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Abstract

Aircraft are highly adaptable to accommodate the large requirement variety from the very

diverse group of aircraft operators. Consequently the adaptability of (embedded) software is

appreciated. In the application discussed, the safety of the aircraft depends on the correct

functioning of the embedded software. In order not to compromise on safety, strict development

procedures have to be adhered to. This is ensured by an independent governmental authority

which certifies the embedded software as fit-for-use, i.e. airworthy.

In order to remain competitive, requirement volatility is a fact of life. This volatility influences

the software development methodology.

Based on practical experience, the way the airworthiness and the requirement volatility

influence the embedded software development is discussed.
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Abbreviations

AOCS Attitude and Orbit Control System

FAR Federal Aviation Requirements

I/O Input/Output

ILS Instrument Landing System

IMC Instrument Meteorological Conditions

JAR Joint Aviation Requirments

MC/DC Modified Condition/Decision Coverage

SAX Astronomical X-ray Satellite

SA/RT Structured Analysis/Real Time

SD Structured Design

SSR Secondary Surveillance Radar

VMC Visual Meteorological Conditions

VOR VHF Omnibearing Range
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1 Introduction

To fly aircraft under all (adverse) conditions, pilots must fully rely on the data presented to

them, and on the correct and timely forwarding of their commands to the relevant aircraft

subsystems. The embedded application connects these subsystems with the aircraft flight deck

by means of modern digital data buses. It combines, controls, processes and forwards the data

between the subsystems and the flight deck. High reliability of these functions is required to

ensure the safety of the aircraft. To protect the interests of the general public an independent

national governmental authority certifies the embedded application as fit-for-use i.e. airworthy.

In –this paper the experiences with the software development methods to meet these

requirements are presented.

The development of aircraft is a commercial venture. In order to meet the business opportunity a

short time-to-market is essential. To comply, the various parts of an avionics suite need to be

developed concurrently by several companies, while satisfying the safety and certifiability

requirements. In our case the various avionics parts are developed by several companies.
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2 Air transport safety requirements

For safety critical software in airborne equipment the (DO-178B 1992) standard has been

developed. The aim of this document is to provide guidance to both the software developers and

the certification authorities. Usually acceptance of software is based on an agreement between

the developer and the customer. In civil avionics an independent third party, the certification

authority, performs the ultimate system acceptance by certifying the entire aircraft. It is only

then that the constituent software is airworthy and can be considered ready for use in the aircraft

concerned. (DO-178B 1992) provides a world wide "level playing field" for the competing

industries as well as a world wide protection of the air traveller, which are important due to the

international character of the industry. The certification authority is a national governmental

institution which in our case delegated some of its technical activities to a specialised company.

2.1 Safety classification

Based on the impact of the system failure the software failure can contribute to, the software is

classified into 5 levels. The following is a verbatim copy of the (DO-178B 1992) text.

(DO-178B 1992) on purpose refrains from quantifying the failure probability. The Federal

Aviation Requirements /Joint Aviation Requirements (FAR/JAR-25), which is applicable at

airframe level, does quantify the failure probability in flight hours (i.e. actual operating hours)

and this information has been added.

Level A: Catastrophic failure

Failure conditions which would prevent continued safe flight and landing

(FAR/JAR-25) extremely improbable, catastrophic failure < 1x10-9

Level B: Hazardous/Severe-Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be:

a large reduction in safety margins or functional capabilities

- physical distress or higher workload such that the flight crew could not be relied on to

perform their tasks accurately or completely

- adverse effect on occupants including serious or potentially fatal injuries to a small number

of those occupants

(FAR/JAR-25) extremely remote, 1x10-9 < hazardous failure < 1x10-7
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Level C: Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be, for example,

- a significant reduction in safety margins or functional capabilities

- a significant increase in crew workload or in conditions impairing crew efficiency or

- discomfort to occupants, possibly including injuries

(FAR/JAR-25) remote, 1x10-7 < major failure < 1x10-5

Level D: Minor failure

Failure conditions which would not significantly reduce aircraft safety and which would involve

crew actions that are well within their capabilities. Minor failure conditions may include for

example,

- a slight reduction in safety margins or functional capabilities

- a slight increase in crew workload, such as, routine flight plan changes, or some

inconvenience to occupants

(FAR/JAR-25) probable, minor failure > 1x10-5

Level E: No Effect

Failure conditions which do not affect the operational capability of the aircraft or increase crew

workload.

The following text will only consider the part of the embedded application which is classified as

level A.

2.2 Software life cycle

(DO-178B 1992) on purpose refrains from making a statement about an appropriate software

life cycle. The life cycle is described rather abstract as a number of processes that are

categorised as follows

- software planning process which entails the production of the following documents

• plan for software aspects of certification. The main purpose of this document is to define

the compliance of the software development process to (DO-178B 1992) for the

certification authorities. This document contains many references to the project

documentation generated as part of the life cycle model used,

• software development plan, which defines the chosen software life cycle and the

software development environment, including all tools used,

• software verification plan, which defines the means by which the verification objectives

will be met,
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• software configuration management plan,

• software quality assurance plan.

- software development processes consisting of

• software requirement process,

• software design process,

• software coding process,

• integration process.

Each software development process has to be traceable, verifiable and consistent. Transition

criteria need to be defined by the developer to determine whether the next software

development process may be started.

- integral processes which are divided into

• software verification process,

• software configuration management process,

• software quality assurance process,

• certification liaison process.

The integral processes are a result of the criticality of the software. Consequently the integral

processes are performed concurrently with the software development processes throughout

the entire software life cycle.

2.3 Verification

Verification is defined as "the evaluation of the results of a process to ensure correctness and

consistency with respect to the inputs and standards to that process". Verification can be

accomplished by review, analysis, test or any combination of these 3 activities. Review provides

a qualitative assessment of correctness.

Analysis is a detailed examination of a software component. It is a repeatable process that can

be supported by tools. (DO-178B 1992) recognises two types of tool

- software development tools, which can introduce errors,

- software verification tools, which can fail to detect errors.

The embedded project has only developed software verification tools. Every tool needs to be

verified against the Tool Operational Requirements, the contents of which is prescribed in

(DO-178B 1992). Software development tools need to be tested using normal and abnormal

conditions. Software verification tools need only be tested using normal conditions. For

software tools the same documentation and configuration control procedures apply as for the

airborne software. Every software tool needs approval of the certification authority.
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Testing is "the process of exercising a system or system components to verify that it satisfies

specified requirements and to detect errors". By definition the actual testing of deliverable

software forms only part of the verification of the coding and integration processes.



-10-
NLR-TP-98163

3 Experience gained with safety critical software development

Usually the software development process is agreed between the customer and the supplier. For

certifiable software a third party is involved, adding a stage in the approval process. The

organisational independence improves the position of the assessors. In our case the customer

had ample experience with (DO-178B 1992) certification and decided, after approving the

process documentation, to postpone the review with the certification authorities until the

completion of the coding process. Only minor modifications were needed in the process

documents, implying that (DO-178B 1992) can be adhered to without prior knowledge of

certification.

The project team was set up consisting of 2 separate groups, a development group and a

verification group. The verification group was headed by a team member with sufficient

authority to report, at his own discretion, to the company management outside the project

hierarchy.

To ensure strict traceability from requirements to design, to code and to integration a review

was  part of the development process. Experience with previous mission critical software

development suggested variability of detailed system requirements, so analysis is used wherever

possible. Part of the analysis can be strictly defined and subsequently implemented in a

customised tool. Tool support reduces the costs for repeated analysis. The software verification

tools performed according to expectations to reduce the impact (both in time and costs) of the

many late requirements changes (fig 2).

The customer required use of the C programming language was considered a potential risk for

the successful development of the embedded application. The C language contains numerous

constructs that are unspecified, undefined or left to be defined by the compiler supplier (Hatton

1995). This risk was reduced by choosing an ANSI-C compliant compiler complemented by a

project coding standard defining, amongst others, a safe subset of C. Compliance to this project

coding standard can be checked automatically by customising a commercial tool. During

verification of this tool the version management by the tool supplier turned out to be inadequate.

The tool was already marketed world wide since 1986 to hundreds of customers. This illustrates

the rigour of the applied verification processes.
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4 Overview of the embedded application

The aircraft display subsystem is designed to operate in both Visual Meteorological Conditions

(VMC) and Instrument Meteorological Conditions (IMC). Under visual meteorological

conditions the displays aid the pilot during flight, under instrument meteorological conditions

the displays are necessary for the pilot to be able to fly, consequently the correct functioning of

the displays is safety critical. The instrument meteorological conditions imply that a number of

equipment items needs to be duplicated to achieve the required failure probability.

When configured for instrument meteorological conditions the displays consist of the following

equipment

- 2 avionics control display application systems, containing the embedded application,

- 4 smart multifunction displays,

- 2 instrument control panels,

- 1 reconfiguration control unit.

The embedded application is the interface between the on-board sensors and the displays

(fig. 1). The sensors and some aircraft subsystems send flight parameters via digital buses to the

embedded application, which validates the parameters and sends them to the displays. A number

of flight  parameters is also computed within the embedded application itself.

Flight Deck

Automatic
Direction Finder

Distance Measuring
Equipment

Radio Altimeter

VOR/ILS Equipment
- VHF Omni directional Range
- Instrument Landing System

Weather Radar
Control Panel

Sensors

Auto Pilot Module

Centralised
Maintenance Manager

Navigation Module
- GPS Global Positioning System
- FMS Flight Management System

Vehicle and Engine
Management System

Video Radar Module
- forward looking infrared
- digital map generator
- weather radar

Aircraft Subsystems

Air Data Computer

Attitude & Heading
Reference System

SSR Transponder
- Secondary Surveillance Radar

Sensors & Outputs

Avionics Control
Display Application

Instrument
Control Panel

Smart Multifunction
Display

Reconfiguration
Control Unit

Fig. 1  Overview avionics control display application environment
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In case of failure of an equipment item or a discrepancy between two sensors, the

reconfiguration control unit permits the crew to choose between different display

configurations. When a sensor is reconfigured, it is logically switched-off. This illustrates how

software and a duplicated hardware device reduce the failure rate to the required level.

Consequently the software becomes safety critical.

During normal operation the embedded application processes about 100 different flight

parameters, originating from 10 different sensors. Two processors are used. The delay times

within the entire embedded application should be guaranteed to be less then 30 msec with a

cycle time of 20 msec for the main processor. Due to the many changes expected during the

operational life of the embedded software 50% spare processor time shall be allowed for. The

I/O processor has a cycle time of 360 micro seconds.

Each parameter is classified as

- critical: loss or undetected error could lead to a catastrophic failure condition. Examples of

critical parameters are the attitude parameters pitch, roll, and heading. The software that

handles these parameters is classified as (DO-178B 1992) level A,

- essential: loss or undetected error could lead to a major failure condition. An example of an

essential parameter is the VOR (VHF Omnibearing Range for aircraft position

determination). The software that handles these parameters is classified as level B,

- non-essential: loss or undetected error could lead to a minor failure condition. Examples of

these parameters are the long term navigation parameters, like the flight plan. The software

that handles these parameters is classified as level D,

- no effect: loss or undetected error does not lead to a failure condition affecting the aircraft or

the crew workload. An example is ground maintenance. The software that handles these

parameters is classified as level E.

Depending on the criticality of the flight parameter, validation is performed by the embedded

application in four different ways

- coherency test: a check on correct length and parity of the data,

- reception test: a check on the timely arrival of the data,

- sensor discrepancy test: a comparison between two data values produced by the two

independent redundant sensors,

- module discrepancy test: a comparison between the two parameter values produced by the

same sensor; one value directly read by the system from the sensor, and one obtained from

the redundant system via a cross-talk bus.
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5 Experience gained with safety critical software development methods

The definition of the embedded application software development method has been guided by

previous experience with mission critical software. In spacecraft the software on which success

of a mission depends is classified as mission critical.

5.1 Previous experience

The Attitude and Orbit Control System (AOCS) software for the Italian-Dutch Astronomical

X-ray Satellite (SAX) (Dekker 1996) has been developed using the following software

development method

- customer supplied specifications provided in plain English,

- use of the (ESA PSS-05, 1991), life cycle model,

- requirement analysis using Structured Analysis with Hatley and Pirbhai Real Time system

extensions (SA/RT) (Hatley & Pirbhai 1988) supported by the Teamwork tool. The process-

specifications are written in plain English, including a copy of the relevant requirement

number(s),

- software design using Yourdon Structured Design (SD) supported by the Teamwork tool.

The module-specifications are written in pseudo code and include a copy of the relevant

requirement number(s),

- coding in the customer prescribed C-language. A proprietary C-coding standard was used,

enhanced for this specific project. The coding standard provides a uniform coding style,

improving readability, maintainability and modifiability. Based on experience in many

projects recommended constructs are provided an unwanted constructs are prohibited.

Project enhancements include no recursion (to prevent unpredictable maximum execution

times) and no dynamic memory allocation (to prevent unpredictable maximum memory

size). The entire module specification was included as comment in the code,

- module testing and integration testing with a self imposed 100% code coverage requirement.

After validation and delivery the resulting system contained 1 error in 20,000 lines of

non-comment source-code. This error was found during the SAX satellite integration tests plus

the entire operational life of the satellite. The resulting error density is 0.05 error per 1000 lines

of code. This can be categorised as an extremely low value, refer also to (Hatton 1996). This

error density was achieved even though the first delivery consisted of 16,000 lines of code and

subsequently about 8,000 lines of code were added/modified resulting in a total size of 20,000

lines of code.
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5.2 Method used

For the embedded application the customer prescribed the use of the (DOD-STD-2167A, 1988)

life cycle model and the use of the C-language. Based on the successful SAX AOCS

development the following elements of the SAX AOCS software development method are

retained

- customer supplied specifications provided in plain English,

- requirements analysis using Structured Analysis/Real Time systems supported by the

Teamwork tool,

- software design using structured design supported by the Teamwork tool,

- use of NLR proprietary C-coding standard, with project specific enhancements, including the

ones described for the SAX AOCS project. The C-coding standard is enforced by a static

source code analysis tool.

Based on the SAX-AOCS experience of a very substantial amount of changes during and after

the implementation phase, even more emphasis is placed on tools to support the development

activities. Added to the software development method are

- a mandatory 100% code coverage for software classified at (DO-178B 1992) level A. This

code coverage consists of statement coverage (every statement executed) plus decision

coverage (every decision executed for pass and fail) plus the modified condition/ decision

coverage (mc/dc). Mc/dc requires that for every condition in a decision, its effect on the

outcome of the decision is demonstrated,

- the use of an automated test tool to aid the construction and cost effective repetition of the f

functional tests and code coverage tests. Only for code coverage tests the source code has to

be instrumented by the test tool,

- execution of module tests and integration tests on the target system. The test tool is used to

generate test harnesses in the C programming language, which can be (cross-)compiled and

run on the host computer or the target computer. The advantage is that the source code can

be tested without having the target computer available.

5.3 Formal methods

Formal methods with comprehensive automated environments could provide benefits in safety

critical environments. However such automatic verification systems, including sufficient vendor

support, are not yet available for real world applications. Formal methods can provide important

evidence for certification. However certification must consider multiple sources of evidence and

ultimately rests on informed engineering judgement and experience (Kopetz, 1997). (DO-178B

1992) does not consider formal proofs an alternative to the recommended methods, but allows

its use for satisfying some of the documented objectives.
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6 Commercial realities versus safety critical application development

Due to the commercially defined short time to market, the customer definition of the system

requirements was performed concurrently with the software requirements process. The resulting

analysis was subjected to a number of informal technical assessments, but no formal verification

was performed.

6.1 Co-development necessity

The commercial nature of the aircraft development even resulted in concurrent updates of the

system requirements during the design, coding and integration processes. Consequently the

planned deployment of separate development and integration teams turned out to be infeasible.

To aid the integration of the embedded application in the customer developed displays and

subsequently in the existing aircraft, a first version of the software with very limited

functionality was delivered. This version was produced based on a successive completion of the

documented software development processes. However none of the formal reviews with the

customer or the certification authority had been performed. The first version served its purpose

well. A lot of feed-back was obtained, resulting in many changes to and clarifications of the

system requirements.

Due to the success in eliminating system level problems by the informal co-development of the

first version of the embedded application and the displays, the customer requested to continue

the informal co-development and allocate all project resources to it. The personnel resources of

both teams were combined, however the 2 separate team managers with their complementary

responsibilities remained. All activities were executed for only one of the teams. The respective

team leader ensures that the relevant procedures remain strictly enforced.

6.2 Requirement volatility

The steady rise in the number of implemented requirements (fig 2) shows that from a functional

point of view this concentrated development effort has been very successful. At least 1

additional pre-release is expected.

Up to date the software contains nearly all functions for the nominal behaviour. At the same

time the number of requirements changes, almost all of which have been accommodated, equals

the number of requirements (fig 2). These changes relate in part to valuable feed-back from the

user (pilot). Most remaining changes are caused by the co-development of the displays and
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especially the integration of the displays with the embedded application and the aircraft. This

integration has been expedited considerably by the pre-releases.

250

200

150

100

50

0
week 0 week 12 week 20 week 24

yes partial no changes

Requirements

Fig. 2  Requirement implementation status (cumulative) and number of changed requirements

6.3 Incremental deliveries

The embedded application consists of 4 configuration items, 3 programme modules and 1

shared library module. By far the most requirements are implemented in Module C. Between

the first and the second delivery many functions from module B were moved to the shared

library (fig. 3) because of modified requirements combined with a consolidation of the design of

both modules. Between the second and third delivery the same occurred for modules A and B/C.

week 0 week 12 week 20 week 24

module A module B module C shared

Code size

Fig. 3  Module code size per pre-release, cumulative
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Between the third and the last delivery mainly additional requirements are implemented in

module C with some additional module consolidation. Between the second and third delivery,

the execution time was considerably reduced by optimising the software architecture.

6.4 Co-development experience

This informal co-development has only been possible because the documented software

requirement process and software design process had been completed before the coding of the

first software version started. The available Teamwork models also aided in assessing the

consequences of proposed changes. The drawback of the informal co-development is that a very

considerable amount of documentation work remains. Based on the software size it was

impossible to enlarge the team. Also all verification and the exhaustive mc/dc testing still needs

to be performed. It is inevitable that the verification will result in a new version of the software,

which will be submitted to the certification authorities. The reverse side of the early and

successful delivery of the co-development versions is the risk of invalidating some already

completed flight trials of the aircraft.

Safety critical avionics applications require independent personnel to verify the coding and

integration processes. Consequently another person needs intimate knowledge of each module

as well as an up-to-date detailed design to verify the implementation. The commercial pressure

to implement requirements in the next pre-release, combined with the labour intensive

Teamwork tool to update the analysis and design models results in both models to become

rapidly outdated. Consequently the verification can not keep up with the co-development.

After the last pre-release delivery costly re-work needs to be done, which also delays the

certification schedule. It is unclear how much of the schedule time gained during the

co-development is lost due to the resulting delayed verification and certification. At least

co-development saves re-certification effort as well as the generation, formal release and formal

review of much documentation describing pre-releases. An important lesson learned from the

informal co-development is to try to keep the verification process up with the actual

implementation to comply with the commercial time to market.

The many system requirement changes require a cheap and easily repeatable verification

process. This can only be achieved by using strictly defined development methods which allow

strictly defined analysis. The well defined analysis should be executed by automated tools.

These tools should be sufficiently user-friendly and efficient to allow the analysis, design and

testing to be updated concurrently with the code modifications resulting in a spiral development

model. As a complete integrated suite of development tools is not commercially available, the
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best option is to use as much available tools as possible. For some simple unsupported

(verification) tasks proprietary tools can be produced cost-effectively. Only the tool for

checking compliance to the coding standard was sufficiently user-friendly to be used during the

co-development.
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7 Conclusion

To conclude

- for air transport the safety requirements stated in (DO-178B 1992) software are sufficiently

clear to allow a first-time developer, with experience in safety critical software development

for other application areas, to define, without external support, a compliant development

process,

- compliance with (DO-178B 1992) can be achieved with the traditional waterfall software

development model,

- the commercial nature of aircraft production implies that the various aircraft subsystems

need to be co-developed in order to achieve the commercial determined time to market. In

this environment the spiral model is more appropriate then the waterfall model,

- an integrated tool set is needed which supports this co-development i.e. which allows when a

change occurs to concurrently update analysis, design, code, integration and verification

(including traceability information). Currently commercially available tools do not provide

this capability,

- to minimise the effort of the recurring verification, analysis is the preferred method,

supported by tools wherever available. For simple verification tasks customised tools can be

developed cost-effectively,

- the commercial need to deploy all human resources to development has significantly reduced

the development time as well as allowed co-development of the embedded application with

several other aircraft subsystems,

- the commercially induced requirements volatility of the co-development results in increased

use of more general modules. This influences certification and execution time.
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