Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

&

e

NLR-TP-99142

Component based software development

at NLR
Assembling aerospace applications

E. Kesseler and E.H. Baalbergen




Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

pd

o

=

NLR-TP-99142

Component based software development
at NLR
Assembling aerospace applications

E. Kesseler and E.H. Baalbergen

This report is based on a presentation held at the Euroforum Software
Congress "Component based development", Utrecht, The Netherlands,
December 15, 1998.

The contents of this report may be cited on condition that full credit is given to
NLR and the authors.

Division: Information and Communication Technology
Issued: March 1999
Classification of title: unclassified



-2-
NLR-TP-99142

-
Contents

1 Introduction

2 Casel: SPINEware

2.1 Description of SPINEware

2.2 'Why components based devel opment
2.3 Approach

2.4 Experiences

Case 2: Safety critical embedded software
3.1 Application description

3.2 Air transport safety requirements

3.3 Sdfety classification

3.4 Veification

3.5 Experience

3.6 Case conclusions

4 Conclusions

References

(16 pagesin total)

0 N oo o1 Ol

©

10
10
11
12
14

15

16



-3
NLR-TP-99142

Abbreviations

AOM
CFD
CORBA
COTS
CSCI
FAR
ILU

I/0
IMC
ISNaS
JAR
MC/DC
NTSB
OIL
OMG
ORB
TCD
VMC
UsS

Application Object Manager

Computational Fluid Dynamics

Common Object Request Broker Architecture
Commercial Of The Shelf

Computer Software Configuration Item
Federal Airworthiness Requirement
Inter-Language Unification

Input/Output

Instrument Meteorological Conditions
Information System for Navier-Stokes Equations
Joint Aviation Requirement

Modified Condition/Decision Coverage
National Transport safety Board

Object Interface Layer

Object Management Group

Object Request Broker

Test Case Definition

Visual Meteorological Conditions

User Shell



=

-4-
NLR-TP-99142

1 Introduction

The classical approach to the production of software is to write a tailored solution dedicated to
each application. For each new application the production process starts from scratch. This
approach is becoming increasingly infeasible due to the commercial realities of unaffordable
costs combined with an unaffordable time-to-market. Furthermore experience has shown that
in general this labour intensive approach can not guarantee the application's quality, i.e. that
the application performs its intended functions correctly. Re-use has been seen as a solution to
some of these problems for a long time. Due to problems related with finding which modules
to re-use, ambiguities in the documentation of the module's behaviour combined with an
unspecified and hence unknown reliability of the module, re-use has not achieved the success
expected from it. Component based development is the latest attempt to improve the software

production process on all of the three items mentioned.

NLR operates in an aerospace environment, in which the application's technical characteristics
pose additional constraints on the software. These constraints are reflected in the software
development process. NLR's strategy to promote re-use and component based development
will be illustrated with two cases. Of each case different characteristics will be discussed,

exemplifying the variety of issues encountered in aerospace software development.

The following two chapters will describe one case each. The first case employs standard
component based development techniques to produce an environment for metacomputing
(SPINEware). The second case applies re-use for an embedded application which performs
safety critical functions in an airframe. In this case safety concerns and certifiability are
added. The conclusions in the last chapter summarise the experience gained in component

based software development



-5
NLR-TP-99142

2 Casel: SPINEware

The first case concerns SPINEware, a facility that supports development and use of
application and user oriented working environments on top of heterogeneous computer
networks [Baal, 1998].First a concise description of SPINEware is presented. Next the major
constraints that motivated the components based development of the latest version of the
product are discussed. Also described is how components based techniques are applied to the
development of SPINEware. The case description concludes with a short summary of

experiences with the application of components based techniques.

2.1 Description of SPINEware

SPINEware is a collection of tools and software modules that supports the implementation of
user and application area oriented metacomputers on top of heterogeneous computer networks.
Such metacomputer provides the end user with a single and coherent application environment,
along with a powerful user-oriented and tailorable graphical desktop system. The application
environment (henceforth called working environment) gives access to potentially all resources
from the computer network. The most important characteristic of a SPINEware-based
working environment, which actually motivates use of the term "metacomputer”, is that the
user sees and operates a single computer. All details concerned with the heterogeneity of the
network, remote access of resources, and information transfer among individual computers
are hidden from the user. SPINEware allows the creation of such metacomputer and its
tailoring to the specific wishes of the end users, working in specific application areas. The
emphasis of SPINEware lies on detailed elaboration on the end-user viewpoint on the one
hand, and on the provision of a single through-the-desktop environment of the heterogeneous

computer network resources on the other hand.

The idea of providing the end user with a working environment that hides details emerging
from computer and network usage, was first elaborated in the ISNaS project [Voge], aimed at
the development of an information system for Computational Fluid Dynamics (CFED). The
development of SPINEware started early 1992 at the National Aerospace Laboratory NLR as
product called "SPINE". SPINEware is being further developed since 1996 jointly by NLR
and the Japanese computer manufacturer NEC, who recognised SPINEware as a valuable tool
for supporting their own supercomputer products in existing computer networks. The first
commercial version of SPINEware, version 2.0, was announced by NEC early 1998, and is
currently available for most popular UNIX workstations. New requirements, and experiences
gained through version 2.0 has lead to development of version 3.0, which started by the end
of 1997. This version is targeted for UNIX computers as well as Windows (95/98/NT) PCs.



-6-
NLR-TP-99142

2.2 Why components based development
Several constraints and experiences have motivated the application of components based
techniques to the development of SPINEware version 3.0. In this section, the four most

important motivations are discussed.

First, timely availability, giving a fixed budget is an important requirement. Development of
version 3.0 concerned a redesign of the system, giving rise to reimplementation of large parts
of the system. On the one hand it is recognised that a short time-to-market is of paramount
importance for such system as SPINEware to become successful. On the other hand, for
contractual reasons, the system must be realised within a fixed budget. It simply turned out
that we could not afford development of the entire system from scratch. Hence, it was decided
to potentially re-use existing, good, off-the-shelf software components, comprising

commercial as well as non-commercial, and (de-facto) standard as well as "own" software.

A second motivation originates from a set of requirements concerned with the system being

distributed. Presenting the resources available from a set of computers in a single and

coherent environment, requires at least one software component to be installed on each of the

individual computer, in order to manage and manipulate the resources on that computer on

behalf of the environment. For this reason, a SPINEware-based working environment is

realised as a distributed system. Extra requirements applying to this system are:

2~ openness in the sense that new software components can easily be added;

2 flexibility in the sense that software components can be replaced by other; and

2 configurability in the sense that software components may easily migrate to other
computers.

Implementing the system as a set of loosely-coupled components contributes to realisation of

these requirements.

Another motivation for components based development of SPINEware version 3.0 is
application of the good old "divide-and-conquer” principle to system development. The
system, recognised as rather large and complex in its whole, has been subdivided into a set of
smaller and simpler components, with well-defined interfaces among them. Development of
each individual component can be carried out by a small number of people, and requires
hardly interaction with the rest of the development team. Also, each component can be tested

separately, making the verification of the quality of the entire system manageable.

Also, the realisation of SPINEware version 3.0 as an object-based system gives rise to
components based development of the system. The resources, such as files, directories, tools,

and printers, are presented to the user as objects. The user may access and manipulate an



-7-
NLR-TP-99142

object through a set of operations (methods) defined for the objects. The graphical user
interface (i.e., the desktop) of a SPINEware-based working environment provides intuitive
mouse-based operations, such as select icons in windows, drag-and-drop icons, and pull-down
menus, to facilitate the invocation of methods. The object-based model gives rise to a
decomposition of the software into components, comprising implementation of individual

objects and modules for management of the objects.

2.3 Approach

As pointed out in the previous section, SPINEware version 3.0 has been designed, and

currently is being implemented as an object-based, distributed system. It consists of the

following components:

Y Application objects modelling the native computers' resources, such as File and Directory
(file-system objects), Tool (program or utility), WorkFlow and DataContainer (tool
chains, work flows, and data sets involved with these), Printer (printer and related
utilities), and ObjectFolder (set of application objects);

2 Application Object Manager (AOM), responsible for administration (e.g., the interface in
terms of methods and attributes) of the application objects, and the invocation of methods;

2 Object Interface Layer (OIL), responsible for all communication — either or not via the
network - among the components;

Y User Shell (US), providing the graphical user interface, the desktop, of a working
environment.

AOM, OIL, US, and each application object is implemented as a separate component. A

component may be further subdivided into software items, mainly for being able to re-use

existing software, to replace a piece of software, or just to divide-and-conquer.

For definition of the interfaces among the components, the CORBA (Common Object Request
Broker) standard from the Object Management Group (OMG) is applied [OMG, 1995]. The
OMG is an international consortium from industry, including system vendors, software
developers, and users, that promotes the theory and practice of object-oriented technology in
software development. The goal is to provide a common architectural framework for
communication among application objects across heterogeneous computer systems. Applying
the CORBA standard in development of SPINEware version 3.0 has two important
advantages:
- CORBA provides a standard means for definition of interfaces among objects
implemented as software components. This means that, if your system is so-called
CORBA-compliant, integration of, or interoperability with other CORBA-compliant

software is feasible with minimum effort;



-8
NLR-TP-99142

- For realisation of communication among objects, use can be made of existing CORBA
products. For SPINEware, the product ILU (Inter-Language Unification) from Xerox
Corporation has been selected [Xero, 1997]. Such a product allows you to generate code
from the object's interface definition and to implement the object as part of a

implementation of the distributed system.

The CORBA compliance has made a first implementation of the system within short time
feasible. Also, with the software components ported to all of the target UNIX and Windows
platforms, implementation of the entire system with components running on UNIX as well as
Windows was feasible within short time. In future, realisation of, for example, WorkFlow
objects will be accomplished by "plugging in" an existing and CORBA-compliant work flow
management system.

Reuse of existing software components is also made, or planned in other areas. For example,
the US component is realised using an existing public-domain product for building graphical
user interfaces, Tcl/Tk. To facilitate use of, for example, a Web-browser based, or Java-
based interface in the future, the present US may be simply replaced by one based on a Web

browser or Java.

2.4 Experiences

Applying components based technology to development of SPINEware version 3.0 has indeed
helped us in realisation of the system, as described in sections 2.2 and 2.3. Components-based
development principles such as "re-use" and "divide-and-conquer"”, have been, and yet are
valuable contributions in the development of SPINEware version 3.0, especially with limited

resources (budget, humans, time-to-market).

We consider the "divide-and-conquer” principle, originating from the early days of computer
programming, mature; sufficient methods and expertise exist to apply this principle in system
development. The "re-use" principle is yet immature. The wuse of re-usable software
components is nowadays facilitated through indices, manual pages, libraries, and (Ada)
packages. The production of re-usable software components, however, deserves attention. In
practice, software development projects leave no, or occasionally only little room to put extra
effort in making a system component that is reusable as well. In addition to interface
definition, documentation, and verification, extra attention needs to be paid to generalisation

and abstraction in order to make a software component reusable.



-O-
NLR-TP-99142

3 Case 2: Safety critical embedded software

The second case concerns safety critical embedded software. First a short description of the
application is provided, followed by the safety requirements and the official safety
classification definition. After a section on verification NLR's experience is provided,
emphasising the issues related with component based development. The case description ends
with some concluding remarks.

3.1 Application description

To fly aircraft under all (adverse) conditions, pilots must fully rely on the data presented to
them, and on the correct and timely forwarding of their commands to the relevant aircraft
subsystems. The embedded application discussed connects these subsystems with the aircraft
flight deck by means of modern digital data buses. It combines, controls, processes and
forwards the data between the subsystems and the flight deck. The embedded application is
designed to operate in both Visual Meteorological Conditions (VMC) and Instrument
Meteorological Conditions (IMC). Under the latter conditions the displays of the flight deck
are needed by the pilot to fly, rendering the correct functioning of the displays safety critical.
A number of equipment items needs to be duplicated to achieve the required failure
probability.

During normal operation the embedded application processes about 100 different flight
parameters, originating from 10 different sensors. Two processors are used in each of the
duplicated hardware units. The delay times within the entire embedded application should be
guaranteed to be less then 30 milliseconds with a cycle time of 20 milliseconds for the main
processor. Due to the many changes expected during the operational life of the embedded
software 50% spare processor time shall be allowed for. The I/O processor has a cycle time
of 360 microseconds. Due to the available processing power these timing constraints alone
prevent the use of standard component based development techniques.

The influence of safety on the embedded application's function will be illustrated for data
input, the equivalent of the standard read statement. Depending on the criticality of the flight
parameter, the software validates it in up to four complementary ways:

- coherency test: a check on correct length and parity of the data;

- reception test: a check on the timely arrival of the data;

- sensor discrepancy test: a comparison between the two data values produced by the two
independent redundant sensors and;

- module discrepancy test: a comparison between the two parameter values produced by the
same sensor; one value directly read by the system from the sensor, and one obtained
from the redundant system via a cross-talk bus.

[Kess, Slui 1998] contains more information on the application.



-10-
NLR-TP-99142

3.2 Air transport safety requirements

For safety critical software in airborne equipment the [DO-178B] standard has been
developed. The aim of this document is to provide guidance to both the software developers
and the certification authorities. Usually acceptance of software is based on an agreement
between the developer and the customer. In civil avionics an independent third party, the
certification authority, performs the ultimate system acceptance by certifying the entire
aircraft. Only then the constituent software is airworthy and can be considered ready for use
in the aircraft concerned. [DO-178B] provides a world wide "level playing field" for the
competing industries as well as a world wide protection of the air traveller, which are
important due to the international character of the industry. The certification authority is a
national governmental institution which in NLR's case delegated some of its technical
activities to a specialised company.

As the entire aircraft is certified this implies that when an operator wants an aircraft with
substantial modifications, the aircraft including its embedded software has to be re-certified.
Substantial modifications are, for example, modifications which can not be accommodated by
changing the certified configuration files. The influence of certification on the re-use of safety
critical software components will be elucidated, based on NLR's experience with the
embedded application.

3.3 Safety classification

Based on the impact of the system failure the software failure can contribute to, the software
is classified into 5 levels. The failure probability in flight hours (i.e. actual operating hours)
according to the Federal Airworthiness Requirements /Joint Aviation Requirements
[FAR/JAR-25] has been added.

Level A: Catastrophic failure
Failure conditions which would prevent continued safe flight and landing.
[FAR/JAR-25] extremely improbable, catastrophic failure < 1x10

Level B: Hazardous/Severe-Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew

to cope with adverse operating conditions to the extent that there would be:

- alarge reduction in safety margins or functional capabilities;

- physical distress or higher workload such that the flight crew could not be relied on to
perform their tasks accurately or completely;

- adverse effect on occupants including serious or potentially fatal injuries to a small
number of those occupants.

[FAR/JAR-25] extremely remote, 1x10 ® < hazardous failure < 1x10 7



-11-
NLR-TP-99142

Level C: Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew
to cope with adverse operating conditions to the extent that there would be, for example,

- a significant reduction in safety margins or functional capabilities;

- asignificant increase in crew workload or in conditions impairing crew efficiency; or

- discomfort to occupants, possibly including injuries.

[FAR/JAR-25] remote, 1x10 7 < major failure < 1x10

Level D: Minor failure

Failure conditions which would not significantly reduce aircraft safety and which would

involve crew actions that are well within their capabilities. Minor failure conditions may

include for example,

- a slight reduction in safety margins or functional capabilities;

- a slight increase in crew workload, such as, routine flight plan changes or some
inconvenience to occupants.

[FAR/JAR-25] probable, minor failure > 1x10 °

Level E: No Effect
Failure conditions which do not affect the operational capability of the aircraft or increase

crew workload

3.4 Verification

In order to provide the developer with maximum flexibility, [DO-178B] allows the developer
to choose the software life cycle. It enforces traceability to its general requirements. This life
cycle will have to be approved by the certifying authorities. Each constituent software
development process has to be traceable, verifiable and consistent. Transition criteria need to
be defined by the developer to determine whether the next software development process may
be started.

Verification is defined in [DO-178B] as "the evaluation of the results of a process to ensure
correctness and consistency with respect to the inputs and standards to that process".
Verification can be accomplished by review, analysis, test or any combination of these three

activities.

Review provides a qualitative assessment of correctness.
Analysis is a detailed examination of a software component. It is a repeatable process that can

be supported by tools. Every tool needs to be verified against the Tool Operational



-12-
NLR-TP-99142

Requirements, the contents of which is prescribed in [DO-178B]. For software tools the same
documentation and configuration control procedures apply as for the airborne software. Every

software tool needs approval of the certification authority.

Testing is "the process of exercising a system or system components to verify that it satisfies

specified requirements and to detect errors”. By definition the actual testing of deliverable

software forms only part of the verification of the coding and integration processes. For

software classified at [DO-178B] level A, a mandatory 100% code coverage applies. This

code coverage consists of:

- statement coverage (every statement executed);

- decision coverage (every decision executed for pass and fail) and;

- the modified condition/ decision coverage (mc/dc). Mc/dc requires that for every
condition in a decision, its effect on the outcome of the decision is demonstrated.

3.5 Experience

Modern aircraft contain huge amounts of software, supplied by numerous independent
suppliers world wide. Even a single aircraft contains software of many different suppliers.
According to the US National Transport Safety Board (NTSB), [DO-178B] works well as up
to now no catastrophic failure (i.e. fatalities or hull losses) can be directly attributed to a
software failure [IEEE, 1998]. An independent software engineering experiment using an
[DO-178B] compliant software development process by NASA confirms that no errors were
identified in the developed software [Hayh, 1998].

In the embedded application, software classified at levels A, B and E has been realised. For
the launching customer of the product a first certifiable release has been produced. The time-
to-market did not allow all requirements to be implemented. Subsequently considerable

extensions had to be realised for the second group of customers.

The application's safety critical nature mandates that every requirement has to be worded such
that independent verification and validation are possible. The users, amongst others pilots,
have to understand the requirements, which prevents the use of formal specification methods.
The baseline for the first version of the embedded application contained 207 requirements, of
which 7 were not yet to be implemented. The second certifiable version is to be delivered 5
months later. The corresponding baseline contains 98 requirements changes (48%) which
impact the software code plus an additional 55 requirements changes which (28%) do not
impact the code. The latter changes are mostly clarifications and splitting of combined
requirements. The lessons learned are to specify as precisely as possible, and to allocate, a

separate identification for each verifiable item. This facilitates requirement management,



-13-
NLR-TP-99142

which conclusion [Hayh, 1998] reached independently. A formal definition method for the
interfaces between the various applications running on different hardware, including its timing

characteristics, would be helpful.

Between the first and the second certification 48% of the code changed, which implies a re-
use of 52%. The 48% code changes breaks down in 28% modified lines, 14 % deleted lines
and 6% added lines. The application consisted of four Computer Software Configuration
Items (CSCI). Nearly all changes were applied to one CSCI. Between the first and the second
certifiable release the total code size reduced slightly (8 %) despite the added functionality.
This implies that more general solutions have been implemented.

The testing is partly automated using the Commercial Of The Shelf software (COTS) tool
CANTATA. The actual test code is generated from Test Case Definition (TCD) files. The
total non-comment size of these files is 1.2 times the non-comment source code size. This
non-comment source code size includes non-executable statements like definitions etc. For
each statement on average 4.5 tests are executed. Dividing the number of conditional
statement (decision or loop) by the number of tests yields an average of 31 tests per condition.
As most conditions contain a limited number of operands this illustrates that many tests are to
verify assignments. The re-use of code also pays of in the re-use of tests. Note that [DO-

178B] requires to repeat all tests for the second certification (full regression testing).

[DO-178B] requires traceability from requirements to code and vice versa. For the second
certification full traceability using the entire updated requirement baseline has to be
performed. This traceability requirement removes code implementing "obsolete" requirements
in "unused code". Such obsolete requirements in supposedly unused code caused the Ariane 5
disaster [IEEE,1998]. [DO-178B]'s justified traceability requirement has consequences for the
re-use of industrial standard components in a safety critical environment. Component re-use
between companies is close to infeasible for the moment due to lack of universal specification

techniques.

Currently, use of industry standard component based software architectures, such as
CORBA's Object Request Brooker (ORB), Microsoft Com/ActiveX, or Java beans, for safety
critical applications will be unlikely due to the same problems with precise specification,
exhaustive testing and traceability of unambiguous requirements to code. As the commercial
incentives for component based development apply even more for expensive safety critical

embedded software, additional work in this field is needed.



-14-
NLR-TP-99142

3.6 Case conclusions

Standard use of component based development for safety critical embedded software is not yet
possible due to technical limitations in producing unambiguous specifications, requirement
traceability and resource usage. Some elements of component based software development
like object orientation and re-use have been successfully used in a project at NLR. Other

elements, like formal interface definition could be added.

There are huge commercial incentives to extend current component based development

methods for safety critical embedded software development.



-15-
NLR-TP-99142

4 Conclusions

Component based development is an attempt to improve the software development process on
three key characteristics, cost reduction, reduction of the time-to-market, and product quality

improvement (i.e. the application is to perform its intended functions correctly).

In the aerospace environment the technical characteristics of the domain impose additional
constraints of the software development process.

SPINEware, the first case, shows that applying components based technology has indeed
helped in realisation of the system within the limited resources available (budget, humans,
time-to-market). The divide-and-conquer principle is mature, sufficient methods and expertise
exist to apply this principle in real life system development. The re-use principle is still
immature. The use of re-usable software components is nowadays facilitated through indices,
manual pages, libraries, and (Ada) packages. The production of re-usable software
components, however, requires additional attention to generalisation and abstraction in order
to make a software component reusable. In daily practice, software development projects do

not have the extra effort to make their system components reusable.

For safety critical embedded software, it is not yet possible to use standard component based
development techniques, due to technical limitations in producing unambiguous specifications,
requirement traceability and resource usage. Some elements of component based software
development like object orientation and re-use have been successfully used in a safety critical
embedded software project at NLR. Other elements, like formal interface definition between

several aircraft subsystems could be added.

Safety critical embedded software is expensive and time consuming to produce. Consequently
there are huge commercial incentives to extend current component based development methods
for thistype of application



-16-
NLR-TP-99142

References

[Baal, 1998] SPINEware: A practical and holistic approach to metacomputing,
proc. High-Performance Computing and Networking Europe 1998, Amsterdam,
The Netherlands, April 1998.

E.H. Baalbergen

[DO-178B, 1992] Sofiware Considerations in Airborne Systems and Equipment Certification

[IEEE, 1998] IEEE, Developing software for safety critical systems,
J. Besnard, M. DeWalt, J. Voas, S. Keene

[Hayh, 1998] Framework for small-scale experiments in software engineering,
K. J. Hayhurst

[JAR/FAR-25] Federal Airworthiness Requirements/Joint Aviation Requirements
[Kess, Slui, 1998] Reliability, maintainability and safety applied to a real world avionics
application,

E. Kessder, E. van de Sluis NLR TP-98037

[OMG, 1995] Object Management Group, The Common Object Request Broker.: Architecture
and Specification, Revision 2.0, July 1995.

[Vogel Development of ISNaS: an information system for flow simulation in design, in:
Computer Applications in Production and Design, F. Kimural (ed.), North Holland, ISBN 0
444 88089 5. M.E.S. Vogels, W. Loeve

[Xero, 1997] ILU 2.0alphal?2 Reference Manual, Xerox Corporation, November 1997.



