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Design Guidelines for the Prevention of Skin-Stiffener Debonding in Composite 
Aircraft Panels 

 
Joost C.F.N. van Rijn 

 

ABSTRACT 

In numerous tests it was established that, in the post-buckling regime, failure of a 
composite stiffened panel is often induced by the failure of a skin-stiffener interface. 
The local curvature of the skin induces peel loading at the stiffener flange that results in 
separation of the skin and the stiffener.  
 On the basis of experimental research at NLR a failure criterion was proposed for 
specimens tested in a novel seven-point bending test. A further evaluation of the results 
is given in the present paper. 
 The analysis has resulted in the identification of a minimum set of dimensionless 
parameters, which determine the failure load. The influence of variation in the skin and 
flange thickness on the failure moment is shown. Moreover, using the analytical 
framework the correspondence between four- and seven-point bending results noted 
before was shown to be co-incidental. The methodology presented in this paper can be 
incorporated in design optimisation tools, which may result in more optimal designs. 
 
 
INTRODUCTION 

Composite materials have become serious candidates for primary structural components 
of transport aircraft because of potential weight savings. Stiffened panels may be used 
in these components as primary load-carrying mechanisms. In numerous tests it was 
established that, in the post-buckling regime, failure of a composite stiffened panel is 
often induced by the separation failure of a skin-stiffener interface. The local curvature 
of the skin induces peel loading at the stiffener flange that results in separation of the 
skin and the stiffener.  
 Earlier, experimental research at NLR was performed on strip specimens loaded in 
four-point bending [1]. Evaluation of the results led to the conclusion that specimen 
failure was governed by the characteristics of the skin and was triggered by stresses 
concentrated at the edges of the specimen. The influence of the flange lay-up was found 
to be only marginal. In a follow-on programme four-point bending tests were performed 
on specimens with three different widths [2]. Findings of the earlier research were 
largely confirmed. Moreover, the failure moment per unit width was found to increase 
with an increase in specimen width, which was considered to be undesirable. Based on 
this conclusion a reconsideration of the coupon-type test was made [2].  
 A novel seven-point bending test rig was designed and manufactured. In this test 
configuration, the bending deformation forced onto the specimen was such that failure 
of the specimen did not initiate at the edges of the specimen. The failure occurred in the 



  
 -4- 
 NLR-TP-2000-355 
 

  

 
 

adhesive layer between the flange and the skin, which is in accordance with the failure 
location found in panels with skin-stiffener interface failure [3]. A new failure criterion 
was proposed for the specimens tested in seven-point bending. This failure criterion was 
used to also interpret the results of the four-point bending tests on 100 mm wide 
specimens. A remarkable similarity between the results of both test methods was 
established, even though the behaviour and failure characteristics for both test methods 
were very different. A further evaluation of these results is given in the present paper. 
 Firstly, the criterion for the failure of the bond layer, as proposed in [2], will be 
given. Then, a model that uses the proposed criterion will be presented. Subsequently, 
an evaluation of the results will be given and the influence of variation in the skin and 
flange thickness on the failure moment is shown. Finally, conclusions reached and 
recommendations for future work are presented. 
 
 
CRITERION FOR FAILURE OF THE BOND LAYER 
 
It can be postulated that the running loads transferred through the bond layer govern 
failure. The running loads transferred through the bond layer are derived from the 
running loads in the flange through the loads and moments equilibria, as is indicated in 
Figure 1.c.  
The deformation of the flange was obtained from finite element analyses of the seven-
point bending test configuration. The flange strains and curvatures were extrapolated to 
the edge of the flange. These flange strains and curvatures were used as input in the 
laminate analysis programme LAP to obtain running loads and moments [4]. The shear 
load FB and the moment MB transferred through the bond layer at failure as calculated  

 
for the specimens tested in seven-point bending are given in Figure 2. The ratio between 
the shear load and the moment transferred through the bond layer primarily depends on 
the flange thickness.  
 
 

a.  Skin and flange  
 assembly 

b. Partition of moment 
 and load in skin plus  
 flange region 

c. Flange only 

 
Figure 1  Load and moment equilibria for flange edge 
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 A quadratic failure criterion using the bond shear load and the bond moment is 
postulated 
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where FB

crit and MB
crit are the critical values for the shear load and the moment. 

 This failure criterion is depicted in Figure 2 using values of 160 N/mm and 320 
Nmm/mm  for FB

crit and MB
crit respectively. 

 
 
MODEL DEVELOPMENT 

Model assumptions 
 
The failure criterion that was derived on the basis of the seven-point bending test results 
only depends on the running loads in the flange perpendicular to the stringer direction. 
The running loads can be calculated from the strains and the curvatures in the skin. The 
following assumptions are used: 
− The classical laminate theory is applicable, equations are given in [ 5]. 
− The flange and skin laminates are symmetric and balanced. 
− The contribution of the bond layer to the stiffness is negligible.  
− The deformation in the stringer direction is constant over the region considered. 
− A shear strain γxy, and a shear curvature κxy are not present. 
− The load and moment perpendicular to the stringer direction in the skin are in 

equilibrium with the load and moment perpendicular to the stringer direction in the 
combined skin and flange. 
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The relevant equilibrium condition are depicted in Figure 1, which shows cross sections 
of the flange edge perpendicular to the stringer direction.  The equilibrium condition is 
shown in Figure 1.a. The partition of the load and moment in the combined skin and 
flange into the loads and moments in the flange and the skin is shown in Figure 1.b. The 
isolation of the flange by introduction of a shear load and a moment in the bond layer is 
shown in figure 1.c. 
So, as input for the model the following parameters are required: 
− skin strains and curvatures εx

s, εy
s, κx

s, and κy
s,  

− the A and D matrices of the skin and the flange and  
− the thicknesses of the skin, bond layer and flange. 
Output are the strain and curvature components εy

sf and κy
sf for the skin plus flange 

region. From these the strain and curvature components εy
f and κy

f for the flange are 
calculated, from these the normal load Ny

f and the moment My
f in the flange and from 

these the shear load FB and the moment MB transferred through the bond layer.  
 
Basic equations 
 
The load and moment perpendicular to the stringer direction, Ny and My,  are given by 
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where the superscript r is an indication of the region that is equal to s for the skin 
region, sf for the skin plus flange region and f for the flange-only region; A12, A22, B12, 
B22 , D12, D22 are components of the relevant A, B and D matrices (N.B. for the flange 
and the skin region the components of B matrix are zero but for the skin plus flange 
region these components may have a value); εx, εy, κx, κy are the strain and curvature 
components. 
 Several of the strain and curvature components in a region depend on the strain and 
curvature components in another region: 
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where ts, ta, and tf are the thicknesses of the skin, the adhesive and the flange 
respectively. 
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 The components of the A, B and D matrices of the skin plus flange region are 
functions of the components of the A and D matrices of the flange and the skin: 
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where the index ij is equal to 12 or 22. 
 The load and moment equilibrium as depicted in Figure 1.a gives the following 
relation: 
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 The load and moment equilibrium of the flange-only region as depicted in Figure 
1.c renders the shear load and moment in the bond layer: 
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Model results 
 
The equations given in 2, 3 and 4 are substituted in the equations given in 5. The 2 
resulting coupled linear equations are solved to render the strain and curvature 
components εy

sf and κy
sf. After extensive manipulation the following equations evolved: 
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The components of the 2 by 4 matrix R are: 
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The dimensionless parameters A1, A2, D1, D2, t1, and t2, and the parameter ds with 
dimension [m] are defined as follows: 
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NUMERICAL RESULTS 

Influence of Skin and Flange Laminates 
 
The methodology outlined above was used to calculate the shear load FB and the 
moment MB transferred through the bond layer for the case ofa prescribed curvature κy

s 
with the other strains and curvature equal to zero. The calculated shear load FB and the 
moment MB were substituted in the failure criterion, equation (1). 
 The applied moment follows from:  
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 As all calculations are based on linear equations, the moment to be applied to the 
skin in order to cause failure of the skin-stiffener interface is proportional to the applied 
moment and inversely proportional to the failure criterion value:  
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 The moment to be applied to the skin in order to cause failure was calculated for a 
series of skin thicknesses and a series of flange thicknesses with both skin and flange 
laminates having a quasi-isotropic lay-up. The A and D matrices of the skin and flange 

 
 
a.   Quasi-isotropic lay-up for skin and 

flange laminates 
b.   Quasi-isotropic lay-up for skin and 

hard lay-up for flange laminate 
 
  Figure 3  Moment to be applied to the skin in order to cause failure of the skin-stiffener 

interface, as function of the skin and flange thickness 
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laminates were calculated using the equations given in APPENDIX A. The results of 
these calculations are shown in Figure 3.a. As can be seen, optimum flange thickness 
exists for the skins with a thickness of 1 to 2 mm. This optimum flange thickness was 
approximately 5 and 3 mm respectively. The failure moments for an optimum flange 
thickness were respectively 67 percent and 11 percent higher than failure moments for 
the minimum flange thickness of 1 mm. For thicker skins, a thicker flange would give a 
lower failure moment. 
 The moment to be applied to the skin in order to cause failure was also calculated 
for a series of skin thicknesses and a series of flange thicknesses with skin laminates 
having a quasi-isotropic lay-up and flange laminates having a hard (55% 0º, 36 % ±45º, 
9% 90º) lay-up. The 0º direction is parallel to the stringer direction. The results of these 
calculations are shown in Figure 3.b. For the 1 mm thick skin, the relation between the 
flange thickness and the failure moment was almost the same as in figure 3.a. The 
variation in failure moment for the 2 mm thick skin with a variation in flange thickness 
was only minor. The difference in behaviour in comparison to quasi-isotropic flange 
laminates might be attributable to the lower transverse stiffness of the laminates with a 
hard lay-up. 
   
Discussion of Numerical Results 
 
The postulated criterion should be verified with experiments on specifically designed 
configurations. The failure envelope is premature since only two points are available for 
the construction of the envelope. More experiments are needed to cover the range for 
the ratio between the shear load and the moment transferred through the bond layer 
more fully.  
 The dependence of the failure moment on the flange thickness for thinner skins is 
remarkable. This result is important, as the occurrence post-buckling of skins would be 
most likely for structures with thinner skins. Of course, due precaution should be 
exercised as the experimental basis for the methodology is still rather limited. 
 Clearly, a dependence of the failure moment on the flange thickness exists. This 
dependence was not found with the four-point bending tests [1, 2]. The four-point 
bending tests also gave different failure characteristics compared to the seven-point 
bending tests. On the basis of these observations it can be concluded that the 
correspondence between the four- and seven-point bending results depended on the 
configurations chosen to evaluate the methods and was therefore co-incidental. 
 The failure criterion derived on the basis of the seven-point bending test results is 
incorporated in the design optimisation code PANOPT. PANOPT was developed at the 
National Aerospace Laboratory NLR for the design of stiffened composite panels for 
primary aircraft structures with buckling and post-buckling constraints [6]. Previously, a 
constraint was placed on the thickness of the stiffener flange in order to prevent failure 
of the skin-stiffener interface in the post-buckling regime. Based on the findings in the 
present paper, it can be concluded that this approach might even be non-conservative for 
panels with thin skins. The new approach will give a more optimal design. 
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CONCLUSIONS 

A novel bending test configuration was developed and a failure criterion postulated. 
 This criterion must still be verified with experiments on specifically designed 
configurations. More experiments are needed to cover the range for the ratio between 
the shear load and the moment transferred through the bond layer more fully. 
 The dependence of the failure moment on the flange thickness for thinner skins is 
remarkable. This result is important, as post-buckling of skins would be most likely for 
structures with thinner skins.  
 The correspondence between the four- and seven-point bending results, as noted 
earlier, was shown to be co-incidental. 
 The failure criterion derived on the basis of the seven-point bending test results is 
incorporated in a design optimisation code. For panels with a skin thickness of more 
than 2 mm the new approach is likely to give a more optimal design. 
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APPENDIX A: CALCULATION OF LAMINATE STIFFNESSES 

A method to create a series of laminates that are constructed by stacking symmetric and 
balanced base laminates. It was established that the following relations hold for the 
components of the A and D matrices: 

rr
ij

r tAA
ij

⋅= * ( )3
*

*

12
r

r
ijrr

ij
r
ij t

A
tDD ⋅+⋅=  (A.1) 

where the index ij is equal to 12 or 22 and the superscript r is an indication of the 
laminate that is equal to s for the skin and f for the flange.  
 



  
 -11- 
 NLR-TP-2000-355 
 

  

 
 

The coefficients Aij
r* and Dij

r* follow from 
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where the superscript b indicates base laminate parameters. 
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