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Abstract—The advent of modernized and new global naviga-
tion satellite systems (GNSS) has enhanced the availability of
satellite based positioning, navigation, and timing (PNT) solu-
tions. Specifically, it increases redundancy and yields operational
back-up or independence in case of failure or unavailability of one
system. Among existing GNSS, the Chinese COMPASS naviga-
tion satellite system (CNSS) and the European Galileo system are
being developed. In this contribution, a COMPASS/Galileo/GPS
robustness analysis is carried out for instantaneous, unaided
attitude determination.

Precise attitude determination using multiple GNSS antennas
mounted on a platform relies on the successful resolution of the
integer carrier phase ambiguities. The constrained Least-squares
AMBiguity Decorrelation Adjustment (C-LAMBDA) method has
been developed for the quadratically constrained GNSS compass
model that incorporates the known baseline length. In this contri-
bution the method is used to analyse the attitude determination
performance when using the GPS, the Galileo, and COMPASS
systems. The attitude determination performance is evaluated us-
ing GPS/Galileo/COMPASS data sets from a real data campaign
in Australia. The study includes the performance analyses of both
stand-alone and mixed constellation (GPS/Galileo/COMPASS)
attitude estimation under satellite outage. We demonstrate and
quantify the improved availability, reliability, and accuracy of
attitude determination using the combined constellation.

Index Terms—GNSS, GPS, COMPASS, attitude determination,
constrained integer least-squares, C-LAMBDA, carrier phase
ambiguity resolution

I. INTRODUCTION

The advent of modernized and new global navigation satel-
lite systems (GNSS) has enhanced the availability of satellite
based positioning, navigation, and timing (PNT) solutions.
Specifically, it increases redundancy and yields operational
back-up or independence in case of failure or unavailability of
one system. Among existing GNSS, the Chinese COMPASS
navigation satellite system (CNSS) and the European Galileo
system are being developed. In this contribution, a robustness
analysis of attitude determination using the standalone and the
combined GPS, Galileo, and COMPASS systems is carried
out.

Multiple GNSS receivers/antennas rigidly mounted on a
platform can be used to determine platform attitude (orien-
tation) [1]–[4]. Precise attitude determination, however, relies
on successful resolution of the integer carrier phase ambigui-
ties. The Least squares AMBiguity Decorrelation Adjustment
(LAMBDA) method [5] is currently the standard method for
solving unconstrained and linearly constrained GNSS ambigu-

ity resolution problems [6]–[8]. For such models, the method
is known to be numerically efficient and optimal in the sense
that it provides integer ambiguity solutions with the highest
possible success-rate [9], [10]. To exploit the known baseline
length, we make use of the constrained (C-)LAMBDA method
[11]–[15]. Due to the rigorous inclusion of the known baseline
length, significantly higher success rates will be demonstrated.

Our analyses are carried out using data sets from real data
campaign in Australia. Since satellite navigation data is not
yet publicly available for the COMPASS system and not con-
tinuously available for Galileo test satellites, we use off-line
navigation from post-processed orbit and clock information
derived from an experimental regional network of monitoring
stations in Australia, Asia, and Russia, and the Cooperative
Network for GIOVE Observation (CONGO) [16], [17]. We
evaluate the epoch-by-epoch, single- and multi-frequency in-
teger ambiguity resolution performance of the C-LAMBDA
method under satellite outage. For mixed constellation attitude
determination, we consider inter-system double differencing
by taking advantage of common frequencies namely, GPS
L1 - Galileo E1, GPS L5 - Galileo E5a, and Galileo E5b -
COMPASS B3 that results in the highest possible redundancy.
Since we deployed two identical receivers in the real data
campaign, the differential inter-system biases (DISBs) are
known to be absent [18]. Hence, the GNSS observations at a
common frequency is considered as if they are from a single
system. Our analyses are the first reported results of GNSS
attitude determination using real data from the triple system
and demonstrate the increased availability of GNSS-based
attitude solution by the inclusion of Galileo and COMPASS
systems.

This contribution is organized as follows. Section II presents
our attitude determination method using multi-constellation
GNSS data. First, it describes the phase and code obser-
vation equations for short-baseline GPS/Galileo/COMPASS
positioning. Then, it formulates the quadratically constrained
GPS/Galileo/COMPASS model, followed by a description of
the C-LAMBDA method for attitude determination. Section
III presents the results of the performance evaluation for
combined constellation ambiguity resolution and attitude de-
termination under satellite outage environment, while Section
IV draws conclusions of this contribution.
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II. THE GNSS-BASED ATTITUDE DETERMINATION

In this section we present our attitude determination method
using the combined GPS/Galileo/COMPASS system. First we
describe the functional and stochastic model for the combined
observations and then we present the steps for solving the
baseline constrained, mixed-integer attitude model.

A. GPS/Galileo/COMPASS Observations

Since these systems have a number of common frequencies,
namely, GPS L1 - Galileo E1, GPS L5 - Galileo E5a, and
Galileo E5b - COMPASS B3, we consider inter-system double
differencing [18] whenever possible. For common frequency
observations, after inter-system bias calibration [18], obser-
vations are considered as if they are from the first system.
Let us consider two GPS/Galileo/COMPASS receivers 𝑟 and
1 forming a short baseline and collecting observations from all
three systems. The double difference (DD) pseudo-range and
carrier-phase observations at frequency 𝑗 for satellite pairs 1-
𝑠 of GNSS system Φ (G for GPS, E for Galileo, and C for
COMPASS), denoted as 𝑝1𝑠,Φ1𝑟,𝑗 and 𝜙1𝑠,Φ1𝑟,𝑗 respectively, are given
as [19]

E
(
𝑝1𝑠,Φ1𝑟,𝑗

)
= 𝜌1𝑠,Φ1𝑟 , 𝑠 = 2, . . . , (𝑚Φ

𝑗 + 1) (1)

E
(
𝜙1𝑠,Φ1𝑟,𝑗

)
= 𝜌1𝑠,Φ1𝑟 + 𝜆Φ

𝑗𝑁
1𝑠,Φ
1𝑟,𝑗 , (2)

where E(⋅) denotes the expectation operator, 𝜌1𝑠,Φ1𝑟 is the DD
topocentric distance, 𝜆Φ

𝑗 is the wave length, 𝑁1𝑠,Φ
1𝑟,𝑗 is the time-

invariant integer DD carrier-phase ambiguity, and (𝑚Φ
𝑗 +1) is

the number of satellites at frequency 𝑗.
The linearized DD observation equations corresponding to

(1) and (2), read

E
(
Δ𝑝1𝑠,Φ1𝑟,𝑗

)
= 𝑔1𝑠,Φ𝑗

𝑇

𝑏, 𝑠 = 2, . . . , (𝑚Φ

𝑗 + 1) (3)

E
(
Δ𝜙1𝑠,Φ1𝑟,𝑗

)
= 𝑔1𝑠,Φ𝑗

𝑇
𝑏+ 𝜆Φ

𝑗𝑁
1𝑠,Φ
1𝑟,𝑗 , (4)

where Δ𝑝1𝑠,Φ1𝑟,𝑗 and Δ𝜙1𝑠,Φ1𝑟,𝑗 are the observed-minus-computed
code and phase observations, 𝑏 is the baseline vector contain-
ing relative position components, and 𝑔1𝑠,Φ𝑗 is the geometry
vector given as 𝑔1𝑠,Φ𝑗 = 𝑒1,Φ1,𝑗 − 𝑒𝑠,Φ1,𝑗 with 𝑒𝑠,Φ𝑟,𝑗 the unit line-of-
sight vector between receiver-satellite pair 𝑟 − 𝑠. The vector
form of the DD observation equation for the 𝑗th frequency
read

E(𝑦Φ

𝑝;𝑗) = 𝐺Φ

𝑗 𝑏 (5)

E(𝑦Φ

𝜙;𝑗) = 𝐺Φ

𝑗 𝑏+ 𝜆
Φ

𝑗 𝑧
Φ

𝑟,𝑗 (6)

with 𝑦Φ
𝑝;𝑗 = [Δ𝑝12,Φ1𝑟,𝑗 . . . Δ𝑝

1(𝑚Φ
𝑗 +1),Φ

1𝑟,𝑗 ]𝑇 , 𝑦Φ

𝜙;𝑗 =

[Δ𝜙12,Φ1𝑟,𝑗 . . . Δ𝜙
1(𝑚Φ

𝑗 +1),Φ

1𝑟,𝑗 ]𝑇 , 𝐺Φ
𝑗 = [𝑔12,Φ𝑗 . . . 𝑔

1(𝑚Φ
𝑗 +1),Φ

𝑗 ]𝑇 ,

𝑧Φ
𝑟,𝑗 = [𝑁12,Φ

1𝑟,𝑗 . . . 𝑁
1(𝑚Φ

𝑗 +1),Φ

1𝑟,𝑗 ]𝑇 .
For stochastic modeling, we assume elevation dependent

noise characteristics [20]. That is, the standard deviation of
the undifferenced observable 𝜍 can be written as

𝜎𝜍(𝜖) = 𝜎𝜍0

(
1 + 𝑎𝜍0 exp

(−𝜖
𝜖𝜍0

))
(7)

where 𝜖 is the elevation angle of the corresponding satellite,
and 𝜎𝜍0 , 𝑎𝜍0 , and 𝜖𝜍0 are the elevation dependent model
parameters. We further assume that the receivers have similar
characteristics and that the observation noise standard devia-
tions can be decomposed as follows:

𝜎𝜙𝑠,Φ
𝑟,𝑗

= 𝜎𝑟𝜎𝜙0
𝜎,𝑗𝜎

,Φ𝜈𝑠,Φ

𝜎𝑝𝑠,Φ
𝑟,𝑗

= 𝜎𝑟𝜎𝑝0
𝜎,𝑗𝜎

,Φ𝜈𝑠,Φ

𝜈𝑠,Φ =
(
1 + 𝑎0 exp

(
−𝜖𝑠,Φ

𝜖0

)) (8)

where 𝜎𝑟, 𝜎,Φ, and 𝜎,𝑗 are the receiver, the system, and the
frequency dependent weightings, respectively, and 𝜎𝜙0

and 𝜎𝑝0

are observation dependent weightings.

B. The GPS/Galileo/COMPASS Attitude Model

When combining the single-epoch, multi-frequency lin-
earized DD GNSS code and phase observation equations of
(5) and (6), we obtain the mixed integer model of observation
equations:

E(𝑦) = 𝐴𝑧 +𝐺𝑏,
𝑧 ∈ ℤ

𝑚

𝑏 ∈ ℝ
3 with 𝑚 =

∑
Φ∈{𝐺,𝐸,𝐶}

𝑓Φ∑
𝑗=1

𝑚Φ

𝑗 (9)

where 𝑦 = [𝑦𝑇

𝜙 𝑦𝑇
𝑝 ]

𝑇 is the 2𝑚 × 1 vector of lin-
earized (observed-minus-computed) DD observations with
𝑦𝜙 = [𝑦𝐺

𝜙
𝑇 𝑦𝐸

𝜙
𝑇 𝑦𝐶

𝜙
𝑇 ]𝑇 , 𝑦Φ

𝜙 = [𝑦Φ

𝜙;1
𝑇 . . . 𝑦Φ

𝜙;𝑓Φ
𝑇 ]𝑇 , 𝑦𝑝 =

[𝑦𝐺
𝑝

𝑇 𝑦𝐸
𝑝

𝑇 𝑦𝐶
𝑝

𝑇 ]𝑇 , and 𝑦Φ
𝑝 = [𝑦Φ

𝑝;1
𝑇 . . . 𝑦Φ

𝑝;𝑓Φ
𝑇 ]𝑇 , 𝑧 =

[𝑧𝐺𝑇 𝑧𝐸𝑇 𝑧𝐶𝑇 ]𝑇 is the 𝑚× 1 vector of unknown DD integer
ambiguities with 𝑧Φ = [𝑧Φ

1
𝑇 . . . 𝑧Φ

𝑓Φ
𝑇 ]𝑇 , 𝑏 is 3 × 1 vector

unknown baseline parameters, 𝐺 = 𝑒2⊗[𝐺𝐺𝑇 𝐺𝐸𝑇 𝐺𝐶𝑇 ]𝑇 is
the 2𝑚×3 geometry matrix with 𝐺Φ = [𝐺Φ

1
𝑇 . . . 𝐺Φ

𝑓Φ
𝑇 ]𝑇 and

𝑒𝑛 the 𝑛×1 vector of 1’s, 𝐴 = [𝐿𝑇 0𝑇 ]𝑇 is the 2𝑚×𝑚 design
matrix with 𝑚 × 𝑚 matrix 𝐿 = blockdiag(Λ𝐺, Λ𝐸, Λ𝐶)
and ΛΦ = blockdiag(𝜆Φ

1𝐼𝑚Φ
1
, . . . , 𝜆Φ

𝑓Φ𝐼𝑚Φ
𝑓Φ

) the diagonal

wavelength matrix, with ⊗ denoting the Kronecker product
[21], [22].

To construct the stochastic model for the observations in
(9), consider the undifferenced observations reading

𝜁 = [𝜁𝑇

1 𝜁
𝑇

2 ]
𝑇 (10)

where 𝜁𝑟 = [𝜙𝑇
𝑟 𝑝𝑇

𝑟 ]
𝑇 , 𝜙𝑟 = [𝜙𝐺

𝑟
𝑇 𝜙𝐸

𝑟
𝑇 𝜙𝐶

𝑟
𝑇 ]𝑇 , 𝜙Φ

𝑟 =

[𝜙Φ
𝑟,1

𝑇 . . . 𝜙Φ

𝑟,𝑓Φ
𝑇 ]𝑇 , 𝜙Φ

𝑟,𝑗 = [𝜙1,Φ𝑟,𝑗 . . . 𝜙
𝑚Φ

𝑓Φ+1,Φ

𝑟,𝑗 ]𝑇 , 𝑝𝑟 =

[𝑝𝐺
𝑟

𝑇 𝑝𝐸
𝑟

𝑇 𝑝𝐶
𝑟

𝑇 ]𝑇 , 𝑝Φ
𝑟 = [𝑝Φ

𝑟,1
𝑇 . . . 𝑝Φ

𝑟,𝑓Φ
𝑇 ]𝑇 , 𝑝Φ

𝑟,𝑗 =

[𝑝1,Φ𝑟,𝑗 . . . 𝑝
𝑚Φ

𝑓Φ+1,Φ

𝑟,𝑗 ]𝑇 , and 𝑝𝑠,Φ𝑟,𝑗 and 𝜙𝑠,Φ𝑟,𝑗 are the undifferenced
code and phase observations for 𝑟 − 𝑠 receiver-satellite pair
at 𝑗th frequency. Using the noise characteristics of (8) and
assuming that the observables are normally distributed and
mutually uncorrelated, the dispersion matrix of the observation
vector 𝜁 can be written as

D(𝜁) = 𝑄𝑟 ⊗𝑄𝑡 ⊗ blockdiag(𝑄𝐺, 𝑄𝐸, 𝑄𝐶) (11)

where D(⋅) denotes the dispersion operator,
𝑄𝑟 = diag[𝜎21 𝜎22 ], 𝑄𝑡 = diag[𝜎2𝜙0

𝜎2𝑝0
],

𝑄Φ = 𝜎,Φ
2blockdiag(𝑄Φ,1 . . . 𝑄Φ,𝑚Φ

𝑗 +1), and
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𝑄Φ,𝑗 = 𝜎,𝑗
2diag[𝜈1,Φ

2
. . . 𝜈𝑚

Φ
𝑗 +1,Φ

2
] are the co-factor

matrices. The dispersion matrix of the DD observations is
then given as

D(𝑦) = D(𝒟𝑇 𝜁) = 𝑄𝑦𝑦 (12)

with the DD operator 𝒟𝑇 = 𝐷𝑇
1 ⊗ 𝐼2 ⊗

blockdiag
(
𝐷𝑇

𝑚𝐺 , 𝐷
𝑇

𝑚𝐸 , 𝐷
𝑇

𝑚𝐶

)
, in which 𝐷𝑇

𝑛 = [−𝑒𝑛, 𝐼𝑛]
is the differencing matrix and 𝑚Φ =

∑𝑓Φ

𝑗=1𝑚
Φ
𝑗 .

The DD observation equations of (9) form, together with
the dispersion matrix of (12), a mixed-integer Gauss-Markov
model with unknown integer vector 𝑧 ∈ ℤ

𝑚 and unknown
baseline vector 𝑏 ∈ ℝ

3. This model can be strengthened with
the known baseline length. With the inclusion of the baseline
length constraint, we obtain the GNSS compass model [12],
[13]

E(𝑦) = 𝐴𝑧 +𝐺𝑏 ∥𝑏∥ = 𝑙, 𝑧 ∈ ℤ
𝑚, 𝑏 ∈ ℝ

3 (13)

D(𝑦) = 𝑄𝑦𝑦 (14)

where 𝑙 is the known baseline length and ∥ ⋅ ∥ denotes the
unweighted norm. Hence, the baseline is thus now constrained
to lie on a sphere with radius 𝑙 (𝕊𝑙 =

{
𝑏 ∈ ℝ

3∣ ∥𝑏∥ = 𝑙
}

).
Our objective is to solve for 𝑏 in a least-squares sense, thereby
taking the integer constraints on 𝑧 and the quadratic constraint
on vector 𝑏 into account. Hence, the least-squares minimization
problem that will be solved reads

min
𝑧∈ℤ𝑚,𝑏∈𝕊𝑙

∥𝑦 −𝐴𝑧 −𝐺𝑏∥2𝑄𝑦𝑦
(15)

with ∣∣ ⋅ ∣∣2𝑄 = (⋅)𝑇𝑄−1(⋅). It is a quadratically constrained
(mixed) integer least-squares (QC-ILS) problem [11], for
which no closed-form solution is available. In the following
sections, we describe the method for solving (15).

C. The Ambiguity Resolved Attitude

We now describe the steps for computing the integer ambi-
guity resolved attitude angles.

1) The real-valued float solution: The float solution is
defined as the solution of (15) without the constraints. When
we ignore the integer constraints on 𝑧 and the quadratic
constraint on 𝑏, the float solutions 𝑧 and �̂�, and their variance-
covariance matrices are obtained as follows:[

𝑄𝑧𝑧 𝑄𝑧�̂�
𝑄�̂�𝑧 𝑄�̂��̂�

]−1

⋅
[
𝑧

�̂�

]
=

[
𝐴𝑇

𝐺𝑇

]
𝑄−1

𝑦𝑦 𝑦 (16)

with[
𝑄𝑧𝑧 𝑄𝑧�̂�
𝑄�̂�𝑧 𝑄�̂��̂�

]
=

([
𝐴𝑇

𝐺𝑇

]
𝑄−1

𝑦𝑦

[
𝐴 𝐺

])−1

(17)

The 𝑧-constrained solution of 𝑏 and its variance-covariance
matrix can be obtained from the float solution as follows

�̂�(𝑧) = �̂�−𝑄�̂�𝑧𝑄
−1
𝑧𝑧 (𝑧 − 𝑧) (18)

𝑄�̂�(𝑧)�̂�(𝑧) = 𝑄�̂��̂� −𝑄�̂�𝑧𝑄
−1
𝑧𝑧 𝑄𝑧�̂�

=
(
𝐺𝑇𝑄−1

𝑦𝑦 𝐺
)−1

(19)

Using the above estimators, the original problem in (15) can
be decomposed as

min
𝑧∈ℤ𝑚,𝑏∈𝕊𝑙

∥𝑦 −𝐴𝑧 −𝐺𝑏∥2𝑄𝑦𝑦

= ∥𝑒∥2𝑄𝑦𝑦
+ min

𝑧∈ℤ𝑚

(
∥𝑧 − 𝑧∥2𝑄𝑧𝑧

+min
𝑏∈𝕊𝑙

∥∥∥�̂�(𝑧)− 𝑏
∥∥∥2
𝑄�̂�(𝑧)�̂�(𝑧)

)
(20)

with 𝑒 = 𝑦 − 𝐴𝑧 − 𝐺�̂� being the vector of least-squares
residuals. Note that the first term on the right hand side of
(20) does not depend on the unknown parameters 𝑧 and 𝑏 and
is therefore constant.

2) The integer ambiguity resolution: Based on the orthog-
onal decomposition (20), the quadratic constrained integer
minimization can be formulated as:

𝑧 = arg min
𝑧∈ℤ𝑚

𝐶(𝑧) (21)

with ambiguity objective function

𝐶(𝑧) = ∥𝑧 − 𝑧∥2𝑄𝑧𝑧
+
∥∥∥�̂�(𝑧)− �̌�(𝑧)∥∥∥2

𝑄�̂�(𝑧)�̂�(𝑧)

(22)

where

�̌�(𝑧) = argmin
𝑏∈𝕊𝑙

∥∥∥�̂�(𝑧)− 𝑏
∥∥∥2
𝑄�̂�(𝑧)�̂�(𝑧)

(23)

The cost function 𝐶(𝑧) is the sum of two coupled terms: the
first weighs the distance from the float ambiguity vector 𝑧 to
the nearest integer vector 𝑧 in the metric of 𝑄𝑧𝑧 , while the
second weighs the distance from the conditional float solution
�̂�(𝑧) to the nearest point on the sphere 𝕊𝑙 in the metric of
𝑄�̂�(𝑧)�̂�(𝑧).

Unlike with the standard LAMBDA method [5], the search
space of the above minimization problem is non-ellipsoidal
due to the presence of the second term in the ambiguity
objective function. Moreover, its solution requires the compu-
tation of a nonlinear constrained least-squares problem (23) for
every integer vector in the search space. In the C-LAMBDA
method, this problem is mitigated through the use of easy-
to-evaluate bounding functions [13]. Using these bounding
functions, two strategies, namely the Expansion and the Search
and Shrink strategies, were developed, see e.g. [11], [23].
These techniques avoid the computation of (23) for every
integer vector in the search space, and compute the integer
minimizer 𝑧 in an efficient manner.

3) The ambiguity resolved attitude: Finally, we obtain the
ambiguity resolved attitude solution by substituting 𝑧 into (18),
thus giving �̂�(𝑧). For a single baseline, 𝑏 is related to the Euler-
angles 𝜉 = [𝜙 𝜃]𝑇 , with 𝜙 the heading and 𝜃 the elevation, as
𝑏(𝜉) = 𝑙𝑢(𝜉), where 𝑢(𝜉) = [𝑐𝜃𝑐𝜙, 𝑐𝜃𝑠𝜙, −𝑠𝜃]𝑇 with 𝑠𝛼 =
sin(𝛼) and 𝑐𝛼 = cos(𝛼). Hence, the sought-for attitude angles
𝜉 (𝑧) are then obtained by solving the following nonlinear least
squares problem:

E
(
�̂�(𝑧)

)
= 𝑙𝑢(𝜉)

D
(
�̂�(𝑧)

)
= 𝑄�̂�(𝑧)�̂�(𝑧)

(24)
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(a) Antenna setup

CUT0

N

8.418 m

CUTA

(b) Antenna ge-
ometry

Fig. 1. Curtin GNSS antennas used for the real data campaign

Using a first order approximation, the formal variance-
covariance matrix of the ambiguity resolved, least-squares
estimated heading and elevation angles is given by

𝑄𝜉𝜉 ≈ 1

𝑙2

(
𝐽𝑢,𝜉(𝜉)

𝑇𝑄−1

�̂�(𝑧)�̂�(𝑧)
𝐽𝑢,𝜉(𝜉)

)−1

(25)

with Jacobian matrix

𝐽𝑢,𝜉(𝜉) =

⎡
⎣ −𝑠𝜙𝑐𝜃 −𝑐𝜙𝑠𝜃

𝑐𝜙𝑐𝜃 −𝑠𝜙𝑠𝜃
0 −𝑐𝜃

⎤
⎦ (26)

As the results in the next section show, this first order
approximation works well. This is due to the fact that the
ambiguity resolved solution is driven by the high precision of
the carrier phase observables.

III. PERFORMANCE OF GPS/GALILEO/COMPASS
ATTITUDE DETERMINATION

In this section the performance analyses of
GPS/Galileo/COMPASS attitude determination are presented.
The data was collected from two TRM59800.00-SCIS
antennas mounted on the roof of the Bentley campus building
402 of Curtin University in Perth, Australia. As shown in
Figure 1(a), they form a short baseline (𝐵0 = 8.418 m,
Figure 1(b)). These antennas are connected to two TRIMBLE
NETR9 GNSS receivers continuously tracking all available
GNSS satellites.

Due to orbital parameters, co-visibility of Galileo experi-
mental satellites does not exist for every day and hence, we
chose a unique period (May 17, 2012 between 22:54:36 and
23:59:35) having co-visibility of all four Galileo experimental
satellites and collected the data at a rate of 1 Hz. Figure
2 shows the GPS/Galileo/COMPASS satellite visibility (the
skyplot, the number of satellites, and the PDOP value) during
the period. The stochastic model parameters of the elevation
dependent model (7) for the receivers are reported in Table I.

Our robustness analysis is based on single- (L1, E1, and/or
B1), dual- (L1 and L2; E1 and E5a; and/or B1 and B2), and
triple- (E1, E5a, and E5b; and/or B1, B2, and B3) frequency
attitude determination under satellite outage by arbitrarily
removing a number of visible GPS, Galileo, and/or COM-
PASS satellites. Note that, for triple-frequency processing, we
only considered Galileo/COMPASS combination as the third
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Fig. 2. Satellite visibility of GPS (red), Galileo (blue), and COMPASS
(yellow) constellations for 10∘ elevation cut-off

System Frequency Code Phase
𝜎𝑝0
[cm]

𝑎𝑝0 𝜖𝑝0
[deg]

𝜎𝜙0

[mm]
𝑎𝜙0

𝜖𝜙0

[deg]

GPS
L1
L2
L5

15 5 20
20 2 15
10 2 15

1 5 20
2 6 15
1 6 15

Galileo
E1
E5a
E5b

15 5 20
10 2 15
10 2 15

1 5 20
1 6 15
1 6 15

COMPASS
B1
B2
B3

20 5 15
20 5 15
20 5 15

1 5 15
2 5 15
3 5 15

TABLE I
ELEVATION DEPENDENT STOCHASTIC MODEL PARAMETERS (CF.,

EQUATION 7) FOR CURTIN GNSS STATIONS
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Fig. 3. PDOP values for simulated satellite outage

frequency (L5) of GPS system is only available from PRN 25
among the visible GPS satellites during the period considered.
Figure 3 depicts the variation of PDOP values with number
of satellites under simulated satellite outage.

First we evaluate the empirical instantaneous ambiguity

success fraction (relative frequency), which is defined as

success fraction =
number of correctly fixed epochs

total number of epochs
(27)

where the true ambiguities are computed using known an-
tenna coordinates in WGS84 as the antennas used in the
real data campaign are part of Curtin’s permanent stations.
However, only length information is used for C-LAMBDA
processing. Tables II, III, and IV report the LAMBDA and
C-LAMBDA ambiguity success fractions for single-, dual-
, and triple-frequency processing, respectively. The benefits
of using C-LAMBDA are highlighted using bold text. Using
multi-frequency processing, the C-LAMBDA method yields
instantaneous attitude determination with as few as six satel-
lites from GPS, Galileo and/or COMPASS constellations.

Next we evaluate ambiguity resolved angular accuracies
(standard deviation). Due to baseline length and relatively poor
precision of the second and third frequency observables (Table
I), improvement of angular accuracies using multi-frequency
precessing is not significant. Hence, only the angular standard
deviations for single-frequency processing are given in Figures
4 and 5. The formal standard deviations (in dotted lines)
are well in line with the empirical standard deviations (in
continuous lines) confirming the assumed stochastic model
parameters in Table I. A slight degradation of the angular
accuracy with the number of satellites can be observed.

IV. CONCLUSIONS

In this contribution we studied the use of the com-
bined GPS-Galileo-COMPASS constellation for C-LAMBDA
attitude determination. In comparing the performances of
LAMBDA and C-LAMBDA, we also studied the impact of
using the known baseline length on ambiguity resolution.
We demonstrated improved availability and angular accuracy
due to use of triple system (GPS+Galileo+COMPASS). Using
simulated satellite outages, we showed that instantaneous
multi-frequency ambiguity resolution using the C-LAMBDA
method is possible with as few as six satellites from GPS,
Galileo, and/or COMPASS constellations.
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Fig. 4. Heading standard deviations (based on correctly fixed epochs) for
simulated satellite outage: —— empirical and ⋅ ⋅ ⋅ ⋅ formal
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Fig. 5. Elevation standard deviations (based on correctly fixed epochs) for
simulated satellite outage: —— empirical and ⋅ ⋅ ⋅ ⋅ formal
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