
UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

This report is based on a presentation held at the SISO Simulation Interoperability
Workshop, Orlando (FL), U.S.A., 20-24 September 2010.

Report no.
NLR-TP-2010-663

Author(s)
R.T.A. Meiland
A.J.J. Lemmers

Report classification
UNCLASSIFIED

Date
July 2011

Knowledge area(s)
Training, Simulatie en Operator
Performance

Descriptor(s)
Collective Mission Simulation
Distributed debriefing
Distributed Debrief Control
Protocol
Supporting systems

Distributed Debriefing in Collective Mission Simulation

Problem area
Mission training and rehearsal for
both real and simulated mission
exercises become increasingly more
distributed. This has consequences
for debriefing, since the participants
are at various locations. Therefore it
is more difficult to establish a
universal understanding of the
events of the mission. To overcome
this, playback of mission data of
every different location should be
synchronized and at least one
location should control the
playback. Furthermore the different
operators are all using their own
debrief systems that currently aren’t
interoperable with each other. These
different systems are developed for

giving the best view of each
platform. The operators are used to
these, know how to operate the
tools and get the best views out of
the tools for their own debriefing. It
is our purpose to make use of these
tools but getting these to that same
event may be challenging

Description of work
In the SISO community a Study
Group has discussed to develop a
standard for distributed debriefing,
i.e. the Distributed Debrief Control
Protocol (DDCP). The DDCP
protocol enables multiple separated
recorders / replayers to be
controlled (start, stop, pause) in a
time-synchronized manner. Since

UNCLASSIFIED

UNCLASSIFIED

Distributed Debriefing in Collective Mission Simulation

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

the debrief tool Personal Computer
Debrief System (PCDS) is used by
the Royal Netherlands Air Force
(RNLAF), we have incorporated
PCDS into our DDCP
implementation. Furthermore we
have implemented a part of the
DDCP and are able to handle a
selected set of the messages,
namely the set for synchronizing the
playback of mission data. This way
the operators can use the same
debrief system they are used to.

A practical approach has been
followed to demonstrate the
working of distributed debriefing
where in a use case the evolving
standard Distributed Debriefing
Control Protocol (DDCP) is tested
in a distributed debriefing set-up
with the operational debriefing tool
PCDS. In a distributed set-up with
DDCP tools at two dispersed
locations we demonstrated that the
DDCP protocol can support the
synchronisation of operational
debriefing tools at dislocated sites

Results and conclusions
In a distributed set-up with DDCP
tools at two dispersed locations we
demonstrated that the DDCP
protocol can support the
synchronisation of operational
debriefing tools at dislocated sites.
We were able to incorporate PCDS
into the DDCP software
implementation for synchronized
playback. The first reactions from
the fighter pilot community on this
debriefing set-up indicate that this
provides a useful addition to the
distributed debrief. We recommend
therefore to continue with the
DDCP standardisation effort and to
establish a Product Development
Group (PDG) for this in the SISO
community.

Applicability
The Distributed Debrief Control
Protocol could be the solution to
enable synchronized playback of
mission data at different locations.
However the DDCP hasn’t matured
yet to become a standard and
further research and standardisation
efforts need to be done

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

NLR-TP-2010-663

Distributed Debriefing in Collective Mission
Simulation

R.T.A. Meiland and A.J.J. Lemmers

This report is based on a presentation held at the at the SISO Simulation Interoperability Workshop,

Orlando (FL), U.S.A., 20-24 September. 2010.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

This publication has been refereed by the Advisory Committee AIR TRANSPORT.

Customer Ministry of Defence

Contract number GBS 06/124

Owner NLR

Division NLR Air Transport

Distribution Unlimited

Classification of title Unclassified

 July 2011
Approved by:

Author

Reviewer Managing department

NLR-TP-2010-663

2

Contents

1. Introduction 4

2. Debriefing needs 4

3. Distributed Debriefing Control Protocol as a solution 5

4. Use case 11

5. Conclusions and recommendations 13

References 13

Author biographies 15

NLR-TP-2010-663

3

Distributed Debriefing in Collective Mission Simulation

Remco Meiland, Arjan Lemmers

National Aerospace Laboratory NLR

Anthony Fokkerweg 2

1059 CM AMSTERDAM

The Netherlands

Meiland@nlr.nl, Lemmers@nlr.nl

ABSTRACT: Mission debriefing is a crucial part of mission training and rehearsal and an important

source for gaining understanding of one’s actual performance. During debriefing participants get

feedback about their actions and performance within a larger context, and in relation to other

participants. Representation of this feedback relies heavily on tool support that needs to balance

between the right information in the right doses at the right time. At the moment, the National

Aerospace Laboratory NLR in Amsterdam, The Netherlands, is involved in a NL MoD program called

“Collective Mission Simulation” (CMS). Within this program several experiments have been held to

test and evaluate various aspects of collective mission simulation. One of these aspects is distributed

debriefing. The main purpose of our research is to assess several options for a distributed setup that

gives military operators the means to effectively debrief in a collective mission. A special focus of our

research is to enable the current operational debriefing tools to be used in this setup. From this point of

view we focus on aspects such as how to set up the debriefing environment, how to run the debriefing,

what information to share, and how to do this at the collective level.

In the SISO community a Study Group has discussed to develop a standard for distributed debriefing,

i.e. the Distributed Debrief Control Protocol (DDCP). During mission execution various data-streams

have been recorded at various locations, such as audio communication, video, simulation data, etc.

During debriefing these multiple recorded streams are being replayed. The DDCP protocol enables

multiple separated recorders / replayers to be controlled (start, stop) in a time-synchronized manner.

The CMS program has followed this initiative and set up a test case in which the functionalities and

usability of DDCP have been assessed. In this paper we will outline the technical findings of our

research including the design and development of our distributed debriefing test bed and the technical

implementation of DDCP. These aspects are evaluated in a use case with manned simulators at two

distributed locations.

mailto:AGerretsen@nlr.nl�
mailto:Lemmers@nlr.nl�

NLR-TP-2010-663

4

1. Introduction

As in real military operations, military training

is becoming more distributed in nature. This

has led to a growing need for a collective

mission simulation (CMS) environment that

can support concept development and

experimentation, e.g. in the areas of mission

training and rehearsal, system acquisition,

tactics and doctrine development, and

command and control. CMS provides the

military with a distributed simulation

environment that allows units to participate

from their own base in distributed mission

training events.

Mission training and rehearsal rely heavily

upon bringing all participating teams,

platforms, and command and control, into a

relevant, coherent and realistic mission

environment. Debriefing is one of the crucial

aspects as it is an important source for gaining

understanding of actions of both individuals

and teams in relation to the mission outcome.

During debriefing the participants get feedback

about their performance within a larger

context, and in relation to the other

participants. Representation of this feedback in

an appropriate and relevant manner calls for

innovative debriefing solutions.

At the moment, the National Aerospace

Laboratory NLR in Amsterdam and TNO in

The Hague, The Netherlands, are involved in a

NL MoD program called “Collective Mission

Simulation” (CMS) [1]. As part of this

research program NLR has investigated

possibilities to set up a distributed debriefing

environment. A practical approach has been

followed where in a use case the evolving

standard Distributed Debriefing Control

Protocol (DDCP) is tested in a distributed

debriefing set-up with the operational

debriefing tool Personal Computer Debrief

System (PCDS).

In this paper we will describe this use case and

we will shortly explain the basic principles of

the DDCP. Then we explain our experiences

on implementing (parts of) this protocol. We

will conclude with describing the results of the

use case in which we tested the debriefing set-

up with military operators giving their

feedback.

2. Debriefing needs

The main difference between mission training

at one location and distributed mission training

is obviously the fact that participants are at

various locations. Of course this has

consequences for debriefing as it is more

difficult to establish a universal understanding

of the events of the mission. To overcome this,

playback of mission data of every different

location should be synchronized and at least

one location should control the playback. Once

the mission playback of all geographically

separated sites are synchronized, it allows

every team to give input from their point of

view or platform position. Having multiple

views of the mission represented, you can then

de-conflict misunderstandings that may have

caused mission degradation [6]. Other ways of

NLR-TP-2010-663

5

operation or communication can then be

discussed to anticipate future

misunderstandings.

Let us start with a practical example of an

extraction mission. During an exercise 2 teams

are involved, one F-16 team and a helicopter

team (Eurocopter Cougar AS 532U2). They

are both on different places far away from each

other. Both teams fulfil different roles. The

helicopter team’s objective is to pickup

someone from an extraction point behind the

FLOT (Forward Line Of Troops). The F-16

team has to support the extraction by

suppressing OpFor air and ground assets.

Communication between both teams is of

crucial importance. The F-16 team has to

inform the helicopter pilot when it is allowed

to cross the FLOT to extract the person. The

helicopter pilot informs the F-16 team about

the extraction status.

Figure 1 Cougar helicopters

Of course both teams can debrief only

internally, but more lessons are learned by

distributed debriefing. The teams brief not only

themselves but they brief together. That makes

the teams much more aware of what their role

in the mission outcome is, and how the other

teams perceived their actions.

According [4] a distributed debrief occurs

when multiple geographically separated parties

desire to conduct a debrief as if they are all at

the same location. How can this be achieved?

3. Distributed Debriefing Control

Protocol as a solution

Currently, the different operators are all using

their own debrief systems that aren’t

interoperable with each other. These different

systems are developed for giving the best view

of each platform. The operators are used to

these, know how to operate the tools and get

the best views out of the tools for their own

debriefing. It is our purpose to make use of

these tools but getting these to that same event

may be challenging.

Therefore a need exists for protocols that can

bridge the gap between the systems which

would allow participants to focus on the

debrief and not be distracted by trying to get

the systems synced up. A protocol would also

facilitate a more interactive exchange of ideas

for distributed participants by giving them

some of the advantages that collocated

participants share. In the SISO (Simulation

Interoperability Standards Organization) [2]

community the initiative is taken to define a

standard protocol for controlling distributed

debriefing, the DDCP. In 2007 a study group

has been established to evaluate industry and

government interest in developing a distributed

NLR-TP-2010-663

6

debrief control protocol standard. This study

group has sent out a survey to record the needs.

In 2008 the results of the survey are published

[6]. Unfortunately it seems that the initial

momentum of the Study Group has waned and

the start of a new Product Development Group

(PDG) is delayed until further interest is

generated. Nevertheless, the last question of

the survey queried the interest in supporting a

PDG and 88% of the responses were in favour

of supporting a PDG. Ideally the initial

standard would focus on the record and

playback capabilities, which provide the

backbone for the distributed debrief capability.

The capability to control the playback of a

simulation is characterized in the following

ways:
- Play – The ability to start the playback.
- Pause – The ability to pause the

playback.
- Fast Forward – The ability to advance

through the playback in predetermined
increments.

- Rewind – The ability to advance the
playback in reverse through pre-
determined increments.

- Seek – The ability to seek to a new
playback time in a short or near-
instantaneous amount of time.

We consider DDCP as an interesting solution

to control and synchronize playback of mission

data and multimedia content among training

devices across a long-haul network during

Mass Distributed Debrief operations.

Therefore we support the DDCP initiative and

start implementing parts of the DDCP. This

will gain us valuable insights into the protocol

itself, which we will feed back to the study

group and a possible upcoming DDCP PDG to

improve the standard.

Our implementation of the Distributed

Debriefing Control Protocol (DDCP) is based

on the specification of The Boeing Company

[3]. The implementation is far from complete,

we intended to evaluate the mechanism of

synchronized and controlled event replay of

data across multiple computers and how

distributed debriefing can contribute to

improve debriefing in CMS.

A DDCP package contains one packet header

and one or more records. The header and

records consist of several fields. These records

are for example meant for session management

such as loading and saving a session, for group

management, i.e. joining and leaving a group,

or for playback control, such as play, pause,

fast forward and rewind the playback.

Figure 2: Synchronized Debrief

To limit bandwidth usage and for security

reasons, only control messages are sent over

the network, not the data itself. A scheme is

NLR-TP-2010-663

7

represented in Figure 2. It is expected that each

site records data independently [4]. Once the

data is recorded, each site can playback its own

recording in a synchronized manner by using

the DDCP protocol.

For sending the control messages over the

network, the principle of serialization /

deserialization is used. The protocol

description is unambiguous regarding the field

sizes and types (for instance unsigned / signed

32-bit integer) of the packet and various

records. Furthermore byte order (little-endian,

big-endian) is reckoned with.

The protocol is implemented in C++ using the

User Datagram Protocol (UDP) as the transport

layer, since DDCP is designed to operate

directly on top of UDP. We can easily

exchange data through the mechanism of

serialization / deserialization and deal with

Endianness.

Design patterns [5] are chosen as a software

design strategy for the implementation of the

DDCP protocol in C++. We have used a

factory pattern to create the packet and records

as described in [3]. Furthermore this factory

pattern is used to determine the byte order of

the records.

Although we can create, send and receive all

records, our implementation of handling the

records is limited. Since the record and

playback capabilities provide the backbone for

the distributed debrief capability, we focussed

on handling the records that are needed to

control playback.

The ability to control the logger depends if the

tool features some sort of API allowing for the

user to produce and then integrate new record,

play, stop, and seek capabilities to the existing

system.

We have several loggers at our disposal, i.e.

MÄK Data Logger and an internal logger in

the Personal Computer Debrief System

(PCDS) which is shown in Figure 3. A C++

API and Interface Control Document are

received for PCDS for record / replay control.

MÄK Data Logger contains a C++ API. Direct

control via the API of the considered Loggers,

motivates our choice for implementing DDCP

in the C++ programming language.

The MÄK API has very extensive control

prospects compared to the PCDS API. On the

other hand since the Royal Netherlands Air

Force (RNLAF) uses PCDS, it is interesting to

evaluate integrating the DDCP protocol with

the PCDS API. Also mission replay can be

directly viewed by PCDS and not by MÄK

Data Logger.

The DDCP specification [3] describes a master

– slave communication model where one

device has unidirectional control over one or

more other devices.

NLR-TP-2010-663

8

Figure 3 Personal Computer Debrief System

In our implementation, for the master device it

means that when a logger control event

happens (pressing play, stop, pause, dragging

the time slider, etc) a SYNC Notification

Record has to be created with the correct

values of the state, effective time, requested

time, etc. and send the package to the remote

loggers using UDP. The slave device

commands the logger to play, stop, seek, etc.

when a SYNC Notification record is received.

Figure 4 depicts the state diagram for client

devices. A client device starts in the ALONE

state and enters the STOP state when it

receives a JOIN request [3].

NLR-TP-2010-663

9

A GUI (Graphical User Interface) is designed

to control DDCP network traffic and logger

playback. The framework we have chosen is

Qt by Trolltech which is based on C++, is open

source and provides us with all the

functionality needed to build complex, high-

performance GUI and console applications.

Furthermore Qt provides single-source

portability across Microsoft Windows, Mac OS

X, Linux, all major commercial Unix variants,

and embedded Linux.

Figure 4 State Diagram

The software scheme in Figure 5 depicts the

software implementation. Connected blocks

interact with each other. An arrow denotes a

‘has a’ relationship. For instance the packet

handler has a Sync Notification Record but the

Sync Notification Record doesn’t know

anything about the Packet handler, since the

arrow points only in one direction. Several

times in the scheme of Figure 5 the arrow

points both ways, for instance the Mediator has

a logger interface, but the logger interface

knows about the mediator as well. Actions go

both ways, so the mediator can influence the

logger interface by giving a play command, but

the logger interface can also tell the mediator it

has stopped playback, for instance. Finally a

dot represents an ‘is a’ relationship, so a MÄK

logger is an implementation of the logger

interface <ILogger>.

Serveral software blocks will be explained

next:

 UDPSocket: communicates with the

outside world and deals with

serialization / deserialization

 Graphical User Interface: to configure

the UDP Socket ports, subnet mask,

show received data, select master or

slave, etc.

 Mediator: connects and controls most

classes. The separate classes are only

aware of the mediator and are

decoupled from other classes.

 State Manager: manages the current

state, which can be ALONE, STOP,

PLAY, RECORD and SEEK. It also

tracks if a transition to another state

can be done, for example in ALONE

we can only go to STOP and not

PLAY. State transitions are based on

Figure 4 State Diagram.

 Package Handler: handles a received

DDCP packet (in case of a slave

device) or it creates a packet to be sent

(in case of a master device).

 ILogger: logger interface. Playback

control is communicated to the logger

interface and not to implementations of

the logger interface. This way,

NLR-TP-2010-663

10

extensions of new logger

implementations can be easily made.

 MÄK / PCDS Logger: are our concrete

logger implementations, which can

play, stop, record and seek DIS data.

Future implementations could be a

video logger for instance showing on-

board cockpit video.

Dashed blocks represent not yet implemented

software blocks, so for instance only records

for playback control (Sync Notification) can be

handled at the moment.

Figure 5 DDCP Software Scheme

Both the PCDS Logger and the MÄK Logger

are implementations of the interface

<ILogger> as is shown in Figure 5. This logger

interface has the following commands:

- stop – stops the recording or playback.
- play – plays the logger at a certain

playback speed.
- record – records a future playback.
- seek – seeks to a certain playback

time.

Because of this software design, it’s easy to

upgrade the application with a new logger, for

instance on-board cockpit video. Only the new

logger has to be implemented, the rest of the

code blocks remain unchanged. Important

playback speed control options we described

earlier, such as pause, fast forward or rewind

are incorporated in the play command. The

play command has an argument to control the

playback speed. This way besides normal

NLR-TP-2010-663

11

playback, the logger can also pause, fast

forward or rewind the playback by changing

the playback speed.

Although the DDCP packet description is very

much unambiguous, we believe handling

DDCP packets will not be naturally the same

between independently created

implementations of the protocol. The

interaction between master and slave is a key

factor of successful replay between several

dislocated replayers. Therefore further research

is needed and we intend to report our findings

in future work. However this version of the

DDCP protocol is already a great step forward

to distributed debriefing.

4. Use case

The use case is held amongst two sites, and

only consists of air forces, namely one F-16

team and a helicopter team (Eurocopter Cougar

AS 532U2). During a distributed debriefing

every site can regard the mission replay from

its own perspective. This makes distributed

debriefing especially interesting for joint

exercises, where the cooperation between e.g.

air force, navy and army is practiced, since

these perspectives can be very different. For

two air sites the perspectives are less different,

however distributed debriefing is still

interesting. An extraction scenario (Figure 6) is

defined where military operational relevance

for air forces is considered.

Figure 6 Extraction scheme

A helicopter has to extract a VIP from the

extraction point (EP) behind the FLOT. The

helicopter is protected by two 2-ship F-16s,

performing Combat Air Patrol (CAP) east and

west of the EP. One of the 2-ships will be

tasked to attack an enemy convoy heading

towards the EP.

During the mission execution 2 recordings will

be made; one at the F-16 site and one at the

Helicopter site. Both sites are located at the

National Aerospace Laboratory in Amsterdam,

the Netherlands. They are both in different

buildings and have separate networks and can

therefore be regarded as separate sites, the set-

up is shown in Figure 7.

Figure 7 Sites set-up

NLR-TP-2010-663

12

The Fighter 4 Ship (F4S) is a research

simulation facility that can simulate the

collective tactical operations of up to four fast-

jet fighter aircraft. A 2-ship is used for this use

case. One of the ships is depicted in Figure 8.

The Helicopter Pilot Station (HPS) is a fixed-

base reconfigurable simulator and has been

developed with particular emphasis on

handling qualities and human factors research.

For playback during debrief each site uses its

own recoding only. Synchronised playback of

these 2 recordings is used and through

Smartboard desktop sharing the sites can show

events on each others playback tool to the

other.

We have implemented the DDCP protocol on

both PCDS and the MÄK Data Logger. This

way we have tested that two different playback

systems can control and synchronize playback

of each other. However during the use case we

have only used PCDS for both the F-16 team

and the helicopter team. This is because MÄK

Data Logger is not used as a debriefing system;

it is used as a DIS / HLA logger.

After mission execution, both teams conduct a

flight / formation debrief. This means both

teams reconstruct the mission from their own

perspective, no information is shared between

the helicopter team and F-16 team.

Therefore during the flight / formation debrief,

lessons learned are identified, mission

snapshots are made and material is prepared

for the mass debrief.

During the mass debrief both teams should be

able to replay the mission for mission

reconstruction. Since debriefing deals with

mission execution, playback time is an

important parameter. For distributed debriefing

it is undesirable that participants from different

sites are looking at different mission situations

because of a non corresponding simulation

time. Therefore synchronisation of the

playback data of the mission is desired.

Manually synchronizing mission playback data

isn’t very accurate and time effective. It

demands two or more instructors to

communicate for instance by phone and

subsequently seek manually to play the desired

mission situation.

Figure 8 F4S Ship1

This set-up has been implemented and tested

with three (former) F-16 and Chinook pilots in

the loop and their reactions were positive on

the value of the distributed debriefing set-up.

Unfortunately due to busy schedules of the

pilots, the use case experiment itself has been

delayed and we can not feedback the

experiences of the active fighter and helicopter

NLR-TP-2010-663

13

pilots. However we do expect a positive

opinion of the DDCP protocol. 1

5. Conclusions and recommendations

As part of the CMS research program NLR has

investigated possibilities to set up a distributed

debriefing environment. A practical approach

has been followed where in a use case the

evolving standard DDCP has been tested in a

distributed debriefing set-up with the

operational debriefing tool PCDS.

We have implemented a selected set of DDCP

messages and incorporated these in PCDS for

synchronized playback. In a distributed set-up

with DDCP tools at two dispersed locations we

demonstrated that the DDCP protocol can

support the synchronisation of operational

debriefing tools at dislocated sites. The first

reactions from the fighter pilot community on

this debriefing set-up indicate that this

provides a useful addition to the distributed

debrief. We recommend therefore to go further

with the DDCP standardisation effort and to

establish a PDG for this in the SISO

community.

6. Future work

We will continue to explore the use of DDCP

further. As such, our research will continue to

contribute to the DDCP SISO standardization

initiative, extending the practical implications

for this standard, including actual

1
 The fighter pilot feedback is described in [7].

implementation recommendations based upon

our findings.

A next major step that we foresee is to expand

the CMS debriefing concepts to other

collective exercises. That will be the major

proof if distributed debriefing is beneficial for

the military operators performing their training

in these exercises.

References

[1]. Jeroen Voogd, Klaas-jan de Kraker, Lesley

Jacobs, Frido Kuijper, Michel Keuning,

Rombout Karelse (December 2008),

Collective Mission Simulation in The

Netherlands, Key Problems & Solutions,

Interservice/Industry Training, simulation

and Education Conference (I/ITSEC),

Orlando

[2]. http://www.sisostds.org/

[3]. Curtis A. Armstrong (December 2007),

Specification for Distributed Debrief

Control Protocol, The Boeing Company

[4]. Randy Pitz, Curtis Armstrong (November

2007), Advanced Distributed Debrief for

Joint and Coalition Training,

Interservice/Industry Training Simulation,

and Education Conference (I/ITSEC),

Orlando

[5]. Gamma, Erich; Richard Helm, Ralph

Johnson, and John Vlissides (1995).

Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-

Wesley. ISBN 0-201-63361-2.

NLR-TP-2010-663

14

[6]. Final Report for: The Distributed Debrief

Control Protocol Study Group, SISO-REF-

028-2008

[7]. A.J.J. Lemmers and R.T.A. Meiland

(2010), Supporting Systems for Collective

Mission Simulation, NLR-CR-2010-653

NLR-TP-2010-663

15

Author biographies

Remco Meiland holds an MSc in Electrical

Engineering from the Delft University of

Technology, with a specialization in control

engineering. Afterwards he worked in the field

of Information and Communications

Technology for 5 years. Since 2009 he works

at the National Aerospace Laboratory at the

Training & Simulation department as a

simulation engineer.

Arjan Lemmers graduated from the Delft

University of Technology, where he studied

Aeronautical Engineering. Afterwards he

joined the Royal Netherlands Navy for 2 years

as a lecturer and research fellow for control

theory. Since 1998 Arjan is working for the

National Aerospace Laboratory NLR in the

field of flight simulation, distributed

simulation and training technology. Currently

he holds a position in the Training &

Simulation department as senior R&D

manager modeling & simulation. He is the

NLR program manager for Collective Mission

Simulation. At the same time he is chairman of

NATO RTO task group MSG-071

Missionland.

	1. Introduction
	2. Debriefing needs
	3. Distributed Debriefing Control Protocol as a solution
	4. Use case
	5. Conclusions and recommendations

