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Problem area 
The in-flight measurement of 
motion of the wing and of the 
movable parts of the wing with high 
spatial resolution, bandwidth and 
accuracy and with instrumentation 
easy to install on the aircraft is the 
challenge addressed in this 
document. Instrumentation 
comprising a video camera and a 
speckled pattern on the wing section 
under investigation can provide the 
capability applying the Image 
Pattern Correlation Technique 
(IPCT).  
 
Description of work 
The technology to determine the 
deflection and deformation of an 
aileron and the capability to 
measure wing dynamics is 
presented. Flight test campaigns 

were flown with the EVEKTOR 
Cobra and the NLR Fairchild Metro 
II to investigate the measurement 
capabilities.  
Finally a software tool providing a 
Graphical User Interface (GUI) was 
developed to improve the efficiency 
of applying IPCT further and to 
improve the user friendliness.  
 
Results and conclusions 
IPCT, a new technique for 
measuring the wing deformation, 
requires a small installation effort 
for the instrumentation and provides 
high bandwidth, high resolution and 
accurate results. The technique can 
be applied for the movable parts of 
the wing where both the deflection 
of the surface and the deformation 
can be determined. 



UNCLASSIFIED 

 
 
 
UNCLASSIFIED 

 

In-flight non-intrusive measurement of wing dynamics and of the aileron 
and flap deflection and deformation 
  

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR 
 
Anthony Fokkerweg 2, 1059 CM Amsterdam, 
P.O. Box 90502, 1006 BM  Amsterdam, The Netherlands 
Telephone +31 88 511 31 13, Fax +31 88 511 32 10, www.nlr.nl 

Geometrical information is used of 
the camera position relative to the 
measurement areas for applying the 
IPCT technique with one camera. 
This information is either available 
or can be measured on the ground.  
For determining the deflections of 
movable parts of the wing the 
rotation axis has to be determined, 
both geometrically relative to the 
camera and in the images to be 
processed. As the rotation axis 
moves together with the wing this 
has to be determined per processed 
image. The accuracy for 
determining the axis is critical for 
accurate deflection information of 
the control surface.  
Deflections of the wing were 
measured on the ground and in-
flight with a bandwidth suited for 
flutter investigations. The 
measurement of eigen frequencies 
of the wing with IPCT and 
accelerometers on the ground are in 
agreement. Excitation of vibrations 
in-flight by hitting the steering 
wheel was not sufficient for flutter 
investigations at the airspeeds 
flown. 

The installation of the cameras 
stiffly enough to sustain all loads 
experienced in aircraft predictably, 
or to be able to correct for camera 
motion, needs further development. 
This will make the method suitable 
for amongst others flight flutter 
tests.  
A software tool providing a 
Graphical User Interface was 
developed for applying IPCT image 
processing easily. A Flight Test 
Engineer with a basic knowledge of 
the technique and the measurement 
goals should be able to process 
images in a short time into plots and 
time traces of wing parameters. 
 
Applicability 
The method developed can be 
applied for measuring wing 
deformation, but with another 
installation of the cameras on the 
aircraft also deformations of other 
parts of the aircraft can be 
determined. For instance rudder 
deflection and deformation. And 
even more, the deformation and 
deflection of structures in a general 
sense may be dealt with. 
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1. ABSTRACT 

New measurement capabilities are provided for in-flight aircraft wing deformation 

applying the Image Pattern Correlation Technique. The motion of the wing and of the 

movable parts of the wing can be determined relative to a reference form with high 

spatial resolution, bandwidth and accuracy. Instrumentation comprises a video camera 

and a speckled pattern on the wing section under investigation making the installation 

easy. The technology to determine the deflection and deformation of an aileron and the 

capability to measure wing dynamics is presented. Flight test campaigns were flown 

with the EVEKTOR Cobra and the NLR Fairchild Metro II to investigate the 

measurement capabilities. The results demonstrate that the IPCT method is promising 

for application in flutter tests, that dynamic features of the wing can be measured and 

that the aileron deflections and deformations can be measured. Finally a software tool 

providing a Graphical User Interface (GUI) was developed to improve the efficiency of 

applying IPCT further and to improve the user friendliness. The GUI guides Flight Test 

Engineers through the processing of images in an interactive manner. 

2. INTRODUCTION 

A method was developed for measuring wing deflection and deformation using a 

speckled pattern on the wing and a video camera in the cabin of the aircraft. The Image 

Pattern Correlation Technique (IPCT) for in-flight wing measurements has been 

reported in previous SFTE-EC symposia, see [1] and [2]. IPCT is a powerful technique 

                                            
 © 2015, Netherlands Aerospace Centre - NLR 
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 to measure wing deformations as the instrumentation is easy to apply on the aircraft 

and results have high resolution, can have high bandwidth and are very accurate.  

The method is now extended to the measurement of the deflection and deformation of 

rotating surfaces on the wing. The method was applied on the NLR Fairchild Metro II 

and the EVEKTOR Cobra. 

IPCT uses randomly speckled patterns on the measurement surface that are observed 

by cameras imaging the speckles from different viewing angles. IPCT is mostly based 

on principles used in Particle Image Velocimetry (PIV) [3]. The technique in more 

general terms is also known as Digital Image Correlation (DIC) [4], [5]. Correlation 

software determines the displacements for groups of speckles, the interrogation areas, 

using the geometry of the camera setup. 

The correlation of speckled parts on the image of the aircraft wing enables the 

measurement of the deformation of that part of the wing. The aircraft environment poses 

special challenges and sets constraints on how the technique can be applied. The 

options for installing instrumentation are limited if installation of cameras inside of the 

cabin is chosen. Installation outside of the cabin requires a much larger effort and down-

time for the aircraft. The slant viewing angles connected to the camera installation in the 

aircraft introduce a challenge. Installing two cameras in the aircraft with a good view on 

the measurement areas and an adequate baseline between the cameras adds to the 

challenges. The application of IPCT for the aircraft environment has been developed in 

the projects AIM (Advanced In-flight Measurement techniques) and AIM2 that were 

supported by the European Commission. The application of image correlation based on 

images of two cameras in a stereoscopic setup, as well as the application of images of 

just one camera in a monoscopic setup, was developed within the AIM and AIM2 

projects [6]. This paper will focus on the application of the IPCT technique with one 

camera. The installation for such measurements is easier because installation of just 

one camera is needed and one viewing angle on the area under investigation is 

involved. The price one pays is that the geometry of the aircraft has to be accurately 

known and is to be included in the processing of images. The stereoscopic version 

needs two cameras installed with a significant baseline and difference in the viewing 

angle of the area under investigation. Geometrical data of the aircraft is less important 

for the processing. A calibration of the camera set-up, normally executed by recording 

images of a test board with grid lines, is needed [3], [6]. 

In the AIM and AIM2 projects the techniques have been applied both on research 

aircraft and on prototype aircraft of aircraft manufacturers. The aircraft of which surfaces 

have been measured ranges from gliders like the PW6, to the sports aircraft Evektor 

Cobra, to the business aircraft Piaggio P190, to the small airliner aircraft Fairchild Metro 

II, to the wide body aircraft Airbus A320 and Airbus A380 [2], [7]. 
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3 Methodology for determining wing deformation 

3.1 Wing deformation 
 
 

The direct application of IPCT for rotating surfaces such as the aileron, flap and rudder, 

will not work accurately if the rotation is more than typically a few degrees. The applied 

correlation of patterns will not work anymore as the correlation only searches by 

translating the pattern. Measuring with IPCT the rotation, displacements and 

deformation of the movable parts which are used for controlling the aircraft (aileron, 

rudder) and for increasing the aerodynamic lift of the wing (flap, slat) has large benefits 

over traditional techniques as the traditional techniques require more complicated 

instrumentation. An IPCT method for deflection measurement is discussed in this paper. 

The method applies a transformation of the part of the reference image containing the 

moving component. The transformation corresponds to a rotation over an estimated 

angle of the object image as an intermediate step before the correlation of this 

transformed reference image with the measurement image for an exact deformation 

measurement. 

State-of-the-art cameras nowadays offer large resolution and a considerable number of 

images per second. This suits very well with the needs for aircraft flight tests to measure 

the wing and aileron deflections accurately and with high temporal resolution. In the 

qualification and certification process of an aircraft important flight tests campaigns are 

dedicated to measuring the wing vibration in flight. Flutter conditions should be identified 

and prevented. This paper shows that the wing vibrations can be measured with 

sufficient bandwidth for these investigations. 

A software package including a Graphical User Interface (GUI) was developed in order 

to enable efficient processing of images. The interface guides an engineer to just input 

some aircraft geometry and images in the software tool which will be processed, 

resulting into deflection parameters and deformation fields. The processing algorithm 

and software tool are described. 

3. METHODOLOGY FOR DETERMINING WING DEFORMATION 

3.1. Wing deformation 
The deformation of the speckled part of a wing can be related to the displacement of 

speckles in the image of the wing. With one camera the displacement can only be 

monitored in two dimensions. The displacement of the speckles on the main wing 

relative to a camera installed in a cabin is primarily due to heave and torsion of the 

wing; no displacement in spanwise direction is expected. The motion is therefore limited 

to two dimensions. The direction is guided by the structure of the wing, is well defined 

and in general close to perpendicular to the surface near the main spar of the wing. 

The displacement of the speckles in the image plane of a camera is related to a 

translational and angular displacement which depends on the focal length of the applied 
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lens and the distance between the lens and the wing area under investigation. The 

angular displacement and the displacement in motion direction are related as: 

Δ s = d Δφ / cosθ 

where  

Δ s = displacement of the speckles 

d = distance between the camera and the speckles 

Δφ = angular displacement measured by the camera 

θ is the angle between the direction of the motion of the speckles and the line between 

the camera and the speckles 

The distance between the camera and the speckled area is given by the geometry of 

the aircraft and this is an important parameter for the one-camera method described in 

this paper. 

The speckles on the wing do not all show the same displacement because of the 

flexibility of the wing. Speckle displacements are determined for small groups of 

speckles in the pattern that have almost identical displacements. Experience, also 

gained in applying Particle Image Velocimeter (PIV) [3], indicate that the grouping of 

speckles in so-called “interrogation areas” can be optimized to having typically 10 

speckles or more. Furthermore experience indicates that speckle size should be chosen 

optimally as being imaged on 1.6 times the pixel size on the camera sensor. For IPCT 

on aircraft wings such optimizations give the requirements for an optimal speckle 

pattern on the wing. Due to the slant viewing angle to the surface the speckle 

optimization results in elongated speckles and markers, see Figure 1. The fitting of the 

displacements of speckles in the interrogation areas over the whole speckled wing area 

provides the heave and torsion of the wing. Subtracting these global wing-related 

displacements yields the local surface deformations. 
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3.2 Deflection and deformation measurements on movable parts of the wing 

 

Figure 1 Speckle pattern applied on the aileron of the Metro 

Markers are depicted to the speckled area in addition to the speckles for a first coarse 

estimate of displacements and as position references on the wing. This tracking of 

displaced markers in the image is applied as a first step in the IPCT processing 

algorithm giving guidance to expected speckle displacements for the interrogation 

areas. Correlation functions around these first estimates are determined for the speckle 

pattern in each interrogation area. Subsequently correlating the interrogation area led 

typically to 0.2 pixel correlation accuracy under in-flight conditions. For the flight 

demonstrations described in this paper this leads to an accuracy of 0.3 mm and 0.4 mm 

at 5 m distance. This is determined by the focal length of the lens, 50 mm for the Metro 

measurements respectively 35 mm for the Cobra measurements, and the camera pixel 

size, 0.0142 mm. The actual quality of the image, i.e. reflections of sun light or clouds 

on the surface and blurriness of images due to shock or vibration is the major factor of 

measurement accuracy reduction. Depth of field induced blur was very low by taking 

advantage of closing the diaphragm under sunny conditions. 

3.2. Deflection and deformation measurements on movable parts of the wing 
The movable parts of the wing, i.e. the aileron, the flap and the slat, have a motion 

component that is common to the wing, but also additional rotational and sometimes 

translational motion components. As standard cross correlation technique was proven 

to work in practice up to a rotation angle of a few degrees only it was decided to adapt 

the algorithm for the rotating parts of the wing. The displacement of the rotation axis is 

first determined from the IPCT processing of the fixed part of the wing close to the 

rotation axis. Then a first estimate of how much the part was rotated was made from 

markers displacements. Then, the part of the reference image corresponding with the 

rotating part is transformed such that it corresponds with a rotation of the speckles over 

that estimated angle. In practice this is a delicate procedure, because the rotation axis 

of the rotating part must be determined accurately in the reference image. In a next step 

the transformed reference image part of the speckled wing pattern is correlated with the 

measurement image. Rotations still to be assessed after the estimation of rotation from 
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4 Instrumentation of the aircraft marker displacements appear to be within the range in which correlation works well. 

The correlation also yields a small adjustment to the rough estimate of the rotation of 

the rotating part; this can be used to repeat the above procedure for additional 

accuracy. 

4. INSTRUMENTATION OF THE AIRCRAFT 

A pattern with randomly distributed speckles was fixed to the surface of the wing of the 

aircraft. The speckle size and the focal length of the lens on the camera were chosen 

such that the image of the pixel covers 1.6 x 1.6 up to 2 x 2 pixels on the camera 

sensor.  The spanwise size of the speckle was larger than the chordwise size of the 

speckle to correct for the slant viewing angle of the speckles. This ensures that the 

speckles are square in the image. The speckle size was proportional with the distance 

between speckle and camera sensor to keep the size of the speckles constant 

everywhere in the image. The last parameter to be defined for the speckled pattern was 

the speckle density. 15 % area coverage of speckles was applied, being a value giving 

good results. As mentioned, markers were added to the image for guiding the 

correlation algorithm. All of these parameters have been included in a software program 

that generated the pattern. The user interface and a result are shown in Figure 6. 

 

Figure 2 Graphical User Interface for the programme that generates speckle patterns for IPCT 

Stickers with the speckle pattern were purchased. The sticker material and the method 

for sticking have been qualified for the in-flight conditions as the aerodynamics of the 

wing is not to be impacted. Aerospace qualified products in combination with attention 

to where the stickered area starts on the wing provided for secure solutions. 

The camera viewing the speckled area was installed in the cabin of the aircraft. 

Measurements of the speckle displacements were made relative to the camera’s 
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4.1 Fairchild Metro II position and viewing direction. As the aircraft may experience large accelerations and 

rotation rates during flight test, a stable installation of the camera in the cabin is very 

important. Therefore stiff mounting frames were made for the cameras fixing the 

cameras rigidly on the seat rails of the aircraft.  

Two high-speed, high resolution AOS type S-EM cameras were installed in the cabin of 

the aircraft viewing the speckled areas on the wing, the flap and the aileron. The reason 

for installing two cameras was to enable also stereoscopic IPCT processing and in 

addition it gives the opportunity to check measurement results of one camera with those 

of the other camera. Dynamic measurements were enabled by applying these AOS 

cameras. Image streams from each camera sensor were recorded on solid state 

memory inside the camera for later download on a laptop in the aircraft. Synchronisation 

between camera images and the aircraft measurement system was established within a 

millisecond based on a GPS-slaved IRIG-B time code generator. A frame rate of 120 

images per second was chosen. This rate is much higher than needed for measuring 

the main vibration modes of the aircraft, which are below 10 Hz. The data generated 

with the high-resolution cameras (1280x1024 pixel2) were taken in runs of 8 seconds 

duration.  

4.1. Fairchild Metro II 
Starting from the status obtained by the predecessor AIM project [1] in-flight IPCT was 

further developed in AIM2 for measuring deformations of dynamically moving surfaces 

and for measuring the deformations of the rotating flap and aileron surfaces. A flight test 

campaign was flown with the NLR Fairchild Metro II to test the developed measurement 

method and processing algorithms. Right wing sections between 2.35 m and 4.75 m i.e. 

parts of the aileron, the flap and part of the main wing adjacent to the flap and aileron 

were covered with speckled sticker material, see Figure 3. 

 

Figure 3 Indication of the location of speckled pattern on the NLR Fairchild Metro II 
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4.2 Evektor Cobra Figure 4 shows the measurement setup on the wing and in the cabin. The aircraft was 

also equipped with a Honeywell HG1050 Inertial Reference System (IRS) to measure 

the motion of the aircraft, a Honeywell Digital Air Data Computer (DADC) measuring the 

aircraft airspeed and the angle of attack, a GPS receiver for position measurement, a 

synchro measuring the aileron rotation angle and a potentiometer that measured the 

flap rotation. This aircraft data was recorded and stored on a ruggedized PC based 

recording system during the test flight, while the image stream of the cameras were 

recorded on dedicated laptops. The amount of fuel in the tanks of the aircraft was noted 

during each run by the non-flying pilot for determining wing loads in post-processing.  

  

Figure 4 Pictures of the interior of the NLR Fairchild Metro during the AIM
2
 flight test (left) and of 

the starboard wing of the aircraft with the partly speckled wing, aileron and flap (right picture) 

 

4.2. Evektor Cobra 
The instrumentation of Evektor Cobra was similar to the instrumentation of the Metro. 

The installation of identical cameras on a frame in the cabin and the speckled pattern 

taped to the wing is shown in Figure 5. As the investigation for the Cobra was especially 

for wing vibration and the related wing flutter investigations also accelerometers were 

installed on the wing. Aircraft attitude, control surface position and location were 

measured with a similar instrumentation package as was installed on the Metro.  
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5 Processing of images 

 

 

  

Figure 5 EVEKTOR Cobra with a speckled 
pattern taped on the left wing and cameras 
installed in the cockpit

5. PROCESSING OF IMAGES 

The algorithms described above to process images towards wing deformation 

information were programmed in a Matlab software package. To make the processing of 

images easy for Flight Test Engineers the Matlab code was embedded in a GUI which 

guides the user through the process of defining geometrical information of the area that 

is processed on the wing, such as dimensions and the wing profile, processing 

parameters and requested outputs, see Figure 6. The deformations of the wing area 

can be modelled in generic parameters such as wing heave, dihedral, torsion, twist and 

curvature. 
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6 Measuring wing deformation dynamics 

6.1 Landing 

 

Figure 6 One of the screens of the GUI for IPCT processing of wing images. In the left column the 
steps for processing the images are given 

6. MEASURING WING DEFORMATION DYNAMICS 

Applying cameras that acquire a large number of images per second compared with the 

dynamics of an aircraft wing provided the potential for flutter measurements and other 

dynamic investigations on the wing. The capability was demonstrated by measuring the 

wing deflection just before, at and after the landing of the Metro and by ground 

measurements of Cobra wing vibrations.  

6.1. Landing 
Figure 7 shows the heave measured with IPCT during a touch-down at Woensdrecht 

Airport. The vertical acceleration as measured with the IRS (positive upwards) in the 

cabin of the aircraft is also presented in Figure 7. Measurements are synchronized and 

the touch-down moment was obviously at 3.5 seconds after the start of the run.  

As can be seen in Figure 7 the heave of the wing before touch-down is larger than after 

touch-down. The wing generates less lift after touch-down as the aircraft has weight on 

its wheels and that is clearly reflected in this measurement. The loss of lift at the touch-

down is of course due to the decrease of the angle-of-attack as the nosewheel is 

lowered on the runway. 

The wing movement measured with IPCT is much more complex than the acceleration 

measured with the IRS. This is partly due to the bandwidth of IPCT (60 Hz) versus the 

more limited bandwidth of the IRS (8 Hz), partly due to motion of the wing relative to the 

fuselage and probably partly due to camera vibrations. A response of the wing on the 

initial acceleration is visible in Figure 8. The modes of the wing deformations are clearly 

visible in the frequency range from 0 to 10Hz. A strong vibration of about 37 Hz is also 
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visible in the heave measurement, probably due to the limited stiffness of the camera 

mounting. The installation of the cameras stiffly enough to sustain all loads experienced 

in aircraft predictably is to be improved or a correction method for camera motion such 

as reported in [2] is to be applied. 

   

Figure 7 Wing heave, measured with IPCT (left) and the vertical acceleration in the cabin of the 
aircraft, measured with the IRS (right, positive upwards), during touch-down at Woensdrecht 
Airport 

  

Figure 8 Zoom in on the heave and the spectral density of deflections. The wing motions are in the 
frequency range up to 10 Hz 
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6.2 Wing vibration measurement 
7 IPCT for measuring aileron and flap deflections and deformations 

6.2. Wing vibration measurement 
The Cobra wing was mechanically excited on the ground while on struts by hitting the 

wing with a hammer. IPCT wing vibration measurements of the wing containing fuel and 

with an empty tank are presented in Figure 9. The vibrations were also measured with 

accelerometers resulting in spectra that were in agreement with the spectra measured 

with IPCT. Ground vibration measurements are the first measurements performed for a 

flutter investigation and these results show that the measurement setup can be used for 

this purpose.  

 

Figure 9 Vibration of the Cobra wing on the ground as a function of time for the wing after an 
impulse with a hammer (left) and the Spectral Density of the amplitude of wing vibrations  (right)  
after hitting the wing with (blue line) and without fuel (green line)  

In the flight test it was also attempted to measure the damping of the wing vibration at 

different airspeeds by hitting the steering wheel. The damping was so high that the 

response did not show any periodic behavior at airspeeds that were allowed during this 

campaign. 

7. IPCT FOR MEASURING AILERON AND FLAP DEFLECTIONS AND 

DEFORMATIONS 

Matlab software was developed to analyse the image part of the rotating aileron or flap. 

The rotation of the aileron and flap relative to a hinge axis and deformations were 

measured. Determining the 3D location and orientation of the rotation axis appeared to 

be challenging. The rotation axis has to be defined accurately, both geometrically and 

its projection in the image. Not only for its stable position on the ground but also in-flight 

when the axis moves due to wing deformation. The axis is located underneath the wing 

surface, resulting in a combination of a translation and rotation of speckles on the 
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surface. Accurate 3D co-ordinate descriptions of the wing, the axis, the flap and the 

camera, both in the geometrical domain and the image domain were developed and the 

transformations between the geometrical and image domain were defined. 

The first processing step is the determination of the geometric displacement and 

rotation of the rotation axis. This is done by performing IPCT analysis of the wing 

surface and extrapolating the estimated deformation model to the position of the rotation 

axis.  

The second step is a first estimation of the rotation angle of the wing part (flap or 

aileron) made by analysing the displacements and rotation of the markers on the wing 

part in the image. For larger rotations also tracing of the markers in the image was 

hampered. The tracing was based on correlation of relevant areas around the marker 

that were defined in the IPCT algorithm (and therefore also in the GUI). Square markers 

were applied on the Metro and the Evektor that changed in diamond shapes in the 

image when the aileron or flap was rotated. Correlation functions of square markers and 

diamond markers do not have an optimally defined peak and therefore this step might 

be improved by applying other marker shapes in the future. 

In the third processing step the image part showing the rotated surface in the reference 

image is rotated over the angle estimated in the second step using the full 3D geometric 

transformation formulas. However these formulas are complex and therefore time-

consuming for the calculations. Therefore this step was simplified in order to keep 

calculations fast. The measurement area under investigation on the aileron or flap is 

subdivided in a 2D geometrical grid defining smaller areas of interest. Only for the 

corner points in the grid, the full 3D geometric transformation formulas are applied. The 

translations of the image pixels lying between the grid points are calculated using 2D 

interpolation between the neighbouring grid points. The pixels of the resulting 

transformed image no longer coincide with the original location of the camera pixels. 

This is corrected using a 2D linear interpolation algorithm. The final result of this step is 

a transformed reference image that presents the view of the rotated part as it should 

look as a result of the wing deformation and the estimated rotation of the part. 

In the fourth and final step the transformed reference image is correlated with the 

measured image using the IPCT algorithm, yielding a deformation model for the rotated 

part and the deviations from the reference model of the individual areas of interest. This 

is exactly the same procedure that was described earlier for the wing surface. The 

deviations calculated during this step also yield an improved estimate for the rotation 

angle of the wing part. This estimate can be used to improve the IPCT results by 

restarting the calculations from the third step. 
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7.1 Aileron deflection and deformation measurements in flight Developing the measurement process and the associated algorithms was found to be 

not trivial. Especially accurate determination of the rotation axis of the aileron or flap in 

the images and the related accurate definition of wing, surface and rotation axis 

geometry proved to be essential. Small deviations appeared to have considerable 

effects on the result of the measurement in cases where the process was not well 

controlled or when geometries were not well defined.  

The next section presents the results from in-flight aileron deflection and deformation 

measurements. For aileron and flaps deflection and deformation the same algorithm 

can be applied. 

7.1. Aileron deflection and deformation measurements in flight 
During the flight test campaign with the EVEKTOR Cobra aileron deflections were 

measured with IPCT.  An aileron doublet manoeuvre gave a range of aileron deflections 

that were processed.  

The processing result of images taken during the doublet manoeuvre is shown in Figure 

10. Note that the motion is very smooth, where the measurements are the result of 

correlations of different measurement images vs. the reference image. Variations in the 

measurements are very small. In periods with minimal aileron motion the standard 

deviation of the IPCT measurement is 0.016 degree, giving an indication of the lower 

bound on the error of the IPCT measurements. 

 

Figure 10 Aileron deflection measured with IPCT during the doublet manoeuvre in Cobra flight test 
campaign 

The image processing algorithm determined the deformation of surfaces in terms of 

heave, dihedral, rotation, torsion and chordwise curvature fitting the best smooth 

surface through the measurements. The residue after fitting this smooth surface will 
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consist of the local deformations of the surface and the residual measurement errors. 

These residues are presented in Figure 11. 

The residual vertical deformations appear to have a coherent structure. The position in 

the lower left corner (500 mm, -1200 mm) is more stable, i.e. smaller deformations, than 

the rest of the aileron. Furthermore the residual deformations at two locations on the 

aileron (650 mm, -900 mm) and (650 mm, -400 mm) are larger than the surrounding 

aileron surface. This corresponds with the mechanical design features of the aileron as 

is shown in Figure 12. 

 

Aileron deflection is -0.02 deg.  Aileron deflection is +3.90 deg. 

 

Aileron deflection is -0.49 deg.  Aileron deflection is -5.47 deg. 
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8 Conclusion 

Aileron deflection is -1.46 deg. 

Figure 11: Residual aileron deflections in mm after correlating the measurement images with the 
optimally rotated reference image. The co-ordinates are with the y-axis on the center of the main 
spar of the wing and the x-axis perpendicular to the y-axis on the wing surface. The origin (x=0, 
y=0) of the coordinate system is chosen on the main spar, at the tip of the wing 

 

Figure 12 Drawing of the internal structure of the EVEKTOR Cobra aileron 

8. CONCLUSION 

IPCT, a new technique for measuring the wing deformation, requires a small installation 

effort for the instrumentation and provides high bandwidth, high resolution and accurate 

results. The technique can be applied for the movable parts of the wing where both the 

deflection of the surface and the deformation can be determined. Demonstrations for in-

flight measuring the aileron deflection and deformation and for measuring wing 

dynamics were presented.  

For applying the IPCT technique with one camera geometrical information is used of the 

camera position relative to the measurement areas and the direction of the deformation. 

This information is either available or can be measured on the ground.  

For determining the deflections of movable parts of the wing the rotation axis has to be 

determined both geometrically with respect to the camera and in the images to be 
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processed. As the rotation axis moves together with the wing this has to be determined 

per processed image. The accuracy for determining the axis is critical for accurate 

deflection information of the control surface.  

Deflections of the wing were measured on the ground and in-flight with a bandwidth 

suited for flutter investigations. The measurement of eigen frequencies of the wing with 

IPCT and accelerometers on the ground are in agreement. Excitation of vibrations in-

flight by hitting the steering wheel was not sufficient for flutter investigations at the 

airspeeds flown. 

The installation of the cameras stiffly enough to sustain all loads experienced in aircraft 

predictably or to be able to correct for camera motion needs further development. This 

will make the method suitable for amongst others flight flutter tests.  

A software tool providing a Graphical User Interface was developed for applying IPCT 

image processing easily. A Flight Test Engineers with a basic knowledge of the 

technique and the measurement goals should be able to process images in a short time 

into plots and time traces of wing parameters. 
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