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Achtergrond
Het hoge trillingsniveau van heli-
kopters heeft een negatieve invloed
op veiligheid en onderhoudskosten.
Bovendien zijn de trillingsniveau’s
nadelig voor de gezondheid van de
bemanning en kunnen ze de effec-
tiviteit van de wapensystemen ver-
slechteren doordat de richtsystemen
te hevig trillen. Naast plotselinge
veranderingen in de stick-posities
zijn er twee vluchtregimes waarbij
het trillingsniveau langdurig boven
het toelaatbaar geachte niveau van
0.05g uitkomt. Het eerste regime
treedt op bij lage snelheden, met
name tijdens de landing. In dit re-
gime komen de bladen in het zog
van voorgaande rotorbladen terecht.
De wisselwerking tussen een blad
en de tipwervel van het voorgaande
blad leidt tot sterke drukwisselingen
op het blad. Het tweede regime is
bij kruisvlucht, waar de resulteren-
de snelheid op het naar voren be-
wegende blad zo groot kan zijn dat
zich snel schokken vormen die even
snel weer verdwijnen. In dit regime

is de gemiddelde kantelhoek van het
blad zo groot dat bij het naar ach-
teren bewegende blad de stroming
sterke loslating vertoont, waardoor
het blad lift verliest. Bij beide re-
gimes planten de sterk wisselende
krachten op de bladen zich voort in
de helikopterconstructie en leiden
daar tot sterke trillingen.

Het bepalen van de trillingsniveau’s
bij helikopters kan bijdragen aan
een reductie van de onderhoudskos-
ten van helikopters door deze kennis
op te nemen in een zogenaamde He-
alth&Usage Monitoring systeem.
Hoe intelligenter een dergelijk sys-
teem, des te minder vaak hoeft een
helikopter voor onderhoud aan de
grond te staan.

Werkzaamheden
Het voorspellen van de trillings-
niveau’s vereist voor de bovenge-
noemde vluchtregimes een gedetail-
leerd modelleergereedschap. Niet
alleen is de rotor-aërodynamica com-
plex, ook moet de bladbeweging
correct voorspeld worden. De blad-
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beweging wordt bepaald door zo-
wel de piloot als door het samenspel
van dynamische en aërodynamische
krachten. Het NLR ontwikkelt een
modelleergereedschap voor het doen
van aëro-elastiche simulaties van
rotorsystemen op basis van niet-
lineaire stromingsvergelijkingen.

Voor simulaties van rotorsystemen
is het van belang dat de discretisa-
tie van de stromingsvergelijkingen
wordt uitgevoerd op bewegende en
adaptieve rekenroosters. Bewegen-
de rekenroosters zijn essentieel om
de bladbeweging te volgen. Adap-
tieve rekenroosters zijn essentieel
omdat de ruimtelijke en temporele
schalen in de stroming lokaal sterk
verschillen.

Het genoemde modelleergereed-
schap is momenteel in staat om niet-
viskeuze stromingen te simuleren.
Dit is afdoende voor een landings-
vlucht omdat niet-viskeuze effecten
de blad-zog-wisselwerking domi-
neren. Tijdens kruisvlucht zijn de
lokale aanvalshoeken dermate groot
dat viskeuze effecten de details van
de stroming domineren. Het nege-
ren van deze effecten leidt tot een

onnauwkeurige voorspelling van de
bladmomenten zodat de beweging
van het blad niet goed voorspeld
wordt.

De aërodynamische module in het
genoemde modelleergereedschap is
uitgebreid met de mogelijkheid om
laminaire viskeuze stromingen te si-
muleren. In deze eerste stap naar
volledige functionaliteit voor turbu-
lente stromingen is met name aan-
dacht besteed aan de discretisatie op
bewegende en adaptieve rekenroos-
ters.

Conclusies
De nieuwe methode is voor het eerst
met succes toegepast op de simula-
tie van de wervel boven een delta-
vleugel en op de simulatie van de
loslating van de stroming rond een
zich snel oprichtend vleugelprofiel.

Aanbevelingen
De rekentijden van de huidige im-
plementatie van de methode zijn te
groot om directe toepassing op he-
likopterstromingen praktisch te ma-
ken. Er wordt daarom aanbevolen
de efficiëntie van de methode te ver-
beteren.
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Summary

Heavy vibratory loading of rotorcraft is relevant for many operational aspects of helicopters, such

as the structural life span of (rotating) components, operational availability, the pilot’s comfort,

and the effectiveness of weapon targeting systems. A precise understanding of the source of these

vibrational loads has important consequences in these application areas. Moreover, in order to

exploit the full potential offered by new vibration reduction technologies, current analysis tools

need to be improved with respect to the level of physical modeling of flow phenomena which

contribute to the vibratory loads. In this paper, a computational fluid dynamics tool for rotorcraft

simulations based on first-principles flow physics is extended to enable the simulation of viscous

flows. Viscous effects play a significant role in the aerodynamics of helicopter rotors in high-speed

flight. The new model is applied to three-dimensional vortex flow and laminar dynamic stall. The

applications clearly demonstrate the capability of the new model to perform on deforming and

adaptive meshes. This capability is essential for rotor simulations to accomodate the blade motions

and to enhance vortex resolution.
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Symbols and abbreviations

a∞ freestream speed of sound

α angle of attack

BVI Blade-Vortex Interaction

c chord

CFD Computational Fluid Dynamics

DG discontinuous Galerkin

MTMG Multitime-Multigrid

ω vorticity

RANS Reynolds-averaged Navier-Stokes

u velocity vector

uj j-th component of a vector

u,j
∂u
∂xj

Û i
j expansion coefficient

for the j-th basis function

and the i-th conservative variable

∇ ∇j = ∂
∂xj

·T transpose of a vector
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1 Introduction

The high vibrational loading of rotorcraft is an important contributor to maintenance issues of ro-

torcraft and affects its operational availabality. A precise understanding of the sources of these vi-

brational loads has important consequences for helicopter design, safety and costs, cabin comfort,

and weapon targeting effectiveness (see for instance the references in Ref. 15). Concerning heli-

copter design, O. Dieterich, from Eurocopter, mentions the following in his ERF 2005 overview

article (Ref. 4) on vibrational analysis for rotorcraft: “(. . . ) the full vibration reduction potential

offered by advantageous rotor and airframe design can not be exploited at the moment by industry

due to the shortcomings of current vibration prediction technology.” The reasons offered for these

shortcomings are uncertainties in the accuracy of the prediction tools caused by the relatively small

vibratory loads compared to the overall thrust and the multi-disciplinary nature of the aero-elastic

problem, complicating identification of those model components which need improvement.

The call for increased accuracy in the prediction of vibratory loads can in principle be answered

by models based on first-principles physics. Promising results have been obtained by several

authors, for example Pahlke et al. (Ref. 10), Pomin et al. (Ref. 11), and Servera et al. (Ref. 13),

all applying an aerodynamical model based on first-principles physics using computation fluid

dynamics (CFD) methods.

There are two flight regimes where the vibratory levels exceed the acceptable level of 0.05g.

The first is during low-speed flight (descent, maneuver) where the blades encounter the wake

of the preceding blades (BVI). The second is during high-speed flight (cruise, typically above one

hundred knots) where the aerodynamics of a single blade leads to strong pressure fluctuations.

These fluctuations are both caused by compressibility effects (shocks) on the advancing side, and

strong viscous effects (dynamic stall) on the retreating side.

From an aerodynamic point of view, blade-vortex interaction and shocks can be sufficiently re-

solved using an inviscid flow model. The physics of dynamic stall on the retreating side, however,

is not contained in the Euler equations. This is one of the reasons to consider viscous flows in this

paper. The complexity of the dynamic stall phenomenom, however, should not be underestimated.

The study of dynamic stall is an active field of research, even for fixed-wing applications (see

for instance Hansen et al. (Ref. 5)). So a step-wise approach is followed, and first applications

will concern the laminar vortex generated by the sharp leading edge of a delta wing and the lam-

inar dynamic stall of a NACA0012 foil in rapid pitch-up maneuver. These examples serve as a

demonstration of the capabilities of the numerical method.
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Since accurate rotor flow simulation requires correct blade motions, aero-elastic simulations need

to be performed. So one should also consider the importance of the viscous effects for fluid-

structure interaction. Pahlke et al. (Ref. 9) and Pomin at al. (Ref. 11) perform aero-elastic simu-

lations for rotors in high-speed forward flight and they both concluded that in order to correctly

predict the sectional moments, it is necessary to take into account the viscous effects. Pahlke et

al. (Ref. 9) apply a so-called weak fluid-structure coupling where the blade motions are obtained

from an aeromechanical code correcting the aerodynamic forces of the aeromechanical code with

the forces computed in the CFD simulation. Pomin et al. (Ref. 11) apply a strong coupling, which

increased the computational complexity of the problem in such a way that the rotor system could

not be trimmed. Although the authors do not provide a reason for the importance of the viscous

contribution to the sectional moments, it is suspected to be caused by the fact that for high-speed

forward flight the collective pitch is of the order of fifteen degrees. At such angles, viscous effects

determine the flow separation location, which cannot be predicted using an inviscid flow model.

Since the sectional moments influence the blade motion, it seems that for aero-elastic simulations

of rotor systems viscous simulations are necessary to correctly predict the blade motion, at least

for high-speed flight. This is another reason to study viscous flow simulation for rotorcraft.

Apart from the flow model, the simulation of rotorcraft flow requires that the CFD method al-

lows deforming meshes to accomodate for the rigid and elastic blade motions. Moreover, since for

many flight conditions the rotor encounters its own wake, accurate vortex capturing is necessary to

resolve the wake-blade interactions such as BVI. The vortex capturing capabilities of CFD meth-

ods can be increased by either increasing the order of accuracy of the discretization or increasing

the mesh resolution near the vortices. For the latter, a local grid refinement capability of the CFD

method is required.

The numerical method used in this paper is based on the space-time discontinuous Galerkin (DG)

finite element method. Recently, DG methods have received a lot of attention (see Cockburn et

al. (Ref. 3) for an overview) due to the following favourable characteristics of the method:

• the method is extremely local (only data from cell neighbours is required) and consequently

allows local grid refinement to resolve local phenomena such as tip vortices,

• being a finite element method there is a solid mathematical base for a posteriori error anal-

ysis,

• higher order accuracy is conceptually easy to accomplish without jeopardizing the other

favourable characteristics of the method,

• the locality of the method makes parallelization easy and scalable,
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• the space-time formulation is a conservative scheme for arbitrarily moving bodies (such as

rotor blades) on deforming (and adaptive) grids, and the locality of the method allows the

generally non-smooth meshes resulting from grid deformation.

The DG method has successfully been applied to inviscid rotor simulations. Boelens et al. (Ref. 2)

have demonstrated the vortex capturing capabilities on locally refined meshes for the simulation

of the Operational Loads Survey rotor in forward flight. Van der Ven et al. (Ref. 15) have extended

the method to aero-elastic simulations for rotor systems in forward flight. A revolutionary solution

algorithm, MTMG, is used in Ref. 15, solving the dynamics of the rotor system in space and time

simultaneously. This approach turns a dynamic problem into a steady problem, reducing the com-

putational complexity of simulations of trimmed rotor systems with elastic blades by two orders

of magnitude. This solution algorithm is independent of the type of equations being solved, hence

its benefits will be unaffected by changing the aerodynamical model from the Euler equations to

the Navier-Stokes equations.

The structure of the paper is as follows. First, the numerical method is briefly described. Second,

results are presented for a laminar three-dimensional vortex and two-dimensional laminar dynamic

stall. Finally, conclusions are drawn.
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2 The discontinuous Galerkin finite element method

2.1 General description
The discontinuous Galerkin finte element method as developed by Cockburn (Ref. 3) uses a dis-

continuous function space to approximate the exact solution of the equations. The method is a

mixture of an upwind finite volume and a finite element method. In the current discretization, the

flow domain is discretized into a large number of hexahedral elements. The polynomial expansion

of the flow field variables are purely element-based and there will be, in general, a discontinu-

ity in the flow field variables across element faces, with as magnitude the truncation error in the

polynomial expansion; in the current discretization second order in the mesh width.

To be more precise, the discretized flow state Uh restricted to an element K in the tesselation of

the flow domain is given by

Uh|K =
∑

Ûkψk,

where {ψk|k = 0, 1, . . . , n} is a set of basis functions. The number n of basis functions depends

on the order of accuracy and the space dimension. The first basis function ψ0 is the constant

function. The first expansion coefficient represents the cell-averaged solution |K|−1
∫
K Udx. The

other expansion coefficients are related to the flow gradients according to the formula

∂Uh

∂xk |K
= 2Ûk/hk

(on Cartesian meshes), where hk is the mesh width in the k-direction. Hence, the flow state

derivatives are independent variables in the DG discretization, and as a consequence, the vorticity

can be directly expressed in independent variables, without the need to construct flow gradients.

2.2 Space-Time discretization for moving bodies
Van der Vegt et al. (Ref. 14) extended the DG discretization to a space-time method. The space-

time method discretizes the flow equations on four-dimensional space-time elements. The four-

dimensional elements consist of an element at a certain time level and of the same element, pos-

sibly moved or deformed, at the next time level. The derivation of the DG discretization proceeds

as usual, but now time is treated like space, and one of the flow gradients represents the time

derivative of the flow states. The important advantage of space-time methods is that a conservative

discretization is obtained on moving and deforming meshes. As explained in the introduction, this

is a prerequisite for rotor simulations.

The space-time DG method has been applied to the simulation of the Operational Loads Survey

rotor (Ref. 2). Local grid refinement has been applied on the deforming mesh to improve the

vortex resolution. An impression of the complex vortex system is presented in Figure 1.
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Fig. 1 Simulation of the inviscid flow around the Operational Loads Survey rotor in forward flight

(Mtip = 0.664, µ = 0.164, CT = 0.0054). Vorticity magnitude (between zero and one) at

an azimuth of 135o. Taken from Boelens et al. (Ref. 2)
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2.3 Space-Time DG for the Navier-Stokes equations
In this section an overview of the DG discretization of the Navier-Stokes equations is presented.

Details can be found in Klaij et al. (Ref. 6).

The Navier-Stokes equations are given by

∂U

∂t
+∇ · F e(U)−∇ · F v(U,∇U) = 0,

where U = (ρ, ρu, ρE)T ∈ R5 is the vector of conservative variables, consisting of density,

momentum, and total energy. The viscous flux F v is given by

F v
k =


0

τjk

τjkuj − qk

 ,

with 1 ≤ j, k ≤ 3. The local stress tensor τ is defined as τjk = λui,iδjk + µ(uj,k + uk,j) (µ

dynamic viscosity coefficient and λ the diffusivity coefficient). The heat flux vector qk is given by

qk = −κT,k, with κ the thermal conductivity coefficient and T the temperature. The equations are

closed using the equation of state for a perfect gas.

In the space-time formulation, the time-derivative and the inviscid flux are written as the diver-

gence of the four-dimensional flux vector (U,F e + F v)T . As in standard finite element methods,

the equations are rewritten in the weak formulation and after applying Gauss’ theorem, face in-

tegrals of this flux occur. Because of the discontinuity of the flow representation across element

faces, the flux is not uniquely defined. For the flux in the time direction a standard upwind flux

is taken (information only flows in the positive time direction). For the spatial inviscid flux, the

discontinuity is considered as input for a Riemann problem, and the HLLC approximate Riemann

solver is used. More details on the space-time DG discretization of the inviscid flow equations can

be found in Ref. 14.

Of importance to the derivation of the DG discretization for the Navier-Stokes equations is the

following property of the viscous flux:

F v
ik(U,∇U) = Aikrs(U)Ur,s.

In other words, the viscous flux is linear in the flow gradients. As explained in Section 2.1 the

DG discretization contains the flow gradients as independent variables, so this property will be

exploited in the discretization of the Navier-Stokes equations.

Since the flow representation in the DG method is discontinuous across element faces, the concepts

of jumps and averages across cell faces is introduced. Given two elementsKL andKR connecting



- 13 -
NLR-TP-2005-483

at a face S, let UL, resp. UR, be the restriction of the flow states from the left cell KL, resp. from

the right cell KR to the face S. Let n be the face normal pointing outwards from the left cell. The

jump [[U ]] at the face S is defined as

[[U ]]k = (UL − UR)nk,

and the average {{U}} is defined as

{{U}} =
1
2
(UL + UR).

Note that the jump operator is vector-valued.

Let ψl be one of the basis functions in the DG discretization, described in Section 2.1, with support

in an element K in the tesselation of the computational domain. Ignoring the boundary terms

for simplicity of presentation, the DG discretization of the viscous terms in the Navier-Stokes

equations contributing to the equation for the expansion coefficient Û i
l is (see Ref. 6 for details):

+
∫

K
ψl,kAikrsUr,sdx

−
∑
S

∫
S
[[ψl]]k{{AikrsUr,s}}dx

−
∑
S

∫
S
{{ψl,kAikrs}}[[Ur]]sdx

+ η
∑
S

∫
S
[[ψl]]kRS

ik(U)dx,

where the sums are taken over all faces connecting to the element K. Because the jumps and

averages only require data from neighbouring elements the locality of the discretization is clear.

The first two lines in the above discretization are the basic terms in the discretization. They imme-

diately follow from a weak formulation of the equations and using the DG flow representation to

obtain the flow gradients. The discontinuity at the cell faces is simply treated by taking the average

of the viscous fluxes from the left and from the right (viscosity has no preferred direction). The

last two lines are stabilization terms, penalizing jumps in the solution, without affecting the order

of accuracy of the discretization. The so-called lifting operator RS is not further explained, but is

essential for stability. The value of the stabilization parameter η is 7 for three-dimensional flows.
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For scalar diffusion, Aikrs = νδirδks, on a Cartesian mesh the discretization simplifies to

+ ν

∫
K
ψl,kUi,kdx

− ν
∑
S

∫
S
[[ψl]]k{{Ui,k}}dx

− ν
∑
S

∫
S
{{ψl,k}}[[Ui]]kdx

+ νη
∑
S

∫
S
[[ψl]]k[[Ui]]k/hkdx,

where hk is the mesh width in the k-direction of cell K. In this simplification the symme-

try between the second and third line becomes more obvious. For this specific case, we have

RS
ik(U) = [[Ui]]k/hk. Since ψl,k = 2δlk/hk on a Cartesian mesh, the two stabilization terms are

actually the same, and reduce to +ν(η − 1)δlk
∑

S

∫
S{{ψl,k}}[[Ui]]kdx.
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3 Results

3.1 Vortex over a delta wing
Since vortices play an important role in rotor aerodynamics, first laminar steady vortices are stud-

ied, generated by the sharp leading edge of a delta wing. The 85o delta wing of the experiments

of Riley and Lowson (Ref. 12) is considered at a Reynolds number of 40,000, Mach number 0.3

and angle of attack 12.5o.

Simulations have been performed using both the viscous DG flow solver Hexadap and, for com-

parison, the finite volume flow solver ENSOLV (Ref. 7). A coarse and a fine mesh have been

generated, containing 208,000, resp. 1,664,000 cells. The coarse mesh is only used for the sim-

ulations with the DG flow solver and has been refined to improve vortex resolution. A cell is

refined whenever the vorticity magnitude is greater than 2a∞/c and the mesh width is greater than

0.01c. The final adapted mesh contains 347,000 cells. The grid resolution and vortex resolution

(in terms of total pressure loss at a cross section at 60% chord) between the DG and finite vol-

ume simulations is compared in Figure 2. Clearly, the DG solver displays very similar results to

the well-verified finite volume flow solver ENSOLV. Figure 3 shows the pressure distribution at

the same cross-section, also showing Hexadap results on the unrefined coarse and fine meshes.

The primary vortex is well-resolved by both methods, whereas the DG solver resolves a slightly

stronger secondary vortex on the fine mesh due to the increased number of degrees of freedom.

Next the effectivity of the grid adaptation is demonstrated in Figure 4. At a cross-sectional plane

parallel to the yz-plane at x/c = 1.1 (one tenth of the span behind the delta wing) the vortex

system is compared for the simulation on the unrefined coarse mesh and the refined coarse mesh.

The vortex system consists of vortices emanating from the leading edge of the delta wing and

vortices shed from the thick trailing edge. In the figure the helicity u · ω is plotted to distinguish

counter-rotating vortices. The results on the unrefined mesh are shown on the left (mirrored in

the symmetry plane), the results on the adapted mesh are shown on the right. Resolution of flow

features is clearly increased, so it is concluded that the adaptive capability of the DG method is

maintained for viscous flow simulation.

3.2 Laminar dynamic stall
Dynamic stall may occur at high-speed conditions on the retreating blade since the local angle of

attack is large at these positions. Dynamic stall is a complicated three-dimensional phenomenon

and correct prediction of dynamic stall requires accurate prediction of turbulence, transition, and

flow separation. Moreover, since massive flow separation may occur standard RANS turbulence
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(a) meshes

(b) total pressure loss

Fig. 2 Vortex flow over a delta wing (Re=40,000, M=0.3, α = 12.5o). Comparison of vortex

resolution at a cross section of 60% chord between the DG solver Hexadap (left) and the

finite volume solver ENSOLV (right). The different meshes are shown on top, and the flow

results on the bottom. For the ENSOLV results not the complete cross section is shown.
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Fig. 3 Vortex flow over a delta wing (Re=40,000, M=0.3, α = 12.5o). Comparison of pressure

coefficient at a cross section of 60% chord between the DG solver Hexadap and the finite

volume solver ENSOLV. For Hexadap results are also shown on the unadapted coarse

and fine meshes.
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Fig. 4 Vortex flow over a delta wing (Re=40,000, M=0.3, α = 12.5o). Comparison of vortex

resolution at 10% span after trailing edge. Left unadapted results, right adapted results.

models are probably not sufficiently accurate to capture the wake, and hybrid RANS-LES methods

may be needed.

Here, the laminar two-dimensional flow around a NACA0012 airfoil in rapid pitch-up maneuver

is considered. The flow conditions are identical to one of the conditions considered in Visbal et

al. (Ref. 16) and Osswald et al. (Ref. 8), but the NACA0015 airfoil is replaced by the NACA0012

airfoil. The Reynolds number is 10,000 and the Mach number is 0.2. The evolution of the angle of

attack α is described by α(t+) = ω+t++ω+
0 (1−e−at+)), where t+ = ta∞/c is the dimensionless

time, ω+ = ωc/a∞ is the reduced frequency and equal to 2.29 degrees. The second term in the

definition of the angle of attack evolution is added to have zero initial velocity. After a short

transition, the airfoil rotates at a constant angular velocity ω.

An initial mesh with 4256 cells has been generated. During the simulation the grid is refined at

each time step. A cell is refined whenever the vorticity magnitude is greater than a∞/c and the

mesh width is greater than 0.02c. This refinement strategy aims at a uniform mesh of mesh width

0.01c in vorticity regions. The mesh evolution is shown in Figure 6. Eventually the mesh contains

12,354 cells. The time step is equal to a change of 0.01 degrees in the angle of attack (after the

transition period), a total number of 5000 time steps has been performed.

The evolution of the dynamic stall is shown in Figure 7. The separation of the boundary layer

starts at the trailing edge and develops upstream (α = 13.4o). At an angle of attack α = 21.0o

separation near the leading edge occurs, and shortly afterwards (α = 23.5o) the complete boundary
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layer is separated into different vortices. The vortex system develops further (α = 33.5o) until

the vortex near the leading edge separates from the airfoil (α = 40.7o) resulting in loss of lift

(compare Figure 5). The stronger leading edge vortex flows downstream, causing some of the

smaller vortices to rotate about it (α = 50.7o). The simulation is stopped at an angle of attack

α = 56.0o, where the next trailing edge vortex has separated from the airfoil.

The evolution of lift and drag is shown in Figure 5 and compared with experiment. The exper-

imental data is for a different airfoil, NACA0015, at a Reynolds number of 40,000 (Visbal et

al. (Ref. 16), loc.cit.). Also shown are computational results on the original mesh without grid

adaptation. Clearly shown is the loss of lift once the primary leading edge vortex has separated

from the airfoil (at thirty degrees). Maximum lift is 2.7. Despite the differences in flow conditions

and geometry, the qualitative behaviour of the simulation is very similar to that of the experiment.

Differences are most probably caused by turbulent effects, which decrease the strength of the

vortices. This is especially clear from the computational results on the adapted mesh, where the

leading edge vortex leads to strong fluctuations in the lift at high angle of attack. The simulation

clearly demonstrates the capabilities of the viscous DG method for time-accurate simulations on

deforming and adaptive meshes, which, as explained, is a necessary prerequisite for rotor simula-

tions.
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(a) CL versus angle of attack

(b) CD versus CL

Fig. 5 Evolution of lift and drag. The symbols in figure b) are plotted at the angles of attack

selected in Figures 6 and 7
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(a) α = 13.4o (b) α = 40.7o

(c) α = 21.0o (d) α = 50.7o

(e) α = 23.5o (f) α = 56.0o

(g) α = 33.5o

Fig. 6 Laminar dynamic stall for a NACA0012 airfoil (Re=10000, M=0.2). Mesh evolution.
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(a) separation starts at trailing edge (b) leading edge vortex separates from airfoil

(c) leading edge separation (d) rotating vortices

(e) boundary layer separates into several vortices (f) end of simulation

(g) vortices grow

Fig. 7 Laminar dynamic stall for a NACA0012 airfoil (Re=10000, M=0.2). Vortex evolution.
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4 Conclusions and future work

The level of external vibratory loads is important for many operational aspects of helicopters. For

the prediction of these loads a predictive tool based on first-principles physics has been studied.

The aerodynamic module of the tool has been extended to model viscous effects. Viscous effects

play a significant role in the aerodynamics of helicopter rotors in high-speed forward flight. The

new model has been applied to three-dimensional vortex flow and laminar dynamic stall. The

applications have clearly demonstrated the capability of the new model to perform on deforming

and adaptive meshes.

The new aerodynamic module will be incorporated in NLR’s framework for aero-elastic simula-

tions of trimmed rotor systems in forward flight. The solution algorithm MTMG is independent

of the type of equations being solved, hence its benefits will be unaffected by changing the aero-

dynamic model from inviscid to viscous flows.
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