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   Including the information published earlier [1], the aerospace-
related fluid physics, heat transfer and thermal control research
carried out by the NLR Space Division can be summarised by:
-  Thermal conductivity investigations.
-  Design and manufacture of a test rig for measuring the thermal

conductance of axially loaded rotating bearings in vacuum.
- Thermal modelling of various rotating space mechanisms and

the compilation of a handbook to model such mechanisms.
- Thermal performance of MLI blankets.
- Constant and variable conductance heat pipes, electro-osmotic

heat pipe.
- Radiation heat transfer.
- Movable thermal joints and flexible thermal links.
- Thermal analysis and design.
- Two-phase heat transport systems: Their thermal- gravitational

modelling and scaling, control methods/ algorithms. Two-phase
test rigs development, components testing and calibration.

- Thermal modelling of the ESA ATLID two-phase laser head
thermal control system breadboard, and the ESA capillary
pumped loop engineering model.

- Development of the ESA high-efficiency low pressure drop
two-phase condenser.

- Adapting liquid flow metering assemblies for use in space.
- Development of accurate ultrasonic flow meter for propellants.
- TPX I: In-orbit two-phase experiment and TPX II, a re-flight of

the modified two-phase experiment (parallel thermally
unbalanced condensers configuration, high pumping power
sintered nickel evaporators, upgraded controllable valve).

- Loop heat pipe flight experiment.
- Flexible external insulation blanket permeability.
- Self regulating heaters.
- ESA Thermal Analyzer & Fluid Heat Transfer Solver Upgrade.
- Thermal modelling of laser heads, glove-boxes, the phased-

array universal synthetic aperture radar structure, European co-
operation for long-term in defence programme synthetic
aperture radar antennae, avionics racks and components.

-  Meteosat Second Generation propellant gauging. Experimental
determination of the dielectric properties of propellants.

-  Future European Space Transportation Investigations Program.
Sänger aerospace plane thermal design activities.

-  Critical and novel issues, AMS-2 and CIMEX-3.
-  Pulsating two-phase loops and other pulsating/ oscillating heat

transfer devices.
-  Small dedicated satellites: Wetsat & Sloshsat-Flevo.
- Instrumentation for microgravity research.

��
��	���
    The detailing is a complete overview of all relevant research
activities. The presentation will highlight a selection of the most
interesting and innovating issues (as it is listed in the Appendix).

��������	
��	������
   Equipment has been built to measure the thermal conductivity
of anisotropic materials. Measurements, carried out in the NLR
thermal vacuum chamber, confirm the model developed at NLR
for the thermal conductivity of metallic honeycomb sandwich
panels for space applications [2, 3]. Carbon fibre reinforced
plastic sheet containing materials were investigated also [4, 5].
   Under contract with Fokker Aircraft, the equipment was used to
determine the thermal resistances of the hinges between the solar
panels and structure of the Astronomical Netherlands Satellite [6].
  Further investigations concern contact conductance (bolted
joints, effects of interface filters) and the thermal resistance
induced by sheet material deformation [7].

������������
���
��������
�������������������	�
   To obtain reliable results in the thermal design of space-borne
mechanisms, it is important to know the thermal conductance and
generated friction heat of rotating bearings in vacuum.
Under European Space Agency (ESA) contract, NLR designed
and built a test rig to measure the above quantities. This test rig,
still operational at the European Space Tribology Centre in Risley
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(UK), accommodates three different bearing sizes (90 mm OD/55
ID, 42 OD/20 ID, 16 OD/5 ID), operated with and without
lubricant. The thermal conductance of the rotating bearing is
obtained by measuring the heat flux through and temperature drop
across the bearing. The generated friction heat is obtained from
friction torque and rotation speed measurements.
   Typical test rig specifications are:
- A rotation speed adjustable from 1 to 2500 rpm.
- A pre-load ranging from 0 to 5 kg in 50 g steps.
- Inner and outer race temperatures variable between -20 and +60

°C and +20 and +70 °C respectively.
Details on the rig and measuring techniques is given in [8, 9].

���������
��������
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   Also for ESA a handbook has been compiled for the thermal
modelling of space mechanisms [10]. The handbook presents a
literature survey, step-by-step procedure, data compilations of
material properties, etc. It also contains the theory basic to the
thermal modelling procedure chosen. This procedure is illustrated
by the results of calculations on a high speed mechanism, the
reaction wheel of the Astronomical Netherlands Satellite, on a
medium speed mechanism, Dornier’s antenna despin mechanism,
and on a low speed mechanism, Marconi’s solar paddle drive.

�����������������
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   Models describing the thermal performance of evacuated
multilayer insulation blankets are usually based on the simple
addition of the three mutually interacting modes of energy
transfer: radiation between the shields, solid conduction via the
components and their interfaces and gas conduction in the
interstices, determined by residual gas pressure, outgas and the
way the outgas products migrate through the blanket.
   Blankets for spacecraft applications are usually made of
perforated shields allowing fast depressurisation during the
spacecraft launch. Perforations impair the insulation quality of a
blanket, as perforations increase the effective shield emissivity
(hence radiation transfer) and allow broadside pumping: Outgas
products migrate via perforatios from interstice to interstice
accumulating until they eventually escape at the blanket boundary.
   Earlier reported models [11-13] concern either purely
broadside-pumped blankets or purely edge-pumped blankets (of
non-perforated shields, where the outgas products can escape only
at the edges of the interstices). The pumping in most blankets for
spacecraft is simultaneously edge and broadside. [13] presents the
NLR model to account for this hybrid pumping.
   A test apparatus was built to experimentally verify the models
[13, 14]. There is good agreement between experiment and
theory.

����������
   Constant conductance heat pipe work consisted of a compilation
of constant conductance heat pipe design data [15], performance
measurements, filling procedures, the impact of filling ratio on the
transport properties, and the impact of working fluid dissociation.

   Considerable effort has been spent on the modelling and
manufacture of an electro-osmotic heat pipe, a heat pipe with a
feedback controlled pumping section, based on the phenomenon
of electro-osmosis [16-18]. Unfortunately the realisation of such a
heat pipe turned out to be unsuccessful since polarisation effects
and dissociation of the working fluid impair a proper long-term
performance, a problem for which no proper solution was found.
   NLR also developed a transient thermal model for gas-loaded
variable conductance heat pipes. This model can be easily
implemented in existing general thermal analyzer computer
programs. It is more generally valid than the Edwards/Marcus-
model [19], commonly accepted in variable conductance heat
pipe research, since the NLR model accounts for inertial and
frictional effects of the moving vapour [20-24]. Consequently it
predicts different transport and control behaviour, especially
within the low vapour pressure operating range (typical for liquid
metal heat pipes), start-up operation, and control. [24] presents a
detailed analysis of the considerable limitations of performance
and control predicted by the  NLR model for a methanol variable
conductance heat pipe built for experimental model validation.
   An automated heat pipe test rig has been designed/
manufactured to perform the validation experiments [25].

�������
���������������
   Apart from thermal emissivity and solar absorptivity
measurements, NLR investigated the modelling of radiation heat
transfer in a magnetohydrodynamic generator channel, within the
the Netherlands MHD power generation project [26].

�
���������������
����
   Within ESA’s Columbus Polar Platform development, NLR
studied thermal joints for deployable/ steerable radiators [27, 28].
Various options were traded. New ideas, the rotatable radial heat
pipe and the movable oscillating hydrodynamic thermal joint,
were proposed.
   A continuously rotatable thermal joint for steerable radiators,
currently under test [29, 30], is being patented.

���������������������������
  Thermal modelling and design work for Columbus Resources
Module [31] and Polar Platform [32, 33] was done for Fokker.

��
������������������
����������
   Two-phase work at NLR includes:
- A trade study on vapour quality sensors for spacecraft two-

phase heat transport systems, measuring the relative vapour
mass content of a flowing two-phase mixture [34, 35]. Design
and manufacture of vapour quality sensors for the test bed
developed the European Space Agency within the Two-Phase
Heat Transport Systems-Critical Components study [36-41].

- Development of control algorithms, considered also a critical
component within this study. Preliminary evaluation of control
methods for the mechanically pumped two-phase heat transport
systems engineering model, including development and analysis
of dynamic models for its vapour pressure control loop [42-44].
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− The design & manufacture of a 5 kW automated mechanically
pumped two-phase freon test loop to calibrate vapour quality
sensors [45].

−Thermal scaling with respect to gravity to properly predict the
low-gravity performance of a two-phase heat transport system
and its components using results of experiments on earth with,
fluid to fluid and geometric, scale models [46-53].

−Design/manufacture/operation of an automated mechanically
pumped two-phase ammonia test loop for calibration of the
vapour quality sensors for a capillary pumped two-phase
ammonia system, which is the Dutch/Belgian two-phase
experiment (TPX I) that has flown, in the ESA In-Orbit
Technology Programme, as Get Away Special G557 aboard
Space Shuttle (STS60), early February 1994 [54-62].

−Two-phase heat transport component testing [63].
−TPX II: The re-flight of a modified two-phase experiment, with

parallel condensers, high pumping power evaporators, improved
liquid flow meters and Swalve, as Get Away Special G467 on a
Space Shuttle flight end 1998 [64-66].

−Contributing to the concept, thermal/structural design, flight
scenario, testing and experiment evaluation of the loop heat pipe
flight experiment, a hitchhiker experiment on Space Shuttle
flight (STS87), November 1997 [67-69]. This experiment was
conducted by a team led by Dynatherm, consisting of the Naval
Research Laboratory, NASA GSFC and the Center for Space
Power, Hughes Space & Communications, the Center for
Commercial Development of Space, US Air Force Wright &
Phillips Laboratories, BMDO, and NLR.

- Development of ESA’s high efficiency, low pressure drop
condenser, with Daimler Benz Aerospace, Bradford
Engineering, TAIS and Swales as subcontractors [70-72].

- The ESA study on “spatialisation” of flow metering assemblies
with subcontractors SPPS  Suisse/Bradford Engineering and the
Société Anonyme Belge de Construction Aéronautique [73].

- Thermal modelling and design of the atmospheric LIDAR laser
head thermal control breadboard, for MMS-UK [74].

- Thermal modelling and design of ESA’s capillary-pumped loop
engineering model [75, 76], for MMS-UK.

−Development of a two-phase thermal control system for a
phased array radar module [77].

���	������
�
   Other activities for ESA and other customers are:
−Sänger-related thermal research proposed for the two-stage to

orbit space plane and the hot structure test facility, in the ramjet
technology demonstration programme [78].

−Flexible external insulation blanket permeability testing [79].
−Testing of self-regulating heaters, designed to maintain their

substrate temperature, by using their intrinsic material properties
instead of external thermostats [80].

−ESA’s flexible thermal link development for Dornier [81, 82].
−The Meteosat Second Generation Unified Propulsion System -

Gauging Sensor Unit: the NLR/Bradford development of level

gauges for spin-stabilised spacecraft propellant tanks, derived
from the earlier developed NLR vapour quality sensor [29, 30,
83]. Work is done for ESA on the experimental determination of
dielectric properties of propellants MON & MMH [84, 85] and,
with Bradford, on the development of an ultrasonic flow meter
for propellants. Current investigations concern the development
of propellant level sensors for 3-axis stabilised spacecraft.

���������
�������
   These modelling activities pertain to:
- The ESA Thermal Analyzer upgrading, focusing on the fluid

dynamics part of the Fluid Heat Transfer Solver: The
replacement of the current homogeneous flow model by
physically more realistic models for two-phase flow [86].

−Detailed thermal modelling of a laser head [87].
−Thermal modelling of glove-boxes for ISS, of the structure of

the phased array universal synthetic aperture radar [88], and of
the heat load on ALADIN in an arbitrary ISS-related orbit [89].

−The European co-operation for long-term in defence
programme [90-95]. Research and technology project 4: the
Modular Avionics Harmonisation Study, thermal modelling of
components/avionics racks, and the impact of high thermal load
on environmental control systems and project 9: Advanced
space synthetic aperture radar sensor technology, thermal
design/model of synthetic aperture radar antennae.

- Future European Space Transportation Investigations Program.

�����	��� ��
������
������������!���"������#�$%
   An inventory of critical research items has been produced,
especially pertaining to problems/unresolved issues in the field of
aerospace heat transfer, resulting in various publications related to
extension of gravity levels [96 to 103].
   AMS-2 is a 4-5 years lasting international experiment on the
International Space Station ISS. It is a particle detector for high-
energy cosmic rays, consisting of several sub-detectors. Its
scientific goal is to detect anti-matter. NLR is involved in the
overall thermal control, the thermal control of electronics, and
the development of an novel carbon dioxide two-phase MPL for
the Tracker experiment [104-105]. The latter loop is intended
also to perform fundamental two-phase research experiments
during time slots when the particle detectors will be set inactive.
   CIMEX-3, NLR’s Versatile Two-Phase Loop Experiment,
planned to be executed (in ESA’s MAP programme) in the
Fluid Physics Laboratory on ISS [106], is a multi-purpose two-
phase heat transport loop with a mechanically and a capillary
pumped option, different types of evaporators (capillary and
swirl), and the possibility to operate while using different
working fluids. Detailed discussions on the rationale behind the
experiment [107] illustrate that the objectives of CIMEX-3 are:
- To study micro-g two-phase flow and heat transfer issues, via

transparent (swirl) evaporators and high efficiency low
pressure drop condensers.

- To measure the void/mass fraction in the adiabatic line for
vapour quality sensor (VQS) calibration.
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- Flow pattern characterisation, creation of flow pattern maps.
- The viability demonstration of Mechanically and Capillary

Pumped two-phase Loops (MPL & CPL), using different
working fluids or mixtures.

&�������'(�	�����������������������)���	��
   The research [108- 112] concentrates on pulsating/ oscillating
heat transfer devices, being of interest for applications in
spacecraft thermal control in microgravity, in planetary partial
gravity and supergravity environments, and in hypergravity
acceleration levels in rotating spacecraft or manoeuvring
combat aircraft [110]. Different aspects of various heat transfer
devices in gravity environments ranging from micro-gravity to
super-gravity are discussed. Based on an overview is of world-
wide activities and the state of the art of pulsating and
oscillating heat transfer device research and an assessment of
commonality and difference. a baseline philosophy was defined
for modelling and comparison of experimental data, in order to
anticipate an easy comparison with the results of ongoing and
future research activities. Several test set-ups were built,
including a versatile one [113-114], allowing variation of
almost all relevant parameters: Working fluid and fill charge,
power, transport length, inclination with respect to the gravity
vector, and the possibility to choose either the dead-end
pulsating or the closed-loop oscillating configuration.

"���������������*�+,�����+�����+"�
������-���
+
   A definition study was completed on Wetsat: a small spacecraft
to collect data on heat and mass transport by evaporation and
condensation across an annular spherical gap. Various force fields
have been introduced: an electrical radial field and centrifugal
fields from spacecraft spin [115].
   Because of insufficient support efforts were redirected to the
definition of a spacecraft to investigate dynamics of onboard
liquid. After a successful precursor, the Wet Satellite Model that
flew 7 minutes following a rocket launch. Its follow-up Sloshsat is
currently planned for Space Shuttle launch in 2002. The Sloshsat
payload, a 80 litres tank with 33 litres of water. The location of
the water in the tank is determined by the Coarse Sensor Array, a
uniform distribution of 137 platinum ring electrodes embedded in
the tank wall [116]. The capacitance between 270 electrode pairs
provides liquid height information. Prediction of the dynamics
and development of the control algorithms for the spacecraft are
being generated with the Sloshsat Motion Simulator. This original
development at NLR is operated in the EUROSIM software
environment. Further activities [117-127] finally resulted in the
flight hardware, being manifested to be launched from the Shuttle.

#�����������
���
����	�
��������������	�
   With the Spanish Laboratory Lamf/ETSIA NLR carried out
work, within the European Space Agency High Temperature
Facility Technology Study, on combustion experiment
instrumentation [128], focusing on flow field mapping in opaque
liquids [129, 130].

   Activities within the European Space Agency Fluid Physics
Instrumentation Study [131] led to the Prototype Optical
Diagnostic Instrument [132], a precursor to the European Space
Agency Fluid Science Laboratory Facility Development Study
[133], used for thermophysical & fluid physics diagnostics [134].
   Other investigations concern microscopy [135], optical
diagnostics of crystal growth [136], optical detection methods for
biochemical sample analysis [137], and the development of a
biomass sensor [138, 139].

����	�������������
    In conclusion it can be said that the research done concerns
all aspects of aerospace thermal control system technology, i.e.:
- All heat transfer modes: Radiation, convection, conduction.
- Development of both passive and active thermal control

components, heat transport loops and other (sub-)systems, and
full-scale flight systems.

- Design from component to satellite level.
- All kinds of two-phase heat transfer devices: CCHP, VCHP,

LHP, CPL, MPL, VDHTD, Oscillating/Pulsating HP, etc.
- Thermal modelling and the experimental verification of the

modelling results.
- Thermal/gravitational scaling of two-phase flow and heat

transfer in gravity environments for microgravity spacecraft
applications, for reduced gravity applications in Moon and
Mars thermal control systems, and for hypergravity
applications in spinning satellites, combat aircraft and
supergravity planetary environment.

- Development and execution of in-orbit experiments.
   It is obvious that the research activities continuously change
as they have to follow the needs resulting from more and more
demanding requirements for developing novel, very advanced
spacecraft with extremely long lifetimes.
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   The presentation focuses particularly on the following issues

(Some relevant figures are given in the following three pages):
-  Thermal conductance of loaded rotating bearings in vacuum.
-  The thermal performance of multilayer insulation blankets.
-  VCHP modelling and the modelling results.
- The results of the similarity (π-numbers) approach for the

thermal/gravitational scaling of two-phase systems for micro-
gravity, reduced-gravity, and hyper-gravity applications in
aerospace.

- Constitutive equations for annular two-phase flow and heat
transfer, predictions for condensation.

-  ATLID and HELPD condensers, CLEM.
-  In-orbit technology demonstration: TPX & LHPFX.
-  Two-phase flow pattern aspects.
-  Oscillating/pulsating heat transfer devices.
- The AMS-2 Tracker mechanically pumped two-phase CO2

thermal control loop.
-  CIMEX-3: Versatile two-phase loop experiments on ISS.
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Test Rig to Measure the Thermal
Conductance of Rotating Bearings

(in Vacuum)

DimensionDimensionDimensionDimension Analysis &Analysis &Analysis &Analysis &
                         Similarity Considerations                         Similarity Considerations                         Similarity Considerations                         Similarity Considerations
ππππ-number relevance for thermal-gravitational scaling of two-phase loops
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and condensationand condensationand condensationand condensation
trajectories in flowtrajectories in flowtrajectories in flowtrajectories in flow
pattern mapspattern mapspattern mapspattern maps

 Mo·g=ɟl .σσσσ3/µl
4

 (ů/ɟl )½ = D.g½.(We/Fr )-½

Consequences of Similarity Approach forConsequences of Similarity Approach forConsequences of Similarity Approach forConsequences of Similarity Approach for
Applications of Thermal-Gravitational ScalingApplications of Thermal-Gravitational ScalingApplications of Thermal-Gravitational ScalingApplications of Thermal-Gravitational Scaling

(for MPL/CPL/LHP/VPDL)(for MPL/CPL/LHP/VPDL)(for MPL/CPL/LHP/VPDL)(for MPL/CPL/LHP/VPDL)

Flow Pattern IssuesFlow Pattern IssuesFlow Pattern IssuesFlow Pattern Issues
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Flow Pattern IssuesFlow Pattern IssuesFlow Pattern IssuesFlow Pattern Issues : : : : Generalised Generalised Generalised Generalised  Qualitative  Qualitative  Qualitative  Qualitative
Two-Parameter Flow Regime MapTwo-Parameter Flow Regime MapTwo-Parameter Flow Regime MapTwo-Parameter Flow Regime Map
for Horizontal Tube Condensationfor Horizontal Tube Condensationfor Horizontal Tube Condensationfor Horizontal Tube Condensation

Pressure Gradient ConstituentsPressure Gradient ConstituentsPressure Gradient ConstituentsPressure Gradient Constituents
Gravity-Assist & Anti-Gravity IssuesGravity-Assist & Anti-Gravity IssuesGravity-Assist & Anti-Gravity IssuesGravity-Assist & Anti-Gravity Issues

� Impact of gravitation is smaller at
lower temperature.

� Anti-g constituent overwhelms
other gradients, below X=0.76 at
25°°°°C and X=0.38 at -25°°°°C.

� Annular liquid layer breaks/ falls
back below these qualities.

� Shear-governed flow becomes
(pulsating) slug, plug or churn
flow, described by different
equations and slip factors.

� Driving pressure (temperature)
drops will strongly increase.

� (Anti-g) flow pattern maps are to
be created.

ATLID Two-Phase Heat Transport System
Hybrid CPL-LHP with Two Different Parallel Direct

Condensers/Radiators (MMS, NLR,BE)

Constitutive Equations for Annular Two-PhaseConstitutive Equations for Annular Two-PhaseConstitutive Equations for Annular Two-PhaseConstitutive Equations for Annular Two-Phase
Flow & Heat TransferFlow & Heat TransferFlow & Heat TransferFlow & Heat Transfer

� Total Pressure Gradient          (dp/dz)t = (dp/dz)f + (dp/dz)m + (dp/dz)g

� friction (dp/dz)f = -(32m2/ππππ2 ρρρρvD5)(0.045/Rev
0.2)[X1.8+5.7(µl/µv)0.0523(1- X)0.47X1.33(ρρρρv/ρρρρl)0.261

                                                                                         +8.1(µl/µv)0.105(1- X) 0.94X0.86(ρρρρv/ρρρρl) 0.522]
� momentum (dp/dz)m= -(32m2/ ππππ2 ρρρρ 

vD5)(D/2)(dX/dz)[2(1-X)(ρρρρv/ρρρρl)2/3+ 2(2X-3+1/X)(ρρρρv/ρρρρl)4/3

                                                      +(2X-1-ßX)(ρρρρv/ρρρρl )1/3 +(2ß- ßX-ß/X)(ρρρρv/ρρρρ)5/3 + 2(1-X-ß+ßX)(ρρρρv/ρρρρl)]
� gravity   (dp/dz)g = (32m2/ππππ2 ρρρρvD5){1-[1+(ρρρρv/ρρρρl)2/3 (1-X)/X]-1}[ππππ2 D5g (cosνννν) (ρρρρl -ρρρρv)ρρρρv/32m2]

� Void - Quality Relation                               (1 - αααα)/αααα = S (ρρρρv/ρρρρl) X/(1- X)

� Simplified Zivi-Correlation for Slip Factor           S =(ρρρρl/ρρρρv)1/3

� Condensation Heat Transfer   linear X= 1 - z/LC or more realistic  m.hlv(dX/dz) = - hππππD[T(z)-Ts]

�  h = 0.018(λλλλl ρρρρl
1/2 D1/2/µl)Prl

0.65|-(dp/dz)t|1/2 + R(4λλλλl/D)/ln [1+(ρρρρv/ρρρρl)2/3(1-X)/X] ) and  0 < R < 1

� Combination Yields F(dX/dz, X) = 0 ČČČČ X(z) & ∆∆∆∆pt by integrating (dp/dz)tdz from 0 to LC

Gravity Dependent Condensation LengthsGravity Dependent Condensation LengthsGravity Dependent Condensation LengthsGravity Dependent Condensation Lengths

� Condensation lengths needed
considerably increase with
decreasing gravity.

� Differences between condensation
lengths at different gravity levels
become less pronounced with
decreasing temperature and line
diameter, increasing power, and heat
transfer coefficient fine-tuning or
enhancement. This coefficient,
which varies along the condensation
trajectory through the various flow
patterns, is to be derived from
experiments in different gravity
environments.

Vapour quality along the reference duc t

400

0.2

0.4

0.6

0.8

1.0

300200100

Vapour
quality X

Nondimensional length z/D

NH3

300 K

0

0-g

Moon

Mars

Earth

2-g

1-g   Da Riva & Sanz

0-g   Da Riva & Sanz

High Efficiency Low High Efficiency Low High Efficiency Low High Efficiency Low 
Pressure Drop CondenserPressure Drop CondenserPressure Drop CondenserPressure Drop Condenser

�Series configurationSeries configurationSeries configurationSeries configuration
�Two-phase flow inTwo-phase flow inTwo-phase flow inTwo-phase flow in

annular tubeannular tubeannular tubeannular tube
�Liquid cooling in innerLiquid cooling in innerLiquid cooling in innerLiquid cooling in inner

tubetubetubetube

290 W290 W

206 W206 W 156 W156 W

260 W260 W

TTvapourvapour=20.4 ºC =20.4 ºC                      T Tcoolantcoolant = 14.5 ºC = 14.5 ºC

Breadboard Condenser IR PicturesBreadboard Condenser IR PicturesBreadboard Condenser IR PicturesBreadboard Condenser IR Pictures
to Verify Theoretical Predictionsto Verify Theoretical Predictionsto Verify Theoretical Predictionsto Verify Theoretical Predictions
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Schematics of TPX I & II

G-dependent 3-D slug-plug flowG-dependent 3-D slug-plug flowG-dependent 3-D slug-plug flowG-dependent 3-D slug-plug flow G-dependent 3-D G-dependent 3-D G-dependent 3-D G-dependent 3-D annularannularannularannular flow flow flow flow

Flow Pattern Maps to be CreatedFlow Pattern Maps to be CreatedFlow Pattern Maps to be CreatedFlow Pattern Maps to be Created
for Gravity Levels from Micro- to Super-Gfor Gravity Levels from Micro- to Super-Gfor Gravity Levels from Micro- to Super-Gfor Gravity Levels from Micro- to Super-G

Alpha Magnetic Spectrometer on ISSAlpha Magnetic Spectrometer on ISSAlpha Magnetic Spectrometer on ISSAlpha Magnetic Spectrometer on ISS
(Search for Anti-Matter, Dark & Lacking Matter)(Search for Anti-Matter, Dark & Lacking Matter)(Search for Anti-Matter, Dark & Lacking Matter)(Search for Anti-Matter, Dark & Lacking Matter)

Configuration & Tracker Two-Phase COConfiguration & Tracker Two-Phase COConfiguration & Tracker Two-Phase COConfiguration & Tracker Two-Phase CO2222 MPL MPL MPL MPL

TPX I Flight HardwareTPX I Flight HardwareTPX I Flight HardwareTPX I Flight Hardware

(Because of Different Line Diameters, Fluids or G-Levels?)

Partly ContradictingPartly ContradictingPartly ContradictingPartly Contradicting Low-G Flow Pattern Dataow-G Flow Pattern Dataow-G Flow Pattern Dataow-G Flow Pattern Data

Best-Hamme

Cyrène

TPX

CIMEX-3CIMEX-3CIMEX-3CIMEX-3
Versatile Two-Phase Loop BaselineVersatile Two-Phase Loop BaselineVersatile Two-Phase Loop BaselineVersatile Two-Phase Loop Baseline

DXXX -5A

Evaporator

Fluid containers

Waste container

VQS

Reservoir

Condenser

Pump

Experiment objectives:

- Development of (transparent) swirl evaporator 
and (HELPD) condenser

- Creation/characterisation of flow patterns and
void/quality measurements in adiabatic
transparent line to calibrate VQS and to create 
flow pattern maps

- Viability demonstration of mechanically 
   pumped two-phase loop for different
   working fluids or mixtures

- 

 

Accommodating other CIMEX experiments to
study the impact of Marangoni-convection on
heat transfer and evaporation, micro-scale heat
and mass transfer in single-groove structures,
new heat pipe porous structures, and
instabilities near drops and bubbles


