed to obtain
the best �t. The strategy developed sofar consist
of:

� User-supplied speci�cation of the selected inter-
val (subset) tb = Lb�t; te = Le�t.

� When Prony's method is applied evaluation of
the �0s and the a0ks is performed for a range of
averages with r = 1; 2; 4; 8 : : : and selection of
the coe�cients which result in the smallest error.

� Evaluation of the �0s and the a0ks is performed
by using a sequence of modes (1; 2; 4 � � �Nf).

4. Applications

The examples here focus on current ongoing activ-
ities with respect to the time-analysis and demon-
strate the status of the aeroelastic environment.

4.1. T-tail
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Figure 4. Second mode shape of T-tail

In order to demonstrate the ability of the sys-
tem to deal with existing aircraft structures a
transport-type T-tail fuselage con�guration was
considered. The elastomechanical model consisted
of ten modes. The geometry and the second mode
are depicted in �gure 4.
The generalized coordinates of each individual
mode were calculated in time as a result of a non-
zero initial value for the acceleration of the general-
ized coordinate. In �gure 5 the time response infor-
mation is evaluated through exp. sine �t signal pro-
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Figure 5. Result after exp. sine �t signal processing of
dynamic response of generalized coordinates at Mach=0.84
and zero altitude in Standard Atmosphere
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Figure 6. Result after MIMO signal processing of dynamic
response of generalized coordinates at Mach=0.84 and zero
altitude in Standard Atmosphere

cessing to get damping and frequency information.
Results of the MIMO-class procedure are depict-
ed in �gure 6. The exp. sine �t results compare
reasonably well with the simulated data. However,
the MIMO-class �t results are astonishingly good.
Both methods revealed about the same damping
and frequencies. The results of these simulations
show that the T-tail has a stable dynamic behav-
ior for the 
ight condition under consideration.

4.2. Embedding of lineair aerodynamics

To ease applications and to build con�dence a cou-
pled simulation should also be run based on linear
aerodynamics. This requires the generalized forces
(transfer functions) which are in general available
in the frequency domain to be �tted [4, 18] and
transformed to the time-domain [19]. A feasibility
study with 2-D airloads and 3-D airloads has been
performed to investigate the most e�cient way to
embed linear aerodynamics in the AESIM method.
The assumption is made that the behavior of
any unsteady parameter of interest such as an
aerodynamic load or a pressure coe�cient can be
described by a appropriate form for the transfer
function which is a ratio of two s dependent poly-
nomials which is known as the Pad�e approxima-
tion:

G(s) =
A0 +A1s+ A2s

2 +A3s
3 + � � �

1 + B1s +B2s2 + B3s3 + � � �
(18)

The complex curve �tting procedure is used also
here to obtain the approximation.
The rational polynomial is transformed to state
space form:5
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This system is solved using the Newmark scheme
embedded in AESIM, [1].

4.2.1. Two-dimensional application
Calculations of unsteady airloads have been per-
formed with DOULAT for a 
at plate pitching
about an axis 0:5c in front of the leading edge
(mode 2) and heaving (mode 1) atM1 = 0:5 and a
reduced frequency range up to j s j= 1:0. 6 The gen-
eralized forces data generated by DOULAT were
�tted with the aforementioned procedure. There-
after the Newmark scheme was applied to oscil-
latory motions in the same frequency range and
the time traces were transformed to the frequency
domain.

5 Equation 19 is given here for a third order system.
6 The reduced frequency is de�ned here as k = Im(s) =

!c

2U
where c denotes the chord.
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Figure 7. Comparison of directly calculated and �tted
unsteady coe�cients of a harmonically heaving and pitch-
ing 
at plate at M1=0.5.

Figure 7 shows a comparison in the frequency
domain between the original data (circle) and the
�tted data (line-cross) which show a good agree-
ment.
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Figure 8. Comparison in the frequency domain of direct-
ly calculated and to and fro transformed unsteady coe�-
cients of a harmonically heaving and pitching 
at plate at
M1=0.5.

Figure 8 shows a comparison in the frequency
domain between the original data (circle) and the
data (cross) obtained by analysing the time traces
which again show a good agreement. From this
the conclusion might be drawn that the aforemen-
tioned procedure is applicable in 2D.

4.2.2. Three-dimensional application
Calculations have also been performed with GUL
for the 3-D AGARD standard aeroelastic wing

at Mach=0.901. This con�guration is described in
[20]. Again two modes have been selected.
A similar procedure as outlined above was applied.
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Figure 9. Comparison of directly calculated and �tted
unsteady coe�cients of the harmonically oscillating wing
445.6 at M1=0.901.
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Figure 10. Comparison in the frequency domain of directly
calculated and to and fro transformed unsteady coe�cients
of the harmonically oscillating wing 445.6 at M1=0.901.

Figure 9 shows a comparison in the frequency
domain between the original data (circle) and the
�tted data (line-cross) which show a good agree-
ment.
Figure 10 shows a comparison in the frequency
domain between the original data (circle) and the
data (cross) obtained by analysing the time traces
which again show a good agreement. From this
the conclusion might be drawn that the aforemen-
tioned procedure shows good promise for embed-
ding in the AESIM system.



4.3. MIMO-class application

The applicability of the MIMO method [5] in 
ut-
ter analysis is presented for an aeroelastic inves-
tigation which was conducted for one of the 3-
D AGARD standard aeroelastic con�gurations in
subsonic, transonic and supersonic 
ow. This con-
�guration is described in [20]. The con�guration
for dynamic response I wing 445.6 model "weak-
ened no. 3" was selected at Mach=0.901. The data
were obtained from [3].
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Figure 11. Order of excitation versus condition number for
AGARD aeroelastic system at subcritical 
ight condition

Persistency of excitation for the four-mode sys-
tem is illustrated in �gure 11, where the order of
excitation is shown along the horizontal axis and
the condition number for the correlation-function
Toeplitz matrix is printed along the vertical axis.
From these condition numbers, the input is found
to be persistently exciting of order two at most.
The model order is determined by separating the
data in three subsets. The �rst subset contains the
�rst half of the available time series and is used for
identi�cation. The second set contains only 12%
of the data points and is used to track the state
vector of the new model without using the subset
that was used in the identi�cation step. Finally,
the last 38% of the original time series is used to
validate the new model using the estimated state
vector as an initial condition.
The validation step results in three criteria to sig-
nal over�tting of the system. The normalized mean
square error indicates the best model. However,
this may not be the optimal model since this crite-
rion contains no penalty for hugh models. Akaike's
information criterion (AIC) and the �nal predic-
tion error criterion (FPE) both do include the num-
ber of model parameters in the resulting cost. How-
ever, all three criteria usually indicate the same
optimal model order.
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Figure 12. Validation criteria for AGARD aeroelastic system
at subcritical 
ight condition

Figure 12 shows the validation criteria for each
of the multiple-input single-output models in the
four-mode system that was mentioned before. The
order of the multiple-output model is equal to the
sum of the orders of the single-output models.
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Figure 13. Comparison of MIMO �tted (: : :) and original
(-) generalized forces data for AGARD aeroelastic system
at subcritical 
ight condition

Figure 13 shows the generalized forces as obtained
from simulation with the identi�ed model, togeth-
er with the original data. The data is plotted for
time points after the transition has damped out.
An excellent agreement is shown between both
datasets (they coincide entirely).
A slightly di�erent model structure (MIMO�),
including auto regressive terms on the outputs,
leads to slightly larger errors for the same simu-
lation, as shown in �gure 14.
Finally we come to the main purpose of the excer-
cise. We increase the airspeed to a supercritical
value and apply the MIMO results obtained from
�tting the subcritical airspeed data and make the
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Figure 14. Comparison of MIMO� �tted (: : :) with auto
regressive terms on outputs and original (-) generalized
forces data for AGARD aeroelastic system at subcritical

ight condition

comparison with results of the aeroelastic simula-
tion at the higher airspeed.
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Figure 15. Comparison of MIMO predicted (: : :) and ref-
erence (-) generalized forces data for AGARD aeroelastic
system at supercritical 
ight condition

Figure 15 and 16 depict the comparison which
shows that the system at the supercritical airspeed
is unstable and that the linear MIMO model pre-
diction performs very well for the lower 3 modes.
Mode 4 is overpredicted.
The modi�ed model MIMO� results in smaller
errors than the model from the original model set.
Which model set results in the best estimates for
aerodynamic modeling in aeroelastical closed-loop
systems is yet to be investigated.
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Figure 16. Comparison of MIMO� predicted (: : :) and ref-
erence (-) generalized forces data for AGARD aeroelastic
system at supercritical 
ight condition

5. Conclusions

In this paper the status of the NLR system
for aeroelastic simulation has been presented and
demonstrated with the emphasis on time-analysis.
Experience with recent applications and ongoing
developments led to the following observations:

� The analysis of time signals can be carried out
satisfactorily with the available models.

� The MIMO-class �t procedures are superior to
the ones currently embedded in the AESIM
method.

� The MIMO-class analysis application has shown
good promise for increasing the e�ciency of
coupled simulations by allowing results made for
a single 
ight condition being extented to mul-
tiple 
ight conditions.

� The procedures for utilization of lineair aerody-
namics from the frequency domain to the time
domain have shown good promise for embedding
in the aeroelastic simulation system.

Appendix

A. Aeroelastic MIMO analysis

A very important application of the MIMO anal-
ysis is the black box evaluation of the aeroelastic
system in a way as to be able to predict the 
utter
condition after just a single time-simulation.
The system condition is equivalent to the amount
of proportional feedback as depicted in �gure 3.

To be analyzed, by the MIMO software, in �gure 3
are the aerodynamic transfer functions, Q11, Q12,
Q21 and Q22, in the case of a two mode structural



system.
The de�nition of the structural system is as fol-
lows:

The generalised coordinates qi for each vibration
mode may be di�erent in time and are based on
the generalized modal de
ection approach.
The dynamic deformations are expressed in gener-
alized coordinates qi and their associated modal
mass M , damping D, sti�ness K and vibration
modes ~hi for Nh modes which satisfy the equation:

[M ]�q + [D] _q + [K]q = F (20)

The coupling of the structural model and the aero-
dynamic model involve the generalised aerodynam-
ic forces acting on the aircraft con�guration which
are obtained by solution of the aerodynamic equa-
tions:

F i = �qdyn

Z
s

(Cp � Cstc
p )~hi � ~Nds; (21)

where Cstc
p is obained by a previous static simula-

tion or by application of a low-pass �lter.
Equation (20) is transformed to �rst order:

d _Q+ kQ = f; (22)

where Q =

�
q

_q

�
, f =

�
0
F

�
, d =

�
1 0
0 M

�
and

k =

�
0 �1
K D

�
: (23)

_Q+ d�1kQ = d�1f: (24)

Therefore the system in �gure 3 can be de�ned as:

A � �d�1k (25)

B � d�1 (26)

C � 1 (27)

D � 0 (28)
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