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SUMMARY 

Agent-based dynamic risk modelling supports the design of future air traffic 

operations by risk analysis methods that account for the performance variability 

of the interacting operators and systems, and the resulting emergence of safety 

occurrences. The paper shows the application of this modelling approach in a 

risk assessment cycle of a future A-SMGCS level 3 supported taxiing into position 

and hold operation. Accident risk results have been obtained by Monte Carlo 

simulations of a multi-agent dynamic risk model. The uncertainty in the risk has 

been evaluated using sensitivity analysis and feedback of operational experts. 
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1 INTRODUCTION 

To improve future air traffic management (ATM) for accommodating expected 

increases in air transport, research and development programmes as SESAR and 

NextGen focus on development and deployment of next generation ATM in 

Europe and USA. For instance, the European ATM Master Plan aims to 

accommodate a 73% increase in flights by 2020 (w.r.t. 2005) and a further 

capacity increase beyond [1]. Such capacity increases should be attained while 

targets for other key performance indicators are respected. In particular, for 

safety it is demanded [1] that “the total numbers of ATM induced accidents and 

serious or risk bearing incidents will not increase despite traffic growth”. As a 

way towards increasing the ATM capacity, the RESET project [2] of the European 

Commission 6th Framework Programme aims to identify safe reductions in 

separation minima. In the RESET project several potential separation standard 

modifications have been suggested, including new procedures and systems for a 

taxi into position and hold (TIPH) operation. The phraseology standard of the 

International Civil Aviation Organization (ICAO) for this operation is “line up and 

wait”.   

 

The safety of current as well as of future air traffic operations depends on 

complex and distributed interactions between human operators and technical 

systems, where the interactions are knowledge intensive and highly regulated by 

procedures. Following a long tradition in safety assessment of technical systems, 

air traffic operations are often assessed on the basis of fault and event trees. 

Fault and event trees are pictorial representations of Boolean logic relations 

between success and failure types of events. Event trees use forward logic, 

reasoning from an initiating event to its possible consequences; fault trees use 

backward logic, reasoning from a top event to its contributing causes. Here, risk 

quantification is based on (conditional) event probabilities. Recent views on 

accident causation indicate that fault and event trees may not be adequate to 

represent the complexity of modern socio-technical systems [3]-[5]. Key 

determinants of this complexity include the number and variety of organizational 

entities (human, groups, technical systems), the number and types of 

interdependencies between organizational entities, the degree of distribution of 

the entities (single/multiple locations), the types of dynamic performance of the 

entities (static/slow/fast), and the number and types of hazards in the 

organization. Limitations of fault and event trees include the difficultness to 
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represent the large number of interdependencies between organizational entities 

and the dynamics of these interdependencies.   

 

As a way forward, it was argued that for managing safety risk and resilience in 

complex socio-technical organizations, there is a need for analysis methods that 

account for the performance variability of the interacting humans and systems 

and the resulting emergence of safety occurrences [3]-[5]. Systemic accident 

modelling methods such as Functional Resonance Accident Model (FRAM) [5], 

Systems-Theoretic Accident Model and Processes (STAMP) [4] and Traffic 

Organization and Perturbation AnalyZer (TOPAZ) [6] have been developed in 

support of this need. The latter approach has been developed uniquely for the 

assessment of air traffic safety and it includes agent-based dynamic risk 

modelling, Monte Carlo simulation and uncertainty evaluation for assessment of 

risk probability levels [6]-[9]. 

 

It is the aim of this paper to highlight the TOPAZ steps in the risk assessment of 

the TIPH operation considered in the RESET project and to provide preliminary 

risk assessment results. The paper presents the model development for a 

particular TIPH scenario, the attained collision risk results and the parameter 

uncertainty in these results. Section II introduces the risk assessment cycle 

applied for the TIPH operation and summarizes earlier obtained results for its 

first steps. Section III describes the development of the dynamic risk model 

(DRM) of a TIPH scenario. Section IV provides a detailed account of risk point 

estimates arrived at by Monte Carlo simulations of the DRM. Section V gives an 

account of the methods and results for evaluation of the uncertainty in the risk 

results. Section VI provides results on the tolerability of the risk levels, the main 

safety bottlenecks and measures that have been identified in order to reduce the 

risk. Section VII discusses the results of this research. 

 

Earlier exposure of the research in this paper was achieved at conferences [10], 

[11]. 
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2 RISK ASSESSMENT CYCLE 

Figure 1 shows an overview of the steps in the safety risk assessment cycle [9]. In 

Step 0, the objective of the assessment is determined, as well as the safety 

context, the scope and the level of detail of the assessment. Step 1 serves to 

obtain a complete overview of the operation. Next, hazards associated with the 

operation are identified (Step 2), and aggregated into safety relevant scenarios 

(Step 3). Using severity and frequency assessments (Steps 4 and 5), the safety 

risk associated with each safety relevant scenario is classified (Step 6). For each 

safety relevant scenario with a (possibly) unacceptable safety risk, the main 

sources contributing to the lack of safety (safety bottlenecks) are identified (Step 

7). The main results of the risk assessment cycle are the assessed risk levels and 

the identified safety bottlenecks. These results support decision making about 

the acceptability of the operation and identification of mitigating measures or 

improvements in the operation design. If the design is changed, a new safety risk 

assessment cycle of the operation should be performed in order to investigate 

how much the risk posed by previous safety issues has been decreased, but also 

to assess any new safety issues that may have been introduced by the intended 

enhancements themselves.  

 

Decision 
making

Determine 
operation1

Assess risk 
tolerability6

Identify 
severities4

Identify safety 
bottlenecks7

Assess 
frequency5

Construct 
scenarios3Identify

hazards2

Iterate

(option)

Identify 
objective0

Operational
development

 

Figure 1: Steps in the safety risk assessment cycle 

 

In the safety assessment of the RESET TIPH operation, Steps 0 to 4 served as a 

starting point for the development of a DRM. Key results of these steps are 

highlighted next, their details are presented in Ref. [12]. 
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Step 0: Identify objective 

In Step 0 safety criteria for the TIPH operation were derived. The approach 

followed was based on worldwide accident data for the ATC sub-products 

landing, line-up and take off [13]. The acquired target level of safety includes a 

risk reduction ambition factor of two, leading to a maximum accident risk of 

3.7E-9 per flight for the TIPH operation. 

 

Step 1: Determine operation 

In Step 1 a description of the operational concept was obtained. This 

consolidated description serves as a starting point of the safety assessment.  

The TIPH operation aims at placing an aircraft on the mixed mode runway, ready 

for immediate departure as soon as no other restrictions apply and the departure 

clearance can be issued by the air traffic controller. An aircraft that has been 

cleared to taxi into position and hold can enter the runway after the aircraft 

currently using the runway (either landing or taking-off) has passed the waiting 

aircraft’s position. Thus, the time between issuance of the departure clearance 

and actual start of the take-off roll can be reduced as the line-up is conducted 

while another aircraft is completing its landing or take-off. The TIPH procedure is 

applied during all visibility conditions (visibility condition 1 to 4, Ref. [14]). 

During visibility conditions 2, 3 and 4 A-SMGCS level 3 equipment is required. In 

this case, the A-SMGCS equipment includes automatic switching off the stopbar 

when the aircraft currently using the runway has passed the waiting aircraft, 

automatic detection of runway incursions using ATC surveillance data, uplink of 

ATC surveillance data (including runway incursion alerts) by traffic information 

service-broadcast (TIS-B), and presentation of this surveillance data on the 

cockpit display of traffic information (CDTI). 

 

Step 2: Identify hazards 

In Step 2 hazards were identified using hazard databases and hazard 

brainstorming sessions with pilots and controllers. Some additional hazards were 

identified during the scenario construction of Step 3. In total 153 hazards were 

identified [12], including e.g. ‘wrong red stopbar is switched off’, ‘wrong aircraft 

identified’, ‘R/T frequency congestion’, ‘pilot validates without checking’, ‘pilot 

unfamiliar with airport’, etc. 

 

Step 3: Construct scenarios 

In Step 3 safety relevant scenarios were constructed using the hazards identified 

in Step 2. These scenarios represent relations between events/conditions that 

may lead to potentially hazardous air traffic situations in the TIPH operation and 
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events/conditions that may hamper resolution of these air traffic situations. Eight 

scenarios were identified [12], including conflict scenario 1 (CS-1) that describes 

the conflict between an aircraft landing and an aircraft lining up while it should 

not (see Figure 2). The other scenarios describe various conflict conditions 

between aircraft taxiing, landing, having landed and taking off.  

     

Step 4: Identify severities 

In step 4 all the safety relevant scenarios for TIPH were assessed in terms of 

severity. It was concluded that all eight scenarios can potentially result in an 

accident. It was argued [12] that CS-1 represents one of the more risky scenarios 

of the TIPH operation and that its risk budget should be 1.1E-9 accidents per 

flight, which is about 30% of the total target level of safety of the TIPH operation. 

 

 

 

Figure 2: Schematic representation of CS-1, which considers the conflict between an 
aircraft landing with an aircraft lining up while it should not. 

 

 



  

 

 

 

6 
 

NLR-TP-2013-489 
October 2013   

 

3 DYNAMIC RISK MODELLING OF TIPH 

SCENARIO 

3.1 AGENT-BASED DYNAMIC RISK MODEL 

Building forward on the results of Steps 1 to 4, the development of a dynamic 

risk model (DRM) was focused on the conflict scenario involving a landing aircraft 

and a taxiing aircraft, which is lining up on the runway while it should not (Figure 

2). The development of a dynamic risk model of an air traffic scenario is based 

on a mathematical modelling approach, which uniquely defines the stochastic 

dynamics of the related agents (human operators and technical systems). This 

approach uses a stochastic dynamic extension of the Petri net formalism to 

develop an hierarchically structured representation of the agents in the air traffic 

scenario [15].  

 

Figure 3. Agents in the DRM of the TIPH operation. 

 

For CS-1 of the TIPH operation, the dynamic risk model includes the agents 

shown in Figure 3: the landing aircraft, the taxiing aircraft, the pilots of the 

landing aircraft, the pilots of the taxiing aircraft, the avionics of the landing 

aircraft, the avionics of the taxiing aircraft, the ATC system and the airport and 
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environment. For all these agents, one or more Local Petri Nets (LPNs) are 

defined, which describe the agents’ performance and interactions. A high-level 

description of these LPNs is presented next per agent; more details are reported 

in Ref. [16].     

 

Landing Aircraft 

The performance of the agent Landing Aircraft is modelled by two LPNs: 

• Characteristics – This describes the aircraft type, its size and its landing 

reference speed. The aircraft type may be a medium jet or a large jet. The 

landing reference speed is chosen from a probability distribution that 

accounts for weight variances. 

• Evolution – This describes the evolution of the aircraft during final approach, 

landing, taxiing on the runway and missed approach. The aircraft descends 

along the glide scope from the final approach fix to the runway threshold 

with lateral and vertical deviations chosen from the ICAO Collision Risk Model 

[17] (CRM). The aircraft flies with a constant calibrated air speed from the 

final approach fix up to the outer marker, it decelerates to its final approach 

speed between the outer marker and the deceleration point, and it 

progresses with a constant calibrated air speed to the runway threshold; the 

achieved ground speed depends on the wind. The aircraft may initiate a 

missed approach. The nominal missed approach path is aligned with the 

runway, but the achieved missed approach path includes lateral deviations in 

line with the ICAO CRM. The vertical missed approach path includes a speed-

dependent initial height loss and a constant rate of climb thereafter. At the 

runway threshold, when the aircraft commences the landing, it is always at 

the nominal height of the instrument landing system and during the landing 

it has no lateral deviations with respect to the runway centreline. During the 

transition phase the aircraft descends with constant speed along a circle 

segment until touchdown. After touchdown the aircraft decelerates to taxi 

speed and then it progresses with constant speed on the runway. The 

evolution of the landing aircraft (and thereby of the conflict scenario) is 

ended when it has passed the position of the taxiing aircraft. 

 

Taxiing Aircraft 

The performance of the agent Taxiing Aircraft is modelled by two LPNs: 

• Characteristics – This describes the aircraft type and its size. The aircraft type 

may be a medium jet or a large jet. 

• Evolution – This describes the evolution of the aircraft during the taxi into 

position and hold operation as well as during manoeuvres to avoid a 

collision. At the start of the conflict scenario, the aircraft is located in front of 
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the stopbar, where it may be holding or have a line-up speed. The time at 

which the taxiing aircraft initiates to taxi into position is uniformly 

distributed in the time frame during which TIPH is not allowed (i.e. when the 

landing aircraft has passed a minimum distance to the runway threshold until 

the time that the landing aircraft has passed the taxiing aircraft). The aircraft 

taxies along a straight line to the runway centreline, where it decelerates and 

holds. To avoid a collision, the aircraft may brake or it may taxi off the 

runway.  

 

Pilots Landing Aircraft 

The performance of the agent Pilots Landing Aircraft is modelled by two LPNs: 

• Situation Awareness – This describes the situation awareness status and 

updating processes. The pilots have situation awareness components about 

the position of the ownship and of the taxiing aircraft and about the status of 

the runway incursion alert. The situation awareness of the pilots is updated 

by visual monitoring of the environment, by monitoring of the CDTI or by an 

active runway incursion alert. Both visual and CDTI monitoring are done using 

probabilistic time intervals. The pilots can only visually observe the taxiing 

aircraft if it is within a range in accordance with the visibility condition and 

the process includes a visual observation error. 

• Flight Control – This describes the control of the aircraft by the pilots. The 

control may be for normal final approach and landing, as described for the 

agent Landing Aircraft, or it may be for initiation of a missed approach. The 

pilots initiate a missed approach if they are aware of a runway incursion alert, 

or if they are aware that the taxiing aircraft is within a critical distance to the 

runway centreline and the own aircraft is within a critical distance to the 

runway threshold.     

 

Pilots Taxiing Aircraft 

The performance of the agent Pilots Taxiing Aircraft is modelled by two LPNs: 

• Situation Awareness – This describes the situation awareness status and 

updating processes. The pilots of the taxiing aircraft have situation 

awareness components about the position of the ownship and of the landing 

aircraft, about the status of the runway incursion alert and about their intent 

to hold or line-up. The situation awareness of the pilots is updated by visual 

monitoring of the environment, by monitoring of the CDTI or by an active 

runway incursion alert. Both visual and CDTI monitoring are done using 

probabilistic time intervals. The pilots can only visually observe the landing 

aircraft if it is within a range in accordance with the visibility condition and 

the process includes a visual observation error. If the stopbar on the entry of 
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the taxiing aircraft is off, the pilots instantaneously intend to line-up on the 

runway. Furthermore, the pilots may intend to line-up due to some human 

error (e.g. communication problem, misunderstanding, misinterpretation of 

the stopbar status) irrespective of the status of the stopbar. 

• Flight Control – This describes the control of the aircraft by the pilots. The 

pilots may control a line-up process such as described for the Taxiing Aircraft 

agent; taxi speed, acceleration and deceleration are chosen from probability 

distributions. The pilots recognize a conflict with the landing aircraft if they 

are aware of a runway incursion alert or if they are aware that the landing 

aircraft is within a critical distance to the runway threshold. Given conflict 

awareness, the pilots stop taxiing if they are aware to be not yet within a 

critical distance to the runway centreline or if they are not aware of their own 

position, and they start to taxi off the runway if they are aware to be within a 

critical distance to the runway centreline.  

 

Avionics Landing Aircraft & Avionics Taxiing Aircraft 

The performance of the agents Avionics Landing Aircraft and Avionics Taxiing 

Aircraft are both modelled by three LPNs: 

• TIS-B Local – This describes the local component of the TIS-B communication 

with the aircraft, including the TIS-B receiver. It may be working nominally at 

a constant sampling rate, interruptingly or not.  

• CDTI Availability – This describes the availability of the CDTI (up / down). If it 

is down, the uplinked information as known by the avionics cannot be 

transferred to the pilots.  

• Situation Awareness – This describes the uplinked traffic information as 

known by the avionics. This uplinked information includes the position of the 

other aircraft and the status of the runway incursion alert. 

 

ATC System  

The performance of the agent ATC System is modelled by six LPNs: 

• Surveillance – This describes the radar surveillance of aircraft movements on 

the airport surface and during final approach. The radar surveillance may be 

working nominally, it may have false tracks or it may not be working at all. 

Nominally, the aircraft are regularly tracked, including normal surveillance 

track errors. The false track mode for the landing aircraft represents the 

situation that it is (falsely) positioned past the entry of the taxiing aircraft 

while it is actually in front of it. The false track mode for the taxiing aircraft 

represents the situation that it is (falsely) positioned in front of the stopbar 

while it is actually behind it. 
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• RIA Availability – This describes the availability of the runway incursion 

alerting system (up / down). 

• RIA Mode – This describes the status of the runway incursion alert. A runway 

incursion alert can only become active if the runway incursion alert system is 

available and the surveillance system works nominally. A runway incursion 

alert is specified if the ATC position estimate of the taxiing aircraft is within a 

critical distance to the runway centreline and the ATC position estimate of the 

landing aircraft has passed a critical distance with respect to the runway 

threshold. 

• Stopbar Availability – This describes the availability of the remotely controlled 

stopbar at the entry point of the taxiing aircraft (up / down).  

• Stopbar Mode – This describes the status of the remotely controlled stopbar 

at the entry point of the taxiing aircraft. The stopbar is switched off in the 

case of a technical system failure or if the surveillance system signals that a 

landing aircraft has passed the runway entry, e.g. due to a false track of the 

landing aircraft. 

• TIS-B Global – This describes the global component of the TIS-B 

communication (up-link) with the landing and taxiing aircraft (up / down).  

 

Airport and Environment 

The performance of the agent Airport and Environment is modelled by three 

LPNs: 

• Visibility – This describes the visibility condition during a scenario. Three 

visibility conditions are considered: VC1, VC2 and a combination of VC3 and 

VC4.  The visibility conditions are represented by maximum viewing 

distances in the horizontal plane.    

• Runway – This describes the layout and usage of the runway and its entries. If 

the landing aircraft is at least a minimum distance away from the runway 

threshold, a taxi into position and hold operation is allowed and otherwise it 

is not. The TIPH scenario is considered for an entry taxiway at 500 m from 

the runway threshold. 

• Wind – This describes the wind during the scenario. The wind at reference 

height is chosen stochastically; its height dependence is according to the JAR-

AWO wind shear model 1. 

 

3.2 RISK DECOMPOSITION 

As air traffic is a very safe means of transport, the risk of collision between two 

aircraft is extremely low. The assessment of such low collision risk values 

through straightforward Monte Carlo simulation of a DRM would need extremely 
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lengthy computer simulation periods. Therefore, speed-up of Monte Carlo 

simulations is required, which may be achieved by risk decomposition. This 

consists of decomposing accident risk simulations in a sequence of conditional 

Monte Carlo simulations and combining the results of these conditional 

simulations into the assessed collision risk value. To this end, we use stochastic 

analysis tools to model and analyse the stochastic event sequences (including 

dependent events) and the conditional probabilities of such event sequences in 

stochastic dynamic processes. The risk decomposition for the developed DRM is 

based on the following components. 

• The common (ATC) component of up-link of ATC surveillance data is working 

or is not working, denoted by common
SurvUpl,tκ ∈ {Up, Down}. 

• The ATC Surveillance Tracking system can be functioning nominally, it can 

have a false track for the landing aircraft, it can have a false track for the 

taxiing aircraft, or it can be down, denoted by common
Tracking,tκ ∈ {Nominal, False-L, 

False-T, Down}. 

• The ATC surveillance runway incursion alert system may be working well or 

not, denoted by common
RIAS,tκ ∈ {Up, Down}.  

• The avionics of the landing aircraft supporting up-link and presentation to 

the pilots of ATC surveillance data may be working or not, denoted by 
ac,L
Avionics,tκ ∈{Up, Down}.  

• The avionics of the taxiing aircraft supporting up-link and presentation to the 

pilots of ATC surveillance data may be working or not, denoted by 
ac,T
Avionics,tκ ∈{Up, Down}.  

• The intent of the pilots of the taxiing aircraft may be to hold or to line-up, 

denoted by ac,T
Intent,tκ ∈ {Hold, Line-up}. The latter condition refers to the conflict 

scenario considered in this risk assessment. 

• The visibility may be in either one the three conditions: 1, 2, or 3 and 4 

combined, denoted by common
Visibility,tκ ∈ {VC1, VC2, VC3/4}. 

Combination of all risk decomposition conditions of the conflict scenario leads to 

192 combinations, i.e. 64 combinations per visibility condition. Since the ATC 

surveillance runway incursion alert system does not provide an alert, if the ATC 

surveillance system is down or if it has a false track of the landing or taxiing 

aircraft, there remain 120 combinations of independent risk decomposition 

conditions (40 per visibility condition). The Monte Carlo simulations provide risk 

estimates for all these cases. 
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4 RISK POINT ESTIMATE RESULTS 

Based on the developed DRM and the associated risk decomposition, various 

sessions of Monte Carlo simulations were performed. Per risk decomposition 

condition up to 1 million simulation runs were done or less if sufficient collisions 

had been counted. Overall results for the risk contributions of the considered 

visibility conditions to the total risk are shown in Table 1 below. It follows from 

Table 1 that the conditional collision risk given a particular visibility condition 

increases with about a factor three for the poorer visibility in VC2 with respect to 

VC1 as well as for VC3/4 with respect to VC2. Accounting for the assumed 

probabilities of the visibility conditions it reads in Table 1 that the largest 

contribution to the total risk stems from VC1 and the contributions from VC2 

and VC3/4 are similar. 

 

Table 1: Risk point estimates for the considered visibility conditions. 

Visibility 

condition 

Probability 

of VC 

Risk point estimate 

given VC 
Contribution to total risk 

VC1 0.95 1.46E-8 1.39E-8 81% 

VC2 0.04 4.63E-8 1.85E-9 11% 

VC3/4 0.01 1.32E-7 1.32E-9 8% 

Total 1 1.71E-8 1.71E-8 100% 

 

In addition to the visibility conditions, the risk decomposition is based on 

conditions for the ATC component of the data uplink, the ATC surveillance 

system, the ATC runway incursion alert system, the avionics of either aircraft and 

the intent of the pilots of the taxiing aircraft. Table 2 to Table 5 provide results 

for all relevant combinations of these conditions, aggregated over the visibility 

conditions. Table 2 shows the probabilities of the combinations of conditions for 

the conflict scenario, i.e. all the cases when the pilots of the taxiing aircraft have 

the intent situation awareness to line-up. Table 3 shows the conditional collision 

risks given these cases. Table 4 shows the contributions of these cases to the 

collision risk (i.e. the multiplication of the figures in Table 2 and Table 3). Table 

5 shows the relative contributions of these cases to the total collision risk. The 

highlights of the results in these tables include the following: 

• The sum of the probabilities in Table 2 is 2.71E-5, implying that according to 

the model overall once in every 37,000 cases that an aircraft is landing and 



  

 

 

 

  
NLR-TP-2013-489 

October 2013 13 
 

 

another aircraft is ready to taxi into position and hold, the TIPH is performed 

while it should not, i.e. in front of the landing aircraft.  

• It follows from Table 2 that there are two event combinations that are much 

more likely than all other. Elements R1C1 contributes for 62% of the 

probability of the conflict scenario and it represents the situation that the 

pilots of the taxiing aircraft think that they may line-up as a result of some 

human error (e.g. communication problem, misunderstanding, 

misinterpretation of stopbar status) or a stopbar failure. Element R5C1 

contributes for 36% of the probability of the conflict scenario and it 

represents the situation that the pilots of the taxiing aircraft think that they 

may line-up as result of a switched off stopbar due to a false track of the 

landing aircraft.    

• It follows from Table 4 and Table 5 that by far the largest risk contribution 

stems from the condition that there is a false track of the landing aircraft that 

is positioned past the line-up position (rows R5-R6). The sum of the 

contributions for this condition is 1.69E-8, which is about 99% of the total 

risk. As a result of this particular false track, the stopbar is switched off and 

it thereby initiates the conflict scenario. Moreover, this condition complicates 

the timely recognition of the conflict, since it implies that the runway 

incursion alert does not become active and the landing aircraft is not shown 

properly on the CDTI of the taxiing aircraft.  

• It follows from element R1C1 in Table 4 and Table 5 that the risk for the case 

that all technical systems supporting the operation (avionics, TIS-B, radar, 

RIAS) are working well, contributes only for a very small extent of 5.23E-11 

(0.31%) to the total risk. Table 3 shows that the conditional collision risk for 

this case is such that about one in every 300,000 conflicts would result in a 

collision (aggregated over the visibility conditions). 

• It follows from Table 3 that the functioning of the ATC runway incursion alert 

system has a very large effect on the collision risk. Whereas the conditional 

risk is about 3E-6 if it is functioning well and the alert information can be 

properly uplinked to the aircraft (element R1C1), the conditional risk is in the 

order 1E-3 to 1E-2 if the runway incursion alerts system is not working 

properly (rows R2, R4-R10). 

• It follows from comparison of the conditional risks for the situations that all 

technical systems are working well except for the local component of the 

uplink to either of the aircraft (elements R1C2 and R1C3 in Table 3), that 

failure of the uplink to the taxiing aircraft leads to considerably larger risk 

then failure of the uplink to the landing aircraft. Additional results reveal that 

this difference between both aircraft is especially prominent in good visibility 
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conditions. An explanation of this difference is the more stringent visual 

monitoring performance of the pilots of the landing aircraft. 

• It follows from the similar conditional risks in row R2 of Table 3 that in the 

situation that the ATC runway incursion alert system is not working it does 

not matter whether the up-linking of ATC surveillance data is working or not. 

Since both alerts and position data are normally uplinked, it implies that the 

up-linking of the position data has almost no effect on the collision risk.  

• It follows from comparison of the conditional collision risks in rows R5 & R6 

with those in rows R7 & R8 of Table 3 that given a false track of the landing 

aircraft or of the taxiing aircraft, the conditional risks are similar. Thus, the 

larger contribution of the false track of the landing aircraft observed in Table 

5 is not a result of a larger conditional risk, but due to the fact that it is a 

cause of the conflict scenario itself. 

• It follows from comparison of the conditional collision risks in rows R5 & R7 

with rows R2, R4, R6, R8, R9 & R10 of Table 3 that situations that cause the 

runway incursion alerting to be non-functioning due to a false track lead to 

lower conditional collision risks than non-functioning alerting due to failure 

of the surveillance system or runway incursion alert system. An explanation is 

that the durations of false track situations are shorter than the durations of 

those system failures. 

• It follows from additional results that the conditional collision risks given that 

one or more technical systems fail during the conflict scenario, may be very 

high, especially in poorer visibility conditions. The conditional collision risk 

may be up to 3E-2 in VC1, up to 2E-1 in VC2 and up to 8E-1 in VC3/4. These 

results indicate that especially in VC2 and VC3/4 the avoidance of a collision 

when an aircraft lines up while it should not is very dependent on the well 

functioning of the technical systems (avionics, TIS-B, radar, RIAS); the pilots 

can observe the conflict visually only at a late stage (often too late).      

 



  

 

 

 

  
NLR-TP-2013-489 

October 2013 15 
 

 

Table 2: Probabilities of the combinations of the risk decomposition conditions leading to 
the conflict scenario (i.e. pilots of the taxiing aircraft intend to line-up).  

Probabilities of the 
combinations of conditions 

ac,T
Intentκ  Line-Up 
ac,T
Avionicsκ  Up Down 
ac,L
Avionicsκ  Up Down Up Down 

common
Trackingκ  

common
SurvUplκ  

common
RIASκ   C1 C2 C3 C4 

Nom 
Up 

Up R1 1.67E-5 1.72E-7 1.72E-7 1.77E-9 
Down R2 1.67E-9 1.72E-11 1.72E-11 1.77E-13 

Down 
Up R3 2.33E-9 2.40E-11 2.40E-11 2.48E-13 

Down R4 2.33E-13 2.40E-15 2.40E-15 2.48E-17 

False-L 
Up Down R5 9.80E-6 1.01E-7 1.01E-7 1.04E-9 

Down Down R6 1.37E-9 1.41E-11 1.41E-11 1.46E-13 

False-T 
Up Down R7 1.67E-10 1.72E-12 1.72E-12 1.77E-14 

Down Down R8 2.33E-14 2.40E-16 2.40E-16 2.48E-18 

Down 
Up Down R9 1.67E-10 1.72E-12 1.72E-12 1.77E-14 

Down Down R10 2.33E-14 2.40E-16 2.40E-16 2.48E-18 

Table 3: Conditional collision risks given the cases aggregated over all visibility 
conditions. 

Conditional collision risks 
given the cases 

ac,T
Intentκ  Line-Up 
ac,T
Avionicsκ  Up Down 
ac,L
Avionicsκ  Up Down Up Down 

common
Trackingκ  

common
SurvUplκ  common

RIASκ   C1 C2 C3 C4 

Nom 
Up 

Up R1 3.13E-06 3.96E-06 6.44E-05 1.16E-04 
Down R2 2.16E-02 2.13E-02 2.21E-02 2.21E-02 

Down 
Up R3 2.45E-02 2.37E-02 2.48E-02 2.57E-02 

Down R4 2.59E-02 2.54E-02 2.60E-02 2.49E-02 

False-L Up Down R5 1.68E-03 1.85E-03 1.77E-03 1.75E-03 
Down Down R6 2.49E-02 2.51E-02 2.65E-02 2.58E-02 

False-T Up Down R7 1.69E-03 1.65E-03 1.84E-03 1.76E-03 
Down Down R8 2.47E-02 2.45E-02 2.52E-02 2.53E-02 

Down Up Down R9 2.42E-02 2.38E-02 2.38E-02 2.30E-02 
Down Down R10 2.51E-02 2.50E-02 2.49E-02 2.49E-02 
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Table 4: Risk contributions of the cases aggregated over all visibility conditions. 

Risk contributions 
of the cases 

ac,T
Intentκ  Line-Up 
ac,T
Avionicsκ  Up Down 
ac,L
Avionicsκ  Up Down Up Down 

common
Trackingκ  

common
SurvUplκ  

common
RIASκ   C1 C2 C3 C4 

Nom 
Up 

Up R1 5.23E-11 6.80E-13 1.11E-11 2.06E-13 
Down R2 3.61E-11 3.67E-13 3.80E-13 3.91E-15 

Down 
Up R3 5.72E-11 5.70E-13 5.96E-13 6.38E-15 

Down R4 6.04E-15 6.10E-17 6.25E-17 6.17E-19 

False-L 
Up Down R5 1.65E-08 1.87E-10 1.78E-10 1.81E-12 

Down Down R6 3.41E-11 3.53E-13 3.74E-13 3.77E-15 

False-T 
Up Down R7 2.82E-13 2.83E-15 3.17E-15 3.11E-17 

Down Down R8 5.77E-16 5.89E-18 6.04E-18 6.27E-20 

Down 
Up Down R9 4.04E-12 4.09E-14 4.09E-14 4.07E-16 

Down Down R10 5.86E-16 6.00E-18 5.98E-18 6.18E-20 

Table 5: Relative risk contributions of the cases aggregated over all visibility conditions. 

Relative risk contributions 
of the cases 

ac,T
Intentκ  Line-Up 
ac,T
Avionicsκ  Up Down 
ac,L
Avionicsκ  Up Down Up Down 

common
Trackingκ  

common
SurvUplκ  common

RIASκ   C1 C2 C3 C4 

Nom 
Up 

Up R1 0.31% 0.00% 0.06% 0.00% 
Down R2 0.21% 0.00% 0.00% 0.00% 

Down 
Up R3 0.33% 0.00% 0.00% 0.00% 

Down R4 0.00% 0.00% 0.00% 0.00% 

False-L 
Up Down R5 96.68% 1.10% 1.04% 0.01% 

Down Down R6 0.20% 0.00% 0.00% 0.00% 

False-T 
Up Down R7 0.00% 0.00% 0.00% 0.00% 

Down Down R8 0.00% 0.00% 0.00% 0.00% 

Down 
Up Down R9 0.02% 0.00% 0.00% 0.00% 

Down Down R10 0.00% 0.00% 0.00% 0.00% 
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Above results provide insight in the contributions of the conditions used in the 

risk decomposition. Additional insights can be obtained by assessing the risk for 

variations in values of parameters of the DRM. Figure 4 shows the collision risk 

graphs for the various visibility conditions in consideration of variations in six 

parameter values. These parameters reflect the performance of technical systems 

and human operators, as well as the geometry of the runway strip.  

• Figure 4a shows the collision risks as function of the probability of a false 

track of the landing aircraft. It follows that the collision risks are about 

linearly related to the false track probability, since in this parameter range 

the collision risks are almost completely determined by this false track 

condition.  

• Figure 4b shows the collision risks as function of the mean duration of the 

false track of a landing aircraft. It follows that with respect to the nominal 

value of 10 seconds, a decrease has a stronger effect on the risk than an 

increase.  

• Figure 4c shows the collision risks as function of the mean time between 

visual monitoring by the pilots of the taxiing aircraft. The three parameter 

values may be considered as the following cases: 1 second indicates 

monitoring frequently; 17 seconds indicates monitoring once after start of 

line-up; 300 seconds indicates no monitoring after start of line-up. It follows 

from Figure 4c that the total risk decreases by about a factor 10 if monitoring 

would be done frequently rather than once after start of the line-up. The risk 

estimates depend strongly on the visibility condition. In VC1 the risk 

becomes very low, whereas in VC2 and VC3/4 the risk is not very sensitive 

for the monitoring performance. 

• Figure 4d shows the collision risks as function of the distance of the taxiing 

aircraft to the runway centre-line where it is recognized as conflicting by the 

pilots of the landing aircraft. It follows that the collision risk estimates are 

only a bit higher if the decision distance would be 25 m rather than the 

nominal value of 62 m. However, if the conflict would already be recognized 

if the taxiing aircraft would just have passed the stopbar (at 153 m) than the 

total risk would decrease largely. For this large distance, reduced visibility 

(VC2 and VC3/4) has a large effect on the total risk. 

• Figure 4e shows the collision risks as function of the distance of the stopbar 

to the runway centre-line. It follows that the risk increases strongly if the 

stopbar and runway-holding position are closer to the runway. According to 

ICAO Annex 14 the minimum distance of the runway holding point with 

respect to the runway centre-line is 90 m for CAT I, II or III precision 

approaches [19]. For CAT II en III precision approaches the required distance 

may be larger, but no standard distances are specified in ICAO Annex 14, 
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rather they have to be determined based on the size of the ILS critical and 

sensitive areas. A typical distance is CAT II/III runway holding position is just 

outside the runway strip, which has a width of 150 m at both sides of the 

runway centre-line. It follows from Figure 4e that if the stopbar is at the 

minimum distance of 90 m rather than at the typical distance just outside the 

runway strip, then the risk estimate is about a factor 10 higher for all 

visibility conditions. 

• Figure 4f shows the collision risks as function of the distance of the runway 

entry with respect to the runway threshold. It follows that the risk would be 

less if the runway entry would be directly at the runway threshold rather than 

at a more remote position. An explanation is that in the model part of the 

landing aircraft have sufficient height to fly over the taxiing aircraft at the 

threshold position. 
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Figure 4: Collision risk graphs for variations of parameters as explained in the main text. 
Each graph shows the total risk and the conditional risks given the visibility conditions. 
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5 BIAS AND UNCERTAINTY ASSESSMENT 

5.1 METHODS 

By definition, any model differs from reality. As an integrated part of TOPAZ, a 

bias and uncertainty assessment method has been developed [8],[18]. This 

method supports identification of differences between the DRM and reality, and 

subsequent evaluation of the bias and uncertainty in the risk outcomes due to 

these differences. It consists of the following steps: 

1. Identify all potential differences between the simulation model and reality. 

During the development of a dynamic risk model assumptions are adopted 

and explicitly written down. The parameter assumptions regard the values 

adopted for all parameters of the DRM, e.g. values of event probabilities, 

moments of probability distributions, geometry data, etc. The non-parameter 

assumptions regard all other assumptions, e.g. the types of situation 

awareness of an agent, the decision strategies of agents, the types of 

probability distributions, the representation of the dynamic performance of 

agents, the representation of all hazards in the model, etc. All assumptions 

are potential differences between the DRM and reality. 

2. Assess the size/probability of each difference. For each difference it is 

assessed how large it is or how often it may happen. For each parameter 

value a 95% uncertainty interval is assessed by the median and the size of the 

interval; this median may be biased with respect to the parameter value. In 

support of this assessment, the following ordered categories of the sizes of 

bias factors and uncertainty intervals are used: Neutral, Negligible, Small, 

Minor, Significant, Considerable, Major. These categories reflect differences 

of less than about 10% to more than about a factor 10. For each non-

parameter assumption, the probability is assessed that the assumption 

reflects a difference with respect to reality. 

3. Assess the risk sensitivity for changes in parameter values. The normalized 

sensitivities of the risk outcomes of the DRM for changes in the parameter 

values are assessed. This assessment may be done by a DRM expert using 

knowledge of the model and qualitative sensitivity categories (Negligible, 

Small, Minor, etc.). For critical parameters it is done by additional Monte 

Carlo simulations in which the effects of parameter variations are explicitly 

evaluated. 

4. Assess the effect of each difference on the risk outcome. The uncertainty 

interval of each parameter value is combined with the risk sensitivity to find 
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the uncertainty interval in the risk for the parameter value considered. The 

effect on the risk uncertainty interval can only be large if the parameter 

uncertainty interval and the risk sensitivity are sufficiently large. For each 

non-parameter assumption, a conditional risk bias given that it represents a 

difference, is assessed. The probability that the difference exists and the 

conditional risk bias are combined to a risk bias for each difference.  

5. Determine the joint effects of all differences. The assessment results for all 

individual differences are combined via bias and uncertainty assessment 

methods [8],[18] to best estimates of the risk and its uncertainty interval. 

 

Details of above steps in the preliminary risk assessment of the TIPH scenario are 

as follows.  

• For project-related reasons, it was decided to restrict the bias and uncertainty 

assessment to the parameter value assumptions. This implies that a 

systematic assessment of the non-parameter assumptions is out of the scope 

of this study and that the risk results are to be considered preliminary. 

• A first assessment phase was performed by the safety modelling experts. 

Here the uncertainty interval and risk sensitivity of all 168 parameters were 

assessed, leading to an assessment of their effect on the risk for each 

parameter. This assessment was done conservatively, in order to not falsely 

judge the risk uncertainty as being too low. The result of this phase is a list 

of 118 parameters with a Neutral or Negligible risk effect and a list of 50 

parameters with a (potentially) more than Negligible effect on the risk. 

• For all parameters that had been assessed in the first phase to have a more 

than Negligible risk effect, a second assessment of the parameter uncertainty 

interval was performed. For most parameters, this was done based on 

structured feedback of operational experts, for some parameters searches in 

the literature and safety databases were performed. The feedback of 

operational experts was obtained via questionnaires and interviews. The 

questions asked relate to the performance of pilots, controllers and systems 

in normal circumstances as well as in the specific context of the conflict 

scenario. In this study we obtained feedback from two airline pilots, two 

active air traffic controllers and one former air traffic controller. 

• For all parameters that had been assessed in the first phase to have a more 

than Negligible risk effect, dedicated Monte Carlo simulations were 

performed to assess the risk sensitivity more precisely. 
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5.2 RESULTS 

In the bias and uncertainty assessment, we assessed the uncertainty interval of 

each parameter value, the risk sensitivity of each parameter value and the 

combined effect on the risk uncertainty level. The 95% uncertainty interval of the 

total risk that follows from this assessment is [2.16E-10, 1.35E-6], i.e. the total 

risk resides with 95% probability in an interval from a factor 79 below to a factor 

79 above the point estimate of the risk. 

 

Table 6 shows the parameters with the most important contributions to the risk 

uncertainty and risk sensitivity. It can be seen in this table that there are four 

parameters with a risk uncertainty contribution being Major or Considerable. The 

uncertainty in these parameters contributes to the risk uncertainty interval being 

a factor 36 above and below the risk point estimate; all other parameters 

contribute only an additional factor 2.2.  

• Both the probability and the mean duration of a false track of the landing 

aircraft have a large risk sensitivity (see Figure 4a,b) and a large effect on the 

risk uncertainty. The large risk sensitivity is due to a combination of 

contributions: (1) the considered type of false track (past the waiting aircraft) 

leads to dimming of the stopbar, (2) it implies that no runway incursion alert 

is specified to either of the aircraft and (3) it implies that the landing aircraft 

is falsely positioned on the CDTI of the taxiing aircraft. We obtained feedback 

from a controller that false tracks are quite common and occur almost daily 

in some form; he did however not know cases of the particular false track 

situation considered. We did not have access to radar track data or failure 

reports. The large uncertainty about these false tracks is reflected in the 

assessment. 

• The visual monitoring performance of the pilots of the taxiing aircraft has a 

large effect on the uncertainty in the risk level. The two pilots that we 

interviewed had quite contrasting opinions: one of the pilots argued that 

during lining-up the pilots very regularly monitor the traffic situation, 

whereas the other pilot argued that given that the pilots think that lining-up 

is allowed and safe (i.e. an aircraft is approaching at sufficient distance) then 

the pilots would no longer look to the movement of the approaching aircraft. 

We consider both approaches to be plausible and therefore regard the 

monitoring performance to be very uncertain. As follows from Figure 4c, the 

risk sensitivity for the monitoring performance is quite large, especially in 

visibility condition 1, where the pilots have the possibility to well perceive a 

conflict at an early stage. 
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• The pilots of the landing aircraft need to decide when they regard the taxiing 

aircraft as so conflicting that they will initiate a missed approach. Both 

interviewed pilots indicated that the taxiing aircraft would certainly be 

recognized as conflicting if its nose would be at the runway edge. They 

differed in opinion about the maximum distance where the conflict situation 

would be recognized: one of the pilots argued that the aircraft would 

certainly not be recognized as conflicting if it would be at more than 50 m 

from the runway edge, while the other pilot argued that it might already be 

recognized as conflicting if it would have passed the position of the remotely 

controlled stopbar (at 153 m from the runway centre-line). As follows from 

Figure 4d the risk is very sensitive for this decision distance, especially in 

visibility condition 1.  

 

Table 6: Parameters with a risk sensitivity or risk uncertainty of Significant or more. 

Parameter Explanation 
Parameter 
uncertainty 

Risk 
sensitivity 

Risk 
uncertainty 

FTL
Surv,ATCp  

Probability of false 

track of landing aircraft 

in ATC surveillance 

system 

Major Significant Major 

FTL,nom
Surv,ATCµ

 

Mean duration of false 

track of landing aircraft 

in ATC surveillance 

system 

Significant Major Major 

Mon,vis
Pl,Tµ

 

Mean time until next 

SA update via visual 

monitoring by the 

pilots of the taxiing 

aircraft 

Major Significant Major 

conflict,T
Pl,Ld

 

Distance of the taxiing 

aircraft to the runway 

centre-line within which 

it is recognized as 

conflicting by the pilots 

of the landing aircraft 

Significant Considerable Considerable 

min,ac-L
TIPHy

 

Minimum distance of 

landing aircraft to 

runway threshold such 

that TIPH may be 

initiated 

Minor Significant Minor 
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Parameter Explanation 
Parameter 
uncertainty 

Risk 
sensitivity 

Risk 
uncertainty 

stop,ac-T
Pl,Td

 

Minimum distance of 

the taxiing aircraft in 

front of the runway 

where the pilots of the 

taxiing aircraft initiate 

stopping 

Minor Significant Minor 

,line-up
Pl,T
vµ

 
Mean taxi speed during 

line-up 
Small Considerable Minor 

ac,T
RIA,ATCd

 

Threshold distance of 

taxiing aircraft w.r.t. 

runway centre-line for 

runway incursion alert 

activation 

Small Significant Small 

hold
AC,Tp

 

Probability that taxiing 

aircraft initiates the 

runway line-up from 

hold 

Negligible Significant Negligible 
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6 RISK TOLERABILITY, SAFETY BOTTLENECKS 

AND MITIGATING MEASURES 

In Step 6 of the safety risk assessment cycle the risk tolerability is assessed by 

comparing the risk results with the risk criteria. Table 7 shows this comparison 

for the preliminary risk results obtained and the adopted target level of safety 

(TLS). It is manifest that the risk point estimates and a large part of the risk 

uncertainty interval are well above the TLS; only the lower bound of the risk 

uncertainty interval of the total risk is a bit below the TLS. Given the preliminary 

nature of the risk assessment results, we assess the risk to be potentially 

unacceptable. 

 

Table 7: Comparison of preliminary risk assessment results with the target level of safety 
for Scenario 1 of the TIPH.  

Risk metric Risk value Factor w.r.t. TLS 

Target level of safety 1.1E-9 1 

Risk point estimate for VC1 1.46E-8 13.3 

Risk point estimate for VC2 4.64E-8 42.2 

Risk point estimate for VC3/4 1.32E-7 120 

Point estimate of total risk 1.71E-8 15.5 

95% Uncertainty interval of total risk [2.16E-10, 1.35E-6] [0.196, 1230] 

 

In Step 7 of the safety risk assessment cycle the main sources contributing to 

unacceptable safety levels are identified; these sources are entitled ‘safety 

bottlenecks’. Since we assessed the risk as potentially unacceptable, we 

identified potential safety bottlenecks. The derivation of the potential safety 

bottlenecks is based on the largest risk contributions of Table 4 and the 

parameters with the risk sensitivity or risk uncertainty being at least 

Considerable in Table 6. The potential safety bottlenecks based on these highest 

ranking risk results are the following ones. 

• False surveillance data of the landing aircraft may cause false automatic 

switching of the stopbar and non-functioning of the runway incursion alert 

system. 

• Pilots may not continue monitoring for potential conflicts after they started 

taxiing into position. 
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• Pilots may decide to initiate a missed approach only if they observe that a 

taxiing aircraft is very close to the runway. 

• The taxi speed during line-up may be too high. 

 

The results of the safety risk assessment cycle, including the accident risk levels, 

the risk sensitivities, the risk tolerability’s and the safety bottlenecks, support 

further development of the TIPH operational concept. As an onset, a brainstorm 

was organized to identify mitigating measures that have the potential to reduce 

the risk levels assessed. The workshop started with a presentation of the main 

safety findings identified and the brainstorm was structured by the four safety 

bottlenecks presented above. The brainstorm participants included pilots, 

controllers, A-SMGCS experts, HF experts and safety experts, and they were 

asked to come up with ideas on potential mitigating measures in a joint session. 

After the brainstorm session, the arguments provided were structured in 

potential risk mitigations. For each of these potential risk mitigations, an initial 

assessment was done, including a discussion of its potential advantages and 

disadvantages [16]. In summary, the following potential risk mitigating measures 

were identified: 

1. The flight crew of the landing aircraft will broadcast by radio “[ID] 

TOUCHDOWN RWY[xx]”, once the aircraft has completed the flare and 

touchdown and the crew has reasonable certainty that it has passed any 

other aircraft on holding points for that runway. 

2. Install one or more devices at the airport of which the position is known and 

that constantly transmit as if they were actual targets. The system will be 

required to continuously check the position of these devices in order to 

detect failures in both the surveillance subsystems and the data processing 

system, and alert the actors. 

3. Manual switch-off of the stopbar lights by ATC. 

4. Change the existing procedure for the taking-off aircraft that starts the TIPH 

procedure, to delay the execution of the departure/take-off checklist until 

lining-up has been completed. Do not execute the checklist while you are 

lining-up, continue to monitor for other traffic instead. Start with the 

checklist only when it is absolutely useless to continue to verify that you are 

free of conflicts. 

5. Require the A-SMGCS level 3 system to: 

• Be able to identify when the holding aircraft has initiated the line-up or 

has surpassed the safe distance to the runway in case the aircraft has 

surpassed the holding point;  

• Automatically transmit clear unambiguous information to the actors (ATC 

and flight crews).  
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6. Introduce additional sensors around runway entry points (pressure, 

volumetric, noise, etc.). 

7. Add additional display/representation of information on cockpit for landing 

aircraft. 

8. Obligate the taking-off aircraft to make a full-stop before being able to 

initiate the TIPH procedure.  

9. The taking-off aircraft will broadcast “[ID/AC] Entering RWY XX” to signal any 

other aircraft, especially landing aircraft, when they are going to start the 

TIPH procedure. 

10. Use independent data for automatic switching of the stopbar lights and the 

surveillance of the traffic. For instance, radar and LMAT data may be used for 

the automatic switching of the stopbar lights, whereas aircraft navigation 

data may be shared between involved aircraft by ADS-B and this shared data 

may be the basis for the on-board generation of a runway incursion alert; this 

alert may also be down-linked to ATC.  
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7 DISCUSSION 

In this paper we presented a risk assessment of a novel air traffic operation 

based on dynamic risk modelling. In contrast with conventional fault and event 

trees-based risk assessment, the applied dynamic risk model explicitly 

represents the stochastic dynamic performance of a variety of interacting agents 

in an air traffic scenario, the variability of the agents’ performance and the 

emergence of accidents in Monte Carlo simulations of the dynamic risk model. 

The stochastic dynamic performance of the agents considers a wide scope of 

aspects, including aircraft flight and taxiing performance, situation awareness 

updating and decision making by pilots, and the performance of A-SMGCS 

systems in nominal and non-nominal conditions. As would also be the case in 

fault/event tree analysis, the dynamic risk model includes a variety of event 

probabilities, for instance for the probability of events such as non-functioning of 

technical systems and pilot errors. In addition to such event probabilities and in 

contrast to the parameters used in fault/event tree analysis, the dynamic risk 

model includes a large number of other parameters related to performance 

aspects such as aircraft dynamics, timing of situation awareness updating, timing 

of communication, accuracy and timing of surveillance systems, decision making 

by pilots and A-SMGCS alert settings. Typically, such parameters can be 

interpreted and reflected on by operational and design experts more easily than 

event probabilities. This was also confirmed in the feedback obtained from pilots 

and controllers that contributed to this safety case. 

 

The risk results presented in this paper are to be regarded as preliminary, since 

the design of the TIPH operation is at an early stage and no assessment of the 

non-parameter assumptions has been performed. For instance, a limitation of the 

developed DRM is that the runway controller has not yet been included. In the 

context of the risk assessment, it implies that the assumption ‘The runway 

controller has no effect on the prevention of an accident in the conflict scenario’ 

would have to be assessed. Here it would have to be assessed how and when the 

controller might recognize and react to the conflict, and in what number of cases 

the controller might warn the pilots of one or both aircraft before the pilots have 

already recognized the conflict themselves independently. Although this 

assumption can be classified as being safety conservative, the risk reduction as 

result of controller performance might well be quite limited. Reasons are that the 

contribution of the controller was found to be very small in good visibility in 

other runway incursion scenarios [20]  and that both the pilots and the controller 
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use the same surveillance and alert data in all visibility conditions, thus limiting 

the potential added contribution of the controller. 

 

The results obtained show that the risk point estimates and a large part of the 

risk uncertainty interval are above the adopted target level of safety for the 

conflict scenario considered in the particular design of the A-SMGCS level 3 

supported taxi into position and hold operation. In addition to the risk 

tolerability results, the assessment provided detailed feedback on the 

contributions of conditions, systems and humans to the accident risk of the 

conflict scenario considered. Key safety insights for the TIPH operation are: 

• By far the largest risk contribution stems from the situation concerning a 

false track of the landing aircraft that is positioned past the line-up position: 

as a result the stopbar is switched off, the runway incursion alert does not 

become active and the landing aircraft is not shown properly on the CDTI of 

the taxiing aircraft. 

• The functioning of the runway incursion alert system in combination with the 

up-linking of the alert data has a very large effect on the accident risk. When 

functioning properly these systems largely reduce the accident risk. Their risk 

reducing effect is larger than was assessed previously for a conflict between 

aircraft taxiing and taking off [20]. 

• The conditional accident risks increase considerably in poorer visibility 

conditions and the dependability on the proper functioning of the technical 

systems is very high in poor visibility. 

 

In this study a total of ten potential measures were identified that aim to mitigate 

the safety bottlenecks and to reduce the accident risk in the conflict scenario. 

These ten potential mitigating measures provide a good opportunity to improve 

the TIPH design. The effectiveness of these mitigating measures may be assessed 

in one or more additional risk assessment cycles until it is decided that the risk 

of the operation is acceptable. In this way, safety targets for future operations 

envisioned in design programmes as SESAR and NextGen can be controlled 

systematically, such that also next generations of passengers can keep having 

safe flights back home.  
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