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Problem area 

Machine learning systems are a key element in virtually all decision support 
systems, autonomous systems, and other systems that are important in NATO 
operations. These systems will over time have the potential to influence both 
control and over vehicles, sensors and weapons, as well as the decisions made 
from sensor input. 
 
In order to achieve trust in military systems using complex machine learning 
models and algorithms, the military needs to be able to prove both robustness and 
accountability. Robustness is important for the availability and integrity of any 
military system, with or without both sensors and effectors. Accountability is likely 
a future requirement for such systems, and the more complex a system becomes, 
the documentation of accountability will grow towards “non-human” complexity. 
Military decision makers must be able to document how the military decision 
making systems operates in order to show why their system recommended those 
specific actions based on the input from these specific sensors. 
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Description of work 

• Determine the state-of-the-art in robustness and accountability for machine 
learning systems. Especially deep learning systems with complex and large 
models which are virtually impossible to manage by humans. 

 
• Examine whether a methodology can be made to verify that commercial MLS, 

e.g. cloud MLS, comply with a set of criteria. Including what kind of criteria 
that may be possible, and what should be mandatory in a military setting. 

Results and conclusions 

Hybrid warfare suggests that there may be many systems and many models, so if 
the assumption is that AI will be used throughout a conglomeration of hybrid 
warfare systems, the impact of multiple sources of error has the significant 
potential to undermine AI’s application in the military domain. 

Applicability 

Machine Learning components are building blocks that form part of an overall “AI” 
decision tree. If we are to propose a degree of confidence to the end 
recommendation resulting from that decision tree process, then every block 
therein contributes toward a degree of certitude, therefore each block therein 
must be able to output not merely a decision/recommendation, but erstwhile a 
confidence factor. 
 
The ultimate decision is up to a human, therefore the confidence accumulated 
“factors” leading to that decision must be human-understandable. That’s why 
further research into XAI (explainable artificial intelligence) is warranted. 
 
Because the various blocks in the decision-making chain are implemented by 
algorithms, XAI demands that there is an element of human-understandable back-
traceability. In so many words: the AI ought to be able to defend its decision-
making on human-understandable terms. 
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Summary 

There are many activities, projects and programs that look at manipulation of machine learning systems (MLS) and 
how specific systems can be influenced by creative input. But there is too little activity in machine learning research to 
look at how we can create more robust systems and how such systems might require a fundamental change in 
training, testing, validation and/or product phases. 
 
One problem might be that commercial MLS may be trained in ways that cannot be verified through the product. 
Can the products contain back doors in the system, much like software in general, only made by creatively crafting the 
input/training data? E.g. is it possible to train a missile detection system, that is trained to report no detection on one 
specific type of missile, and that this manipulation cannot be detected because the machine learning model is too 
large and complex? This RTG will look into methods for how such training can take place, how training can take place 
which will avoid these types of challenges, and how systems must be documented in order to avoid being the victim 
for such solutions as a customer. 
 
Data from military sensors are being fed directly into systems for fast analysis and decisions. Robustness in training 
phase is only one step towards a more robust overall system. Military systems also need sensor input to be 
unpredictive enough that the analysis will not be compromised with fake data. Robustness in operations will also be 
an important area of research. 
 
Another problem might be the accountability of using MLS when decisions have been made. How can the decision be 
documented at the time of the event in a way that later can be verified was correct with information currently 
available. This accountability will require machine learning systems, especially dynamic MLSs, to have major changes 
from todays “take it or leave it” output. 
 
With the extreme growth of machine learning systems into military equipment, it is important to cover the potential 
problems listed above. In order to achieve trust in military systems using complex machine learning models and 
algorithms, the military needs to be able to prove both robustness and accountability. Robustness is important for the 
availability and integrity of any military system, with or without both sensors and effectors. Accountability is likely a 
future requirement for such systems, and the more complex a system becomes, the documentation of accountability 
will grow towards “non-human” complexity. Military decision makers must be able to document how the military 
decision making systems operates in order to show why their system recommended those specific actions based on 
the input from these specific sensors. 
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Abbreviations 

ACRONYM DESCRIPTION 

AI Artificial Intelligence 

BNN Binary Neural Network (a type of NN) 

C2 Command and Control 

CIFAR Canadian Institute for Advanced Research (a research institute)  

CNN Convolutional Neural Network (a type of NN) 

DARPA Defense Advanced Research Projects Agency (a research branch of US DoD) 

DSTL Defence Science Technology Laboratory (a research branch of UK MoD) 

DoD US Department of Defense 

DNN Deep Neural Network (a type of NN with multiple internal layers) 

FFNN Feed-Forward Neural Network (a type of NN) 

FGSM Fast Gradient Sign Method (a type of optimization algorithm) 

GAN Generative Adversarial Network (a type of NN that generates datasets) 

GNOME GNU Network Object Model Environment (a computer desktop environment) 

GNU GNU’s Not Unix! 

GP Gaussian Process (a type of NN output probability distribution)  

GPT Generative Pre-trained Transformer (an NN-based language prediction model) 

IR Information Retrieval 

IST Information Systems Technology panel (an expert panel within STO) 

LIDAR Light Detection and Ranging (a type of spatial sensor) 

ML Machine Learning 

MLS Multi-Level Scaling (a method for NN input data normalization) 

MNIST Modified National Institute of Standards and Technology (a training dataset) 

MoD UK Ministry of Defence 

NATO North Atlantic Treaty Organization 

NLR Royal NLR - Netherlands Aerospace Centre (a research institute) 

NN Neural Network(s) 

PBN Projected-Belief Network (a type of FFNN) 

RADAR Radio Detection and Ranging (a type of spatial sensor) 

SAR Synthetic Aperture RADAR (a type of spatial sensor) 

SGD Stochastic Gradient Descent (a method for training NNs) 

STO Science and Technology Organization (a branch of NATO) 

UK United Kingdom 

Unix Unix is not an acronym; it is a pun on "Multics", a multi-user operating system 

US United States 

VAE Variational Auto-Encoder (a type of NN architecture) 
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1 Introduction 

Modern hybrid warfare, which it encompasses not just traditional warfare but also political and cyber warfare 
(amongst others), is becoming increasingly dependent on Artificial Intelligence (AI) to perform in an ever increasing 
complex environment. Much of modern AI implementations are constructed using Machine Learning (ML) techniques, 
using data meant to represent the anticipated situations. This means that: 
 

• Most current AI building blocks are built-to-purpose, and whilst intended to generalise to be supportive of 
real-world inputs, are not always capable of handling unfamiliar situations (inputs). They are ‘black-box’ 
designs that perform complex decision-making or environmental interpretations (classifications) in or at near 
real-time, but which can typically only produce reliable answers for familiar inputs.  

• The AI building blocks are typically easy to fool and confuse if provided with information that they have never 
seen before, or through attacks, which may be imperceptible to humans.  

 
Essentially, what we’re dealing with is a matter of susceptibility: modern ML solutions, and indeed other AI solutions, 
are inherently susceptible to being easily fooled using data unfamiliar to them [2] [3]. This makes, for example, the 
Command and Control (C2) decision-tree logic that depends on them vulnerable to failure. And of course, we would 
like to know how to protect ourselves against such vulnerabilities by ensuring that C2 utilising AI is robust to failure. 
 
In summary: 

• Many ML approaches are inherently susceptible to environmental changes and attack; 
• Ergo, AI relying on MLs (predominately Neural Network (NN) based) are inherently vulnerable; 
• Ergo, hybrid warfare relying on AI must be made robust. 

1.1 Robustness 

Both the training and the operation of ML approaches are based on the following aspects: 
1) input data, 
2) internal structure, and 
3) learning algorithm. 

 
The fragility of ML may be caused by a number of factors. For the purposes of this paper we are assuming that the 
internal structure of the network is static, sufficiently capable, and secure, and whilst there are a number of other 
factors, we consider two of the main susceptibilities, 

a) poor training data, and 
b) previously unrepresented operational data. 

 
Our focus is thus on the input data to the ML solution. To this end, “poor” input data could mean any of the following 
(noting that this is not an exhaustive list: erroneous, inconsistent, unrepresentative/uncharacteristic, insufficiently 
diverse, out-of-range/out-of-context, false, incorrect, or intentionally duplicitous. 
 
Naïvely, we assume that ML approaches (particularly NNs) are trained using high-quality (“good”) input data: a 
selective representation of the range of inputs AI might be expected to deal with during operation. The idea being that 
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later, during operation, AI can produce the “right” decisions for operational data that is similar to the ones against which 
it was trained. In other words, the AI must be able to interpolate and also, to some extent, extrapolate its reasoning. 
 
Poor training data will lead, at worst, to ML that is unfit for purpose, or at best, a ‘dumbed-down’ model; that is, one 
that can only make vague decisions with high uncertainty. However there are also dangers at the other end of the 
data quality spectrum, because whereas “good” training data might yield a model that can make very accurate 
decisions, it may only be able to do so using a narrow range of input data. Of course what we desire is ML that meets 
its performance requirements, but also able to adapt to new circumstances for which it was not originally trained; that 
is, be able to deal with novelty. 
 
Thus, an important goal in ML is to construct a capability that generalizes well. In narrow applications, we want to ensure 
that models that have been trained on a sample of the environment work as advertised for the whole environment. 
Ultimately we want an AI’s capability for the environment to be considered all of reality, or at least all of reality, as 
perceived by humans. In one sense, there are no novel situations. If we view the Newtonian universe and had an 
impossible amount of memory, all situations could be predicted from current data. But as our ability to model the 
universe is severely limited, novelty arises, perhaps frequently. There is no possibility of training models for complex 
environments that will not result in novel situations appearing when those models are introduced into the real world. 
 
Characterising the robustness of the model is therefore challenging, requiring different aspects of a model to be 
considered with regards to its robustness. Whilst there are many definitions for robustness available, a distinction 
should be made between the definition used for traditional software robustness, such as that defined by IEEE 
24765[4], and the definition when used in relation to an AI model. Not wishing to add a further definition of 
robustness to the plethora already available, instead in this paper we use the definition provided in ISO CD22989 [5]: 
Robustness is “the ability of a system to maintain its level of performance under any circumstances. Robustness 
properties demonstrate the ability (or inability) of the system to have comparable performance on new data as on the 
data on which it was trained or the data of typical operations.”  

1.1.1 Robustness metrics 

Having defined the term robustness, and since the focus of this paper is on robustness metrics, we will now define the 
term metric when applied to robustness. To inform our thought process in writing a definition, it is helpful to identify 
the various purposes a robustness metric could have and who the associated stakeholders might be. Since the 
purpose and requirements of a robustness metric will depend on the lifecycle phase of the ML model, we analyse the 
purpose with respect to lifecycle phases. 
 
Although many ML models will be based on NNs, our analysis expands to cover different variants of ML type and 
architecture, noting that the predominant variants of ML are: NNs, Decision Trees, and Reinforcement Learning. 
 
During the ML model design and development phase, developers will be experimenting with model designs and 
adjusting the model’s architecture and parameters to optimise the model’s performance. At this phase, the purpose 
of a robustness metric could be both to provide a means of measuring improvements in robustness as these changes 
are made, and to describe how the robustness is manifested by the model. Additionally, a metric agreed between 
developers of different models will allow reliable comparisons to be made between model designs. 
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At the system design phase, in selecting off-the-shelf ML models for incorporation within the whole system, a 
robustness metric will inform decisions made by system designers on the choice of model by providing a means of 
comparing both the level and nature of the robustness of one model against another. 
 
Prior to the deployment phase, a robustness metric will be used by security practitioners to inform security risk 
assessment of systems incorporating ML. Specifically, the metric will inform a vulnerability analysis of the ML model 
with a low level of robustness representing a vulnerability which an attacker could exploit. 
 
Finally, during the deployment phase, an overall system robustness metric derived from the robustness metrics of the 
individual ML components will support an end user’s trust and confidence in the system’s output or behaviour. 
 
Given the above spectrum of uses and associated stakeholders, for the purposes of this paper we will leave the 
definition of the term metric intentionally broad. Our definition extends beyond the pure act of measurement or 
quantification to include how we might describe or characterise the robustness of ML in any particular setting. 
We therefore base the remainder of this paper on the following definition: 
 

A robustness metric is a measure or characterisation of the robustness of a ML model against the variety of 
challenges that it may face during its lifecycle. The precise nature of a particular metric will depend on the 
type of ML model, the task the model is designed to accomplish, and the phase of the model’s lifecycle.  

1.2 Methodology & Paper Structure 

When considering robustness metrics, we started the analysis by asking the question “robustness in the face of… 
what?” This generated a list of situations which ML models could be faced with in which their robustness might be 
challenged. We call these the “in the face of” conditions: 
 

• Uncertainty in training and operational data 
• Inputs that are different from the training set, yet consistent with the training population statistically or 

semantically 
• Inputs that are outside the training population 
• Learning with limited data 
• Novel situations, different from how learned policies and classifiers were developed 
• Adversarial action 

 
Our literature search rendered many pieces of prior research on robustness, and for each of these we attempted to 
identify into which of the in the face of categories they fitted. Although this was not always obvious, it seemed to 
represent a logical way of structuring the analysis. In the following paragraphs therefore, an attempt has been made 
to classify the individual pieces of research from the literature search in this way. 
 
For each of the in the face of categories we describe the nature and surrounding detail of each robustness challenge 
followed by the type of metrics used to quantify the robustness. Although the examination of robustness within this 
paper does not include a running hybrid warfare example, what is discussed is applicable to hybrid warfare 
approaches. 
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2 Challenges and Metrics 

2.1 Uncertainty in training and operational data 

Being able to deal with uncertainty in training and operational data is of paramount importance for AI and it 
represents a key component of current ML systems, especially those which are exploited under critical situations, like 
the military domain. 

2.1.1 Challenges 

In ML the aim is to learn the parameters of a model that best fits the training data, given a considered cost function. 
Then, the model is deployed to get predictions on new and unseen data. As a result of the training process, any 
learned model comes with uncertainty since its generalisation capabilities are necessarily based on a process of 
induction, i.e., replacing specific observations with general models of the data-generating process [6]. Despite the 
many efforts by the research community no existing ML model has ever been proven correct, since any possible 
experiment relies heavily on hypothetical assumptions, hence every current ML model output remains uncertain when 
subject to previously unseen input data. 
 
Uncertainty has a long history within the statistical field and, since the beginning, it has often been linked and 
perceived as a concept likened to standard probability and probabilistic predictions. In the recent past, however, due 
to the current hype in ML and to the fact that nowadays systems based on such solutions are controlling our everyday 
lives, there is an increasing interest in such a concept by the community. This has first and foremost been motivated 
by safety requirements, for which new methodologies are required. 
 
Among the different methodologies in the existing literature that have discussed uncertainty in ML, it is possible to 
cluster them accordingly to the type of uncertainty that is considered. Most of the current works address either the 
aleatoric or the epistemic uncertainty. 

2.1.1.1 Aleatoric and Epistemic Uncertainty 

The traditional way to model the uncertainty in ML is through the application of probability theory. Such probabilistic 
modelling generally handles a single probability distribution, thus neglecting the importance of distinguishing between 
the aleatoric and epistemic uncertainty [7] [8]. 
 
Aleatoric uncertainty: we can refer to it as statistical uncertainty, which derives from the notion of randomness in the 
variability of the outcome of an experiment. In simple words, when referring to aleatoric uncertainty we implicitly 
refer to the uncertainty that cannot be reduced even in the presence of any additional source of information. Let us 
describe this by considering a very basic example: suppose we want to model the probability outcome of flipping a 
coin. We can define a probabilistic model that is able to provide the probability of heads or tails, but not the 
guaranteed outcome. This uncertainty defines the irreducible part of the total uncertainty. 
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Epistemic uncertainty: also known as systematic uncertainty, this is the part of the total uncertainty that is 
determined by the ignorance/lack of knowledge. This uncertainty is due to the epistemic state of the ML system, and 
it can be reduced through additional information. For example, let us assume that we have an ML model learning a 
new language and it is given a new word, and it should guess if it means head or tail. The agent is equally uncertain 
about the correct answer as it would be in predicting the flip of a coin, however by including additional information 
into the situation (i.e., providing a synonym or explaining the correct meaning of the word) we can cancel out any 
uncertainty in the answer. It should be therefore clear enough that, as opposed to the aleatoric, the epistemic 
uncertainty defines the reducible part of the total uncertainty. 
 
Now that we have defined the aleatoric and epistemic uncertainties, we take into consideration supervised ML 
algorithms and how these two distinct types of uncertainties are represented in ML. 
 
In supervised learning setting, we have access to a training set D = {(x1,y1),…,(xn,yn)} composed by n tuples (xi, yi) where 
xi is the ith sample containing the features (i.e., measurements) belonging to the instance space X, and yi is the 
associated target variable coming from the set of possible outcomes Y.  
 
Under such a scenario, an ML algorithm comes with three sources of uncertainty: 
 

• Aleatoric uncertainty: in general, the dependency between X and Y is not deterministic. As a result, we can 
have more than one possible outcome for a given input xi . Even in presence of full information, uncertainty 
exists about the actual outcome yi . 

• Model uncertainty: the model chosen to tackle a given problem can be far from being the best one for the 
task. This is due to the uncertainty on the correctness of the model and the correctness of the hypothesis. 

• Approximation uncertainty: the model parameters learned through the optimization process are only an 
estimate of the true hypothesis. The quality of such an estimation is due to the lack of fidelity in data used 
during the learning process. 

 
Both the model and approximation uncertainty represent the epistemic uncertainty.  
 
It should be noticed that, for ML algorithms, the aleatoric and the epistemic uncertainty are heavily dependent on the 
context. For instance, by permitting the learning process the possibility of changing the initially defined setting, it 
could be possible to reduce the aleatoric uncertainty in favour of epistemic uncertainty; that is, the aleatoric 
uncertainty in the original context has not changed, but is altered by changing the context (akin to weighting one side 
of a coin in the coin toss example). In contrast, if we take into consideration a fixed initial setting, we know that the 
epistemic uncertainty (i.e., the lack of knowledge of the ML algorithm) depends on the amount of data (how many 
observations) used during the learning process. As the number of training samples tends to infinity, the ML system is 
able to completely reduce the approximation uncertainty. 

2.1.2 Machine learning methods for representing uncertainty 

Different ML methods for representing uncertainty have different capabilities, which can be clustered according to: 

i. the way in which uncertainty is represented 
ii. if dealing with both or just one among the two types of uncertainty (aleatoric and epistemic) 

iii. if they provide any solution that can be exploited to provide a rough estimate of the amount of uncertainty. 
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2.1.2.1 Gaussian Processes 

Gaussian Processes (GPs) [9] are a generic modelling tool for supervised learning. They can be applied to generalise 
the Bayesian inference of a multivariate random variable and inference of functions. In the case of classification, GPs 
have discrete outcomes, and the difficulty on the definition of uncertainty lies in the representation of the knowledge 
that is then identified as the epistemic uncertainty of the model, as in the Bayesian approaches. In the case of 
regression, it is possible to distinguish between the aleatoric uncertainty – that is the variance of the error term – 
from the epistemic uncertainty. 

2.1.2.2 Maximum likelihood estimation and Fisher Information 

In ML, the principle of maximum likelihood estimation plays a key role. Indeed, if a model can get “very close” to the 
maximum of the likelihood function, it means that small changes of the data are likely to have a limited effect on the 
estimation. If the likelihood function is flat, it might be a good indicator that there is a high level of uncertainty about 
the estimate that might be due to the many parameters’ configurations having similar likelihoods.   
 
In ML, we often exploit the Fisher matrix [10] to represent the amount of epistemic uncertainty [11]. 

2.1.2.3 Generative models 

Generative models can be used to quantify epistemic uncertainty. Given the probabilistic nature of these approaches, 
which aim to model the density of the data distribution, by establishing if a given datum lies in a region with high or 
low density, such models implicitly provide information about the epistemic uncertainty. The most relevant works in 
this category are based on kernel density estimation or Gaussian mixtures, with some recent advancements in deep 
autoencoders [12]. 
 
Density estimation is a key ingredient for methods tackling anomaly and outlier detection where the latter is nothing 
but a classification problem, where an example is considered out the distribution when it lies in low-density regions. 
Such works instead capture aleatoric uncertainty.  
 
In general, generative models tackle a very challenging problem, need a lot of data to properly work, and usually have 
high uncertainty. 

2.1.2.4 Deep neural networks 

An artificial deep neural network (DNN) is inherently a probabilistic classifier, and we can define the procedure of 
training a DNN as performing maximum likelihood inference. This results in a model that is able to produce 
probabilistic estimates of a given input datum, but cannot provide details and information about its probabilities’ 
confidences: aleatoric uncertainty is captured, epistemic is not. Despite this, the latter is generally referred to as the 
uncertainty in the model parameters. In the literature there have been recent works [13] [14] trying to model this kind 
of epistemic uncertainty by introducing Bayesian extensions to DNN. 
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2.1.2.5 Model Ensembles 

Common examples of the Model Ensembles class of models are bagging or boosting. Such approaches are very 
popular because they can provide significant accuracy improvement of point prediction by producing a set of 
predictions instead of a single hypothesis [15]. The most relevant works that can be included in such a category are 
the random forests models [16]. Methods in this category are mostly concerned with the aleatoric part of the overall 
uncertainty. 

2.1.2.6 Credal sets and classifiers 

The credal set is a set of probability distributions and it is the basis for a generalisation of Bayesian inference where 
each single prior distribution is replaced by a credal set of candidate priors. Works [17] [18] investigating how to 
define uncertainty for credal sets, and related representations, define two types of uncertainty that are present in 
credal sets: “conflict” due to the randomness, and “non-specificity”. These directly correspond to aleatoric and 
epistemic uncertainty; it is common to use the Hartley function [19] as a standard uncertainty measure; [20] also 
defines a tool that can be used to assess the robustness of an ML system in the face of uncertainty in training and 
operational data. This function, The Hartley function, can be used to evaluate uncertainty if we know that the 
unknown value of a given random variable is within a given finite set. Further, extensions to infinite sets have been 
proposed through Hartley-like [80] and generalized Hartley [81] measures. 

2.2 Inputs that are different from the training set, yet 
consistent with the training population statistically or 
semantically 

During operation, a classifier assigns a class label to each sample of input data. Considering the above definitions of 
robustness, the intra-class variability, i.e., the possible variation between all samples assigned to the same class, is 
implicitly contained in the set of training data used for learning the classifier.  

2.2.1 Robustness with respect to semantic data variations 

Using a more constructive approach to defining robustness helps to better model the user’s expectation towards 
classifier performance. To this end, we will for the moment call a classifier robust if it is invariant with respect to all 
meaningful variations of the input data. Obviously, the set of all meaningful variations depends on the application 
scenario and is in general very difficult to describe. However, for many classification problems, such meaningful 
variations can be divided into two categories: 

i. physical modifications (e.g., noise addition, mix with distortions, cropping, rotation, scaling), and 
ii. semantical modifications (e.g. different ways of pronouncing a spoken word) of the input sample. 

 
Figure 1(1) illustrates those two categories of possible variations for the example of handwritten digit classification. 
We consider different variations of writing the digit ‘9’. Whereas (as depicted in Figure 1) noise addition (a) and mix 
with distortions (b) can be regarded to fall into the first category, the third type (c), adding a small arc to the digit ‘9’, 
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is a meaningful (syntactic) variation, particular to local culture in different countries, which leaves the semantics of the 
symbol ("nine") intact. 

2.2.1.1 Physical robustness 

Robustness of AI/ML with respect to the first category of variations, yet not solved satisfactorily, has been addressed 
to a considerable extent in recent years. In many publications dealing with robustness to the first category of 
variations, underlying data samples are modelled as vectors in Euclidean vector space. Distortions are then modelled 
by adding norm-bounded vectors to the data samples. Here, usually Lebesgue-type norms (LP norms) are used (in 
particular L1, L2, and L∞). In a widely cited paper [20] it was shown that such L2-norm-bounded “adversarial attacks” 
can be used to cause misclassifications in neural network-based classifiers. Subsequently, much work was done in the 
field of both adversarial attacks and corresponding protection methods (discussed in further detail later in the paper). 
Is was shown that attacks are in many cases difficult to detect and that for then state-of-the art methods, detection 
could be bypassed [21]. Obviously, robustness in this context requires protection from adversarial attacks. Many ways 
of defining robustness in such an adversarial attack setting can be captured under a common framework, as shown in 
[22]. 

2.2.1.2 Semantic robustness 

The second category, semantically meaningful variations of data samples, leads to substantial challenges which are 
largely unsolved to date. Correspondingly, in [68], robustness to so called perceptual perturbations is referred to as an 
open research problem. Although modern AI-based classifiers, and in particular deep neural networks, achieved 
record-breaking improvements on the well-known public classification challenges, their discriminative nature, in 
contrast, does not naturally lead to easy interpretability of classification results. In recent years, a whole branch of 

Figure 1: (1) Possible data variations of handwritten digit 9, (2) Space of digits 3, 8, 9 reconstructed using a Variational 
Auto Encoder (VAE) trained on the respective digits from MNIST corpus, (3) corresponding latent space representation 
with colours 
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research has focused on explainable AI, i.e., on ways to formally, or even semantically, characterise the sets of 
samples mapped to the same classes by a given classifier. 
 
An important approach towards understanding semantics of a classifier is to combine successful discriminative 
classifiers with generative models. The advantage of the generative approach is that examples from the original 
(sample) space can be generated using those models. A successful approach combining classifiers and generative 
models is that of Generative Adversarial Networks (GANs) [24].  
 
A generative model that can also be adapted for classification is the (Variational) Autoencoder (VAE) [25]. The basic 
idea of an auto encoder is to learn a compact representation of the original data by training a deep neural network 
having full dimensional (with respect to the original data) layers at both ends and a sparse “bottleneck” layer in the 
middle. Figure 1 (2) and (3) illustrates how a VAE can be used for “understanding” the classes learned by the network: 
(2) shows a representative set of reconstructions obtained by the generative part of a VAE trained to classify the digits 
‘3’, ‘8’ and ‘9’ of the MNIST dataset. Thus, in a sense, (2) summarises what the classifier is prepared to recognise. On 
the right of Figure 1, (3) shows a latent-space representation of the input samples (i.e., MNIST digits) obtained from 
the classifier branch of the VAE. Colours encode the three digits. Correspondences between latent space points and 
reconstructed samples are shown as arrows. In blue, curves separating the manifold of 9's from the other digits are 
sketched to indicate the learned classification boundary. Considering this example we notice that the above variation 
(c) is not well-represented in the reconstruction part (2) - which is not surprising considering that the corpus is biased 
by the North American style of writing digits. Hence, to make the classifier robust to the variation (c), additional 
measures would have to be applied such as augmenting or adding to the training data. 
 
Following this motivation of using generative models, Buzhinsky et al. [26] propose several metrics to measure 
robustness of classifiers to “natural” adversarial examples. To this end they propose a set of six performance metrics 
working in the latent space and subsequently show connections between the above classical adversarial robustness 
and “latent adversarial robustness”, i.e., robustness to perturbations in the latent space. The interesting aspect of the 
latter is that latent space perturbations for several examples have been shown to correspond to semantically 
meaningful changes in the original sample space. 
 
We note that classical adversarial robustness can already be used to obtain “certified” robustness of AI-based 
classifiers with respect to small norm-bounded perturbations. However, semantic robustness is more difficult to 
formalise and also strongly connected with properly understanding and modelling the target classes. To this end, 
generative models are an important tool. Novel concepts such as Projected Belief Networks (PBNs), i.e., layered 
generative models based on a feed-forward neural network structure, having the advantage of possessing a tractable 
likelihood function, are very promising in this area [27]. 
 
A recent piece of work [75] concerns a form of ML called Complex Event Processing, in which multimodal inputs with 
spatial and temporal relationships from multiple sensors are fused to allow a deep learning model to infer a particular 
type of event e.g. a gunshot or an explosion. Such events are termed “complex events”. As such, the concept of 
robustness applies not to the model itself, but to the overall system of components which the machine learning 
functionality comprises. The research claims that the combination of 

a) human logic in pre-defining complex events based on patterns and sequences, with 
b) the deep learning inferences from individual sensors, improves the robustness of the system against 

misclassification.  
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2.3 Inputs that are outside the training population 

In [78] Ashmore et al. identify a set of definitions with respect to the input domain, and subsets thereof: 
 

I, the input domain space – the set of inputs a model can accept; 
O, the operational domain space – the set of inputs that a model may be expected to receive when used 
within the intended operational domain 
F, the failure domain space – the set of inputs a model may receive if there are failures elsewhere in the 
system; and 
A, the adversarial domain space – the set of inputs that a model may receive if it is being attacked by an 
adversary, 

 
where O, F, and A are all subsets of I. These definitions are useful when thinking not just about inputs outside of the 
training population (that could be drawn from O, F, or A), but more generally when reasoning about the inputs to a 
model. 
 
Small, pixel-space, perturbations, which may be imperceptible to a human, often with the perturbation magnitude 
measured using LP norms, are a justifiable method of assessing the robustness of a model (and thus discussed later in 
Section 2.6); particularly in a hybrid warfare domain where the potential for an adversarial attack is higher. However, 
when considering assessing the robustness of a model, these small perturbations are not necessarily applicable 
outside of Ashmore’s attack domain space (A). Recent, separate, work [79] [80] has begun to investigate perturbing 
the inputs to a model away from the much discussed, and researched, small perturbation approaches, instead 
generating what are deemed contextually relevant, and human distinguishable, perturbations: these perturbations 
look to introduce sheer, blur, or haze, etc., over the input (which could reasonably be representative of inputs from 
either F or O).  
 
Further, in [80], the authors propose to introduce meaningful perturbations to images that are semantically relevant, 
but which may not have been incorporated within the models training set; for example, introducing a flock of geese to 
a scene where the model is identifying the number of vehicles in a car park. Whilst this last category of meaningful 
perturbations is clearly part of Ashmore’s input domain space (I), arguably, if the training dataset was insufficient, 
these semantically relevant perturbations could also be considered part of the operational domain space (O). 
Interestingly, [80] also identifies that when increasing the robustness of a system to small perturbations, the models 
may become less robust to dealing with semantically meaningful perturbations, thus it is clearly important to consider 
assessing a models robustness to both these perturbation types. 
 
In order to assess the levels to which a model is robust to such semantically meaningful, or contextually relevant, 
perturbations, the authors of [80] propose a titration method for introducing the perturbation, such that one 
measures, incrementally, the level to which a perturbation can be introduced before the accuracy of the model 
becomes suspect (eg,, by its confidence, or a change in classification, of a known ground truth). This provides a further 
metric by which to assess the robustness of a model, when considering its application within the intended operational 
domain space. 
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2.4 Learning with limited data 

It is well known that modern AI using deep learning requires large quantities of data to learn complex tasks. If the 
training data is too small, the model will overfit and its generalisation capabilities will be poor. Unfortunately, 
acquiring high-quality training data is difficult and expensive as it often requires human labelling efforts. For instance, 
the fine grained Cityscapes dataset took on average 1.5h to label per sample [28]. Furthermore, unlike datasets 
developed for academic purposes (proof-of-concept, evaluation, benchmarking, etc.), military datasets must also 
contain data representing the large number of edge cases that are likely to occur, but hard to observe or even predict, 
in the real-world. Without such training data the military model will be of limited practical value when it may matter 
the most, or when conditions unexpectedly change as a result of adversarial actions. 
 
The data acquisition challenge for military applications is significant, yet critical to address, to ensure that models will 
be robust when deployed in the real-world. Fortunately, many transfer learning techniques [29] [30] [31] have been 
proposed that leverage the fact that deep neural networks seem to learn general features that are transferable and, 
hence, can be reused by other similar tasks [32]. Pre-training combined with fine-tuning are commonly used to learn 
with little/limited data, while at the same time avoiding expensive re-training of large scale models (e.g., GPT-3) that 
may require specialized hardware to learn. The main idea is to: 
 

1) copy parts of the pre-trained source model into a target model; 
2) add one or more randomly initialized (untrained) layers to the target model such that the last layer now 

matches the target’s label space; and finally, 
3) train the model using labelled target domain data.  

 
However, these techniques cannot be used in cases where military data originates from special sensors (e.g. LIDAR, IR, 
SAR and hyperspectral) where pre-trained models rarely exists, or are too sensitive to share even among allies. 
 
Unsupervised domain adaptation is another transfer learning technique that, although it has been studied for decades 
in shallow learning, recently also received a lot of attention in deep learning [33]. Using this technique labelled 
training data from a source domain can be used to train a model using unsupervised data from the target domain. 
The approach assumes that labelled data is cheap and easy to acquire for the source. 
 
The idea is intriguing from a military perspective because the source data could potentially be synthetic. That is, 
simulators or other generative models that already exist could potentially be adapted to generate, not only perfectly 
labelled source data, but also data representing edge cases that are otherwise difficult or even impossible to acquire. 
The simulation-based approach would completely eliminate the human labelling efforts that may otherwise result in 
incorrect, biased and incomplete datasets that would also transfer into the model when trained. Closing the 
“simulation to real” gap (sim2real) using unsupervised domain adaptation is actively being pursed [34] [35] using a 
variety of techniques, many of which rely on using adversarial approaches such as domain loss functions [36] [37], and 
generative adversarial networks (GANs) [38] [39]. 
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2.5 Novel situations, different from how learned policies 
and classifiers were developed 

To be useful in complex environments AI must exhibit robustness to novelty. Demonstrations by DeepMind [41] have 
shown that ML can be used to develop policies that result in superhuman play in rigid games. The game “Go”, 
provides a complex environment that exceeds our limits for storing the possible states of the game, therefore 
providing the situation that is discussed earlier concerning our limits to modelling the Newtonian universe. Yet, if the 
rules of the game are changed, the agents generated can become brittle or fail completely. In [42] this type of result 
was demonstrated in a much simpler environment allowing experiments to illuminate how different changes affected 
the robustness of the agent. 
 
But novelty is not simply a situation where a data point is not included in the training set for ML. In an attempt to 
bring together research on novelty, [43] proposes a framework to describe novelty. Figure 2 provides an illustration of 
how one can look at novelty in a way that can allow measurement for both the novelty and the agent’s response. 
Critical to this view of novelty is that novelty can be considered with regard to the world and relative to the agent’s 
experience. It is also clear that novelty that has an impact on the agent’s task affects robustness differently than 
novelty in the world that has no effect on the tasks. This is also a finding demonstrated in Chao [42]. 

2.5.1 The DARPA SAIL-ON Program 

One method for experimentation in novelty that is being employed in the DARPA SAIL-ON program [40] is through 
games. The DARPA SAIL-ON program postulates that agents may have the following four elements: 
 

• A performance element that uses known expertise to pursue tasks and achieve goals (e.g., finding and 
collecting underwater objects with desired features) through mechanisms for perception, inference, 
planning, and control; 

• A monitoring element that compares observations with expectations to detect anomalies in both the 
environment (e.g., sonar unreliable, unfamiliar predators) and in the agent’s own behaviour (e.g., vehicle 
veering to right); 

Figure 2: Framework for Novelty. After [43] 
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• A diagnostic element that localizes problems in expertise, generates hypotheses about the causes (e.g., non-
reflective surfaces, cross currents, misaligned propeller), evaluates alternative candidates, and selects among 
them; and 

• A repair element that revises those facets of expertise deemed to be responsible for the performance 
problems and corrects them (e.g., updated sonar equations, current-sensitive controller, or a new propeller 
model). 

 
As mentioned in the introductory section on novelty above, much of this research began with the realization that the 
methods used by DeepMind to solve the games of Go, Chess, Shogi, and Starcraft, were not robust to changes in the 
rules of the games. An example is the Gnome framework developed at University of Southern California (USC) and 
published through GitHub . 
 
NIWC Pacific has worked with USC to develop a version of the UK DSTL developed the “Hunting of the Plark” game 
using the GNOME framework. This will allow experimentation in the effects of novelty on agents trained to play this 
game, which was the focus of a Turing Institute Study Group. Further experimentation is planned on decision support 
tools developed using ML where we can not only work with simulated situations, but take out on live experiments 
with the US Navy. 

2.5.2 Detection of Novelty 

One can be robust to novelty without ever knowing that a change in the world’s situation has occurred. Most likely 
this is due to the novelty not being important to the task being performed, or at least is a change in an areas where 
there is less sensitivity. However, one strategy for dealing with novelty is to at least detect that an agent is in a novel 
situation, even if the agent won’t know how to work in the novel environment other than quitting or alerting others to 
the situation.  
 
The fundamental question for the agent is: has the environment changed or is the data being analysed simply on one 
of the tails of the previous distributions? For much of ML, currently, it may be sufficient simply to recognise that data 
are out of sample. ML that can at least recognize its own limitations is a step forward in many instances. The classic 
adversarial example demonstrations are often brought up in this regard: agents are often very confident of their 
wrong answer in these experiments [44]. 
 
In a planning system, recognition might be based on a dynamic evaluation of the progress of a task. If a plan isn’t 
working, one possibility is that the world has changed in a manner that is not reflected in the models. Early detection 
might prevent catastrophic results, but that is not guaranteed. Indeed, one can envision scenarios from which there is 
no recovery (making a turn past the event horizon of a black hole is an extreme example).  

2.5.3 Robust Response to Novelty 

The task of providing a robust response was defined by [45] as the following: 
 

• Given: An agent architecture that uses expertise to operate in a class of environmental situations; 
• Given: Expertise that supports acceptable agent performance in this class of environments; 
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• Given: Limited experience with an environment in which sudden, unannounced changes degrade 
performance; 

• Find: When environmental changes occurred, and what revised expertise will support acceptable 
performance. 

 
The type of response to novelty is related to the type of task being performed. In classifiers, a system may need to 
adjust its model to allow not only a change to the answer it provides, but also an explanation as to what the difference 
means. For example, imagine a perceptual agent that determines the presence of obstacles for a robot. A change to 
the camera system, such as a fly landing on the lens might create a new novel situation for the system. If the system is 
able to adapt and decides that no obstacle exists, an explanation of the situation will be necessary to justify the 
answer. 

For planning systems, novelty might take the form of working with new actions or finding that actions cost a different 
amount than before; the goals might drastically change. Planning systems may have to adapt their knowledge, and 
recompute previous tasks, utilising experience to alter their computation. The assumptions in Figure 3 above, 
illustrate an environment for measurements. Learning and operation may proceed for a while before novelty appears 
in the environment. Agents that are not yet robust to that particular change drop off in performance and must find a 
way to detect that novelty has occurred, determine what has changed and account for it in operation. 

2.6 Adversarial Action 

Over the past few decades, it has been shown that machine learning models based on deep learning techniques can 
achieve and even surpass human-level performance in a variety of tasks. On the other hand machine learning models 
are often vulnerable to perturbation of their input and can easily be fooled to yield incorrect output [53] [54]. These 
types of manipulations are referred to as adversarial attacks and the performance of machine learning models against 
these attacks are measured as adversarial robustness [55]. Adversarial robustness is investigated in two different 
camps. In the first camp, the researchers try to find a method to generate adversarial attacks to decrease the 

Figure 3: SAIL-ON Novelty Metric Assumptions. Note TA2 agents in the program are those reacting to novelty in the 
environment 
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robustness of the models the most [56] [57] [58] [59] [48]. The researchers in the second camp try to find better 
training or defensive methods that make the network architectures more robust to such adversarial attacks [60] [61] 
[62] [63] [64]. In this section, we survey the methods for adversarial attacks and defences and we define the metrics 
and measurement methods of the adversarial robustness from current literature. 

2.6.1 Adversarial Attack 

The adversarial attack was defined in [54] for a machine learning system M and input sample C, which is called clean 
example as follows: 
 

“Assuming that sample C is correctly classified by the machine learning system, i.e. M(C) = y. It’s possible to 
construct an adversarial example A which is perceptually indistinguishable from C but is classified incorrectly, 
i.e. M(A) ≠ y.” 

 
Based on this definition, the aim of the adversarial attack is to modify the model input to result in incorrect model 
output such that it cannot be distinguished by the human observer. Indistinguishability criteria comes with some 
limitations on the perturbation that can be applied to input, which is referred to as LP norm in literature, i.e., 
 

�|𝑪𝑪 − 𝑨𝑨|�
𝑝𝑝
≤ 𝜖𝜖, 

where ϵ is the maximum allowable perturbation. The most commonly used norms are L2 and L∞. 
 
Considering this limitation, several methods are proposed to generate adversarial examples [65] [55] [48]. Generating 
adversarial examples follows mainly two different approaches, i.e., black-box and white-box. In black-box approaches, 
the user has no knowledge of the model and can only access the predicted probabilities or just the predicted class for 
a given input. On the other hand, the model and its parameters are assumed to be completely known in a white-box 
approach [47]. 
 
The white-box attacks are more effective in fooling the models than the black-box attack, and widely investigated, 
with different approaches, in the literature [56] [57] [58] [48]. White-box attacks are predominantly gradient-based 
attack methods: they usually construct a loss function that can cause the improvement of the perturbation attacking 
ability and decreasing of the perturbation magnitude, which then optimizes the loss function through gradients to 
generate adversarial examples [66]. Using the gradient of the loss function to determine the adversarial perturbations 
can be performed in a single step like in Fast Gradient Sign Method (FGSM) [65] for fast generation adversarial 
examples. In order to improve the effect and reduce the perturbation, instead of taking a single step in the direction 
of the gradient, multiple smaller steps are taken in iterative gradient-based attacks [54][48]. 
 
Adversarial attacks can also occur as part of the training activity. The setting for some recent work [46] was a peer-to-
peer network in which each peer has a copy of a neural network model to create a distributed learning set-up, which 
does not rely on the existence of a central co-ordinating node. Such a machine learning architecture is well suited to a 
military coalition scenario with multiple partners. Initially, each peer has a subset of the total training dataset and as 
training of the models progresses, model parameters are shared between peers at each training iteration. 
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Rather than attempting to improve the robustness of the peer-to-peer ML, the motivation for this experiment, based 
on the Fashion-MNIST dataset, was to measure and optimise the effectiveness of the poisoning technique in causing 
peers to misclassify. The metric for efficacy of poisoning was how quickly, in terms of the number of training 
iterations, the malicious peer could reliably poison the benign peers. However, we believe the same metric could be 
used to infer the robustness of the ML to this type of poisoning: the higher the number of iterations required to 
achieve misclassification, the higher the robustness. 

2.6.2 Adversarial Defence 

Methods have been proposed for guaranteeing robustness towards norm-bounded adversarial attacks under 
particular conditions. For example, Wong and Kolter [67] propose provable defences for ReLU-based classifiers using 
the concept of adversarial polytopes. Furthermore, an efficient and complete robustness verifier for piecewise-linear 
neural networks was proposed in [68]. In that paper, an algorithm is proposed yielding certified bounds on the 
adversarial error based on the maximum (L∞-) norm. 
 
One of the most successful methods to obtain robust deep neural networks is through adversarial training. The main 
motivation of adversarial training is to cast both attacks and defences into a common theoretical framework, naturally 
encapsulating most prior work on adversarial examples [55]. In this method, instead of feeding samples from the 
original dataset directly into training, the adversarial attack is allowed to perturb the input first and then the 
perturbed examples are fed into training. Adversarial training has been augmented in different ways, such as changing 
the attack procedure, loss function or model architecture [69] [50].  
 
The performance of the adversarial training highly depends on the loss function and adversarial attack method used in 
generating augmented training dataset, and it takes much longer when compared with clean training due to the need 
for adversarial examples generation. In [73] it has been demonstrated that the performance of state-of-the-art 
adversarial training methods can be improved more easily using classical adversarial training with early stopping. 
This shows that our understanding about adversarial training is limited. The effects of adversarial training on 
robustness is analysed in [74], and they conclude that during the clean training process using (stochastic) gradient 
descent, neural networks will accumulate, in all features, some “dense mixture directions” that have low correlations 
with any natural input, but are extremely vulnerable to (dense) adversarial perturbations. During adversarial training, 
such dense mixtures are “purified” to make the model more robust. 

2.6.2.1 Implicit generative modelling of random noise during training improves 
adversarial robustness 

Recent work [70] carried out looked specifically at the approaches identified above. Indeed the work aimed to make 
deep neural networks more robust to adversarial inputs by introducing random noise into the training inputs and 
optimizing it with Stochastic Gradient Descent (SGD), while minimizing the overall cost function over the training data. 
The effect was that the input noise, which is randomly initialized at the beginning, is gradually learnt during the 
training process. As a result, the noise approximately models the input distribution to effectively maximize the 
likelihood of the class labels given the inputs. 
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The authors [70] evaluated their approach on classification tasks such as MNIST, CIFAR10 and CIFAR100 and showed 
that models trained in such a way are more adversarially robust. The way in which the noise and the clean images 
were combined was found to have a major impact on accuracy with multiplication achieving far higher accuracy than 
addition. A direct metric for robustness did not evolve, but rather robustness was quantified as a function of accuracy 
as the level of perturbation was increased. 

2.6.2.2 Discretization-based solutions against adversarial attacks 

Following on from the theme of adversarial training, [72] shows that the robustness of an image classification deep 
neural network to adversarial inputs can be improved by discretization of both the input space and the model’s 
parameter space with minimal loss of accuracy. In the experiments using MNIST, CIFAR10, CIFAR100, and ImageNet 
datasets, discretization of the input space involved reducing the number of pixel intensities from 256 (28) to 4 (22) and 
discretization of the parameter space involved training the model with low precision weights and activations such as 
Binary Neural Networks (BNN). Further, combining these two discretization techniques greatly improves the model’s 
robustness. This combined scheme can be seen as an alternative way of improving robustness compared to the more 
expensive process of adversarial training (i.e. training the model using adversarial examples). In each experiment, a 
measure of robustness is achieved by comparing the accuracy of the classification whilst the amount of adversarial 
perturbation ϵ is progressively increased. In effect, the metric for robustness in this work would appear to be the 
degree of perturbation that can be tolerated whilst retaining a given accuracy. 

2.6.2.3 Mitigating adversarial examples in neural networks 

In a final example, a relatively simple piece of recent work [71] was undertaken. Preconditioning of the input to an 
image classifier was achieved by feeding the input through a Gaussian kernel, whose effect was equivalent to a 
smoothing low-pass filter where the level of smoothing depended on the kernel’s standard deviation parameter. 
The experiment was conducted using the MNIST dataset and measured accuracy for varying combinations of 
smoothing and various levels of adversarial noise. The results showed that to optimise accuracy for a given level of 
adversarial noise, there existed an optimum level of smoothing. In this case, a metric used for robustness was the 
percentage of successful attacks for a given amount of adversarial noise. This metric allowed for a direct comparison 
of performance with, and without, smoothing. 

2.6.3 Measuring Adversarial Robustness 

Adversarial robustness can be measured as the model accuracy for the inputs perturbed by the adversarial attacks 
[47]. Since the evaluation depends on the applied adversarial attack, it is hard to measure the actual adversarial 
robustness of the model.  
 
Most of the works in literature reported adversarial robustness of their approaches by using the same or similar 
adversarial attack method and loss function that are used in their training phase. It has been shown in [48] that by 
changing the loss function and the method to generate adversarial examples, lower adversarial robustness than 
reported in the original papers can be achieved. Indeed, it is stated in [48] that the change in robustness is larger than 
10% in 13 out of 49 cases and larger than 30% in eight (8) cases.  



 
 

23 

NLR-TP-2021-484  |  January 2022 

 

 
A similar evaluation is performed in [49] by comparing the performance of several deep neural networks against 
human observers for different types of manipulations. In this work it has been shown that deep neural networks can 
achieve human-level performance only when the applied manipulations are known in the training phase. For unknown 
manipulations, the performance of the deep neural networks decreases dramatically. Further, many of the defence 
strategies proposed in the literature were broken by stronger adversaries [48] [50]. Hence, the comparison of 
robustness obtained under different methods should be performed carefully to make sure the evaluation is as strong 
as possible [47]. 
 
The adversarial robustness is reported as the model accuracy on worst-case inputs taken from perturbed sets. 
In addition to the accuracy, two types of performance metrics can also be measured for evaluating the robustness of 
the model. The first metric is adversarial frequency, which measures how often the model fails to be robust [51]. 
The second one is adversarial severity, which is used to measure the expected minimum distance from original input 
to an adversarial example [51] [52], i.e., how easily the model can be fooled. Indeed, quoting [51]: 
 

“The frequency and severity capture different robustness behaviours. A neural net may have high adversarial 
frequency but low adversarial severity, indicating that most adversarial examples are [a very small] distance 
away from the original point. Conversely, a neural net may have low adversarial frequency but high 
adversarial severity, indicating that it is typically robust, but occasionally severely fails to be robust. Frequency 
is typically the more important metric, since a neural net with low adversarial frequency is robust most of the 
time. Indeed, adversarial frequency corresponds to the accuracy on adversarial examples used to measure 
robustness. Severity can be used to differentiate between neural nets with similar adversarial frequency.” 
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3 Conclusions from here 

Hybrid warfare suggests that there may be many systems and many models, so if the assumption is that AI will be 
used throughout a conglomeration of hybrid warfare systems, the impact of multiple sources of error has the 
significant potential to undermine AI’s application in the military domain. 
 
The criteria and survey of current techniques above therefore are all relevant in understanding the potential 
weaknesses in applying AI & ML into a hybrid military domain, and thus where considerations pertaining to the 
robustness of AI & ML, are involved there is a clear need to ensure a wide reaching assessment going forward. It is 
clear that there is a significant area of considerations, and available metrics. However, as previously posed in 
Section 2, these metrics are applicable to different stakeholders, for different models, and potentially different tasks. 
 
Thus, the ongoing question is how to determine and find the right kinds of metrics for the specific models to obtain 
the required level of confidence in hybrid warfare systems. IST-169 intends to progress this initial survey to do just 
that. We believe that developing a pictorial representation of the various types of robustness, with their applicable 
phases to the different types of AI, would benefit a holistic understanding of the AI robustness landscape. This would 
enhance the move toward a more rigorous approach to the development and use of AI applications. 
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