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Problem area 
The survivability of aircraft 
depends, amongst others, on the 
radar signature of the platform. 
Next to platform alignment, radar 
absorbing materials are increasingly 
being used for the reduction of the 
radar cross section (RCS). For the 
analysis of electromagnetic 
scattering of the platform, physical 
experiments are complemented by 
computational methods. Concerning 
future application to scatterers of 
absorbing materials with nonlinear 
characteristics, classical numerical 
schemes in electromagnetics have 
to be extended to accurately predict 
the radar response. To this end, a 
formulation in time-domain is more 
favorable than a frequency-domain 
method. 
 
Description of work 
A boundary element method will be 
used because of its superior scaling 
characteristics for electromagnetic 
large platforms. An  important 
numerical choice in this Time 
Domain Integral Equation (TDIE) 
method is the definition of temporal 
basis functions. Many different 
choices can be found in literature, 
but no consensus has been reached 
on which one to use. 

Results and conclusions 
In this report, a framework will be 
presented which can be used to 
design temporal basis functions 
with user-defined accuracy and 
smoothness characteristics. To this 
end, a thorough mathematical 
analysis of the interpolation 
accuracy has been derived. 
Different temporal basis functions 
have been designed with the 
framework, including new spline 
basis functions. The framework has 
been experimentally validated on 
several test cases. The numerical 
results show good agreement with 
the derived accuracy and 
smoothness characteristics of the 
TDIE method. Remarkably, for the 
smooth temporal basis functions a 
higher order of accuracy has been 
measured then expected from the 
error analysis. 
 
Applicability 
The derived framework can readily 
be used for selecting appropriate 
numerical parameters in the TDIE 
method. The TDIE method is 
expected to be applicable for the 
RCS calculation of nonlinear 
scatterers. 
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Abstract

A key parameter in the design of integral equation methods for transient electromagnetic scat-

tering is the definition of temporal basis functions. The choice of temporal basis functions has

a profound impact on the efficiency and accuracy of the numerical scheme. This paper presents

a framework for the design of temporal basis functions with predefined accuracy and varying

smoothness properties. The well-known shifted Lagrange basis functions naturally fit in this

framework. New spline basis functions will be derived that have the same interpolation accuracy

as shifted Lagrange basis functions and with the added advantage of being smooth. Numerical

experiments show the positive influence of smoothness on the quadrature error in the numerical

integration procedure. The global accuracy in time of the numerical scheme based on shifted La-

grange and spline basis functions has been experimentally analyzed. For a given interpolation

error the experiments confirm the expected accuracy for the shifted Lagrange basis functions, but

remarkably show a higher order of accuracy for the spline basis functions.
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1 Introduction

Time Domain Integral Equation (TDIE) methods can model transient electromagnetic scattering

phenomena accurately and efficiently. They are appealing tools for the computational electro-

magnetic community since the radiation condition is automatically imposed and only the surface

of an object has to be discretized. Because the equations are fully formulated in time-domain, the

method has the potential to analyze wide-band and nonlinear scattering. Most TDIE methods can

function on unstructured triangular meshes and without constraints on the Courant-Friedrichs-

Lewy (CFL) number which allows a great flexibility in the choice of spatial and temporal mesh

sizes. However, widespread use of TDIE methods has been lagging behind because of instabil-

ities and relatively long computation times. With the inception of accelerators based on plane-

wave and fast Fourier techniques the efficiency has been improved such that objects of industrial

interest can be modeled (Refs. 23, 32). Stability has been enhanced by the combined use of filter-

ing (Ref. 21), implicit time stepping (Ref. 7), accurate evaluation of the system matrix (Ref. 26),

carefully tailored temporal basis functions (Ref. 31), Calderón preconditioning (Ref. 2), space-

time Galerkin discretization (Ref. 1), and convolution quadrature (Ref. 30). Since stable results

can be obtained for a very wide range of time step sizes (Ref. 26), modern TDIE methods can be

used for all practical purposes (Ref. 7).

The Marching-on-in-Time (MOT) scheme has been used extensively to discretize the Electric

Field Integral Equation (EFIE). Its marching procedure results in an efficient algorithm. One

of the main choices to be made for the MOT scheme is the definition of temporal basis func-

tions. Without any counterpart in frequency domain solvers, many different temporal basis func-

tions have been proposed in the literature (Refs. 19, 17, 13, 12, 11, 3, 31, 6, 4, 25, 14, 29, 9, 10,

8, 18, 28). Linear functions have first been used as building block of the temporal basis func-

tions (Ref. 19), followed by the introduction of temporal basis functions with quadratic Lagrange

polynomials (Ref. 17). The associated family of shifted Lagrange basis functions is still one of

the most popular choices of temporal basis function.

The choice of temporal basis function has influence on the accuracy, efficiency, and stability

of the TDIE method (Refs. 31, 6). This makes a proper design of temporal basis functions of

paramount importance for the performance of MOT schemes. Temporal basis functions are con-

structed according to user defined design criteria. Important are efficiency, bandlimitedness,

smoothness, and accuracy, which may conflict with each other. To the best of the authors’ knowl-

edge, no comprehensive analysis of the accuracy in time for MOT schemes has been given in

literature.
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The purpose of this paper is to define a framework for the design of temporal basis functions for

use in TDIE methods, with the focus on the influence of different formulations on the accuracy

of the method.

The discretization procedure in time that has been used in the MOT scheme will be interpreted

as a finite element method. Intrinsic to the finite element method is the projection of the solu-

tion on a function space of finite dimension. This interpolation procedure introduces truncation

errors that can be analyzed with the aid of Taylor series, resulting in clear accuracy conditions

for polynomial basis functions. In this way a framework will be derived that can be used to de-

sign temporal basis functions with predefined interpolation accuracy. The well-known shifted

Lagrange basis functions naturally fit in this framework, thus motivating its widespread use.

The presented framework can also be used to design novel temporal basis functions. It will be

shown that smoothness can be obtained without impinging on interpolation accuracy. For in-

stance, the cubic spline basis functions are two times continuously differentiable whereas the

interpolation accuracy is the same as for cubic Lagrange basis functions. Numerical results will

confirm that smoothness reduces the errors from the quadrature procedure. Surprisingly, the ex-

perimentally computed global accuracy in time for the MOT scheme using spline basis functions

is orders better than for the shifted Lagrange basis functions.

The main contribution of this paper is the presentation of a careful analysis of the accuracy in

time for TDIE methods. With the resulting framework, temporal basis functions can be designed

with predefined accuracy and smoothness characteristics, including novel spline basis functions.

This paper will proceed as follows: Section 2 summarizes the model equations and its discretiza-

tion, in particular the design of temporal basis functions. In Section 3 the interpolation error of

the temporal basis functions will be analyzed. The analysis will then be used to acquire a frame-

work for the design of temporal basis functions with specific accuracy and smoothness character-

istics. The numerical results in Section 4 illustrate the consequences of the various temporal ba-

sis functions on the accuracy and efficiency of the MOT scheme. Conclusions will be presented

in Section 5.

2 Formulation

The first part of this section summarizes the governing equations and the discretization method.

Several important design criteria for temporal basis functions will be explained in the second

part.

UNCLASSIFIED 3



UNCLASSIFIED
NLR-TP-2012-334 c© 2012 IEEE

2.1 Time Domain Integral Equation method
Consider a perfect electric conductor (PEC) surrounded by free space. With the Stratton-Chu

formulation, backscattered fields from the object can be expressed in terms of the electric current

distribution on the scattering surface. Substitution of the formulation of the scattered fields into

the interface conditions results in the Electric Field Integral Equation (EFIE) and Magnetic Field

Integral Equation (MFIE). The differentiated versions (Ref. 23), that have no integral in time,

will be used, i.e.,

−n× n×
∫∫

Γ

(
µ
J̈(r′, τ)
4πR

− 1
ε
∇∇

′ · J(r′, τ)
4πR

)
dr′ = −n× n× Ėi(r, t), (1)

n× n×
∫∫

Γ

(
J̇(r′, τ)
4πR

+
J̈(r′, τ)

4πc

)
× R

R2
dr′ − n× 1

2
J̇(r, t) = −n× n× Ḣi(r, t) (2)

the EFIE and MFIE, respectively, which are solved for the electric surface current density J(r, t)

on location r and time t. The dot notation J̇ = ∂
∂tJ has been used for differentiation in time. The

other variables are denoted as: Ei and Hi the incident electric and magnetic field, respectively,

which are zero for t < 0; Γ the scattering surface with outward pointing unit normal n; R =

|R| = |r − r′|; τ = t − R
c the retarded time; and ∇ and ∇′ the nabla operator with respect to r

and r′, respectively. The speed of light is given by c = (εµ)−
1
2 with ε and µ the permittivity and

permeability of free space, respectively.

The Combined Field Integral Equation (CFIE) is given by a linear combination of the EFIE (1)

and MFIE (2), i.e.,

CFIE =
κ

η
EFIE + (1− κ) MFIE (3)

for 0 ≤ κ ≤ 1 and η =
√

µ/ε the impedance (Ref. 22).

Numerical discretization uses a triangular mesh on the surface Γ and a uniform partitioning in

time with levels tk = k∆t for k = 0, 1, 2, . . . , Nt. The solution is expanded in terms of Ns spa-

tial and Nt temporal basis functions as

J(r, t) =
Ns∑
n=1

Nt∑
j=0

Jn,jfn(r)Tj(t). (4)

The Rao-Wilton-Glisson (RWG) functions are used for test and basis functions in space (Ref. 20).

In time, collocation is performed, that is, the CFIE is point matched in subsequent time levels tk.

Temporal basis functions

Tj(t) = T (t− j∆t) (5)
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are used to interpolate the solution from discrete time levels in retarded time levels. For effi-

ciency, causal basis functions with small support will be considered, that is, T (t′) = 0 for all

t′ ≤ −∆t and t′ > d∆t with d a small positive integer.

The discrete CFIE can be written as a marching procedure

Z0Ik = Vk −
k∑

j=1

ZjIk−j (6)

where Ik denotes the discrete surface current density at time tk, Vk the incident field at time tk,

and Zj discrete interaction matrices (Ref. 31). At every time level k the discrete surface cur-

rent density can be calculated from known solutions only, resulting in the Marching-on-in-Time

scheme.

2.2 Temporal basis functions
The choice of the temporal basis function (5) is the topic of this paper. The present analysis will

only make use of temporal basis functions that result in efficient MOT schemes and which can be

designed with conditions on accuracy and smoothness.

Efficiency of a numerical scheme is given by the trade-off between the amount of work and accu-

racy. Generally speaking, a temporal basis function with small support results in an inexpensive

TDIE method whereas a large support results in an accurate method (Refs. 15, 16). In order to

obtain the fast MOT algorithm (6), causal basis functions with small support will be used. These

compact temporal basis function are not bandlimited (Ref. 31).

Accuracy and smoothness will be the main guidelines in the present design of temporal basis

functions. Accuracy of the MOT scheme depends on various errors, including spatial discretiza-

tion error, temporal discretization error, and quadrature error. The different errors are coupled

due to the presence of retarded time levels in the CFIE. A higher order of accuracy may be ad-

vantageous because less stringent requirements have to be imposed on the mesh size for the same

truncation error.

The temporal discretization error will be isolated in this paper to enable concise derivations of

the design criteria. The present analysis considers the interpolation error of temporal basis func-

tion as a measure of temporal discretization error. This results in expressions of the order of in-

terpolation accuracy with respect to the size of support of the temporal basis functions.

The quadrature error originates from the numerical integration in space of surface currents in re-

tarded time levels. Smoothness of temporal basis functions is likely to improve the quadrature
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accuracy. Piecewise polynomial temporal basis functions will be considered because analyti-

cal expressions of the spatial integrals are available (Refs. 24, 26). These quasi-exact methods

improve the integration accuracy considerably but are nontrivial to implement and preclude ex-

tension to spatial curvilinear elements.

For these reasons, the present analysis restricts to temporal basis functions (5) that are defined

by piecewise polynomials which have a small support and are causal. They can conveniently be

written as

T (t) =



F0(t), −1 < t̃ ≤ 0,

F1(t), 0 < t̃ ≤ 1,
...

...

Fd(t), d− 1 < t̃ ≤ d,

0, else,

(7)

with F0, F1, . . . , Fd polynomials of degree d, and t̃ = t
∆t the scaled time.

3 Accuracy design of temporal basis functions

The CFIE (3) has been discretized with the MOT scheme. To isolate the properties of the time

components, the spatially discretized CFIE will be considered. This is a delay differential equa-

tion in time that uses both the first and second derivative. Its solution is a time-dependent vector

that corresponds to the electric surface current density on the spatial mesh.

The discretization procedure in time of the MOT scheme will be analyzed with the theory of fi-

nite element methods (Ref. 5). An analysis of the interpolation procedure results in a framework

for the design of temporal basis functions with a predefined order of interpolation accuracy. Ad-

ditional requirements on the smoothness yield various temporal basis functions, including shifted

Lagrange and spline basis functions.

Evidently, the accuracy of interpolation has influence on the global accuracy of the MOT scheme.

However, it is not necessary that the orders of interpolation and global accuracy are exactly the

same. In Section 4 the global accuracy will be analyzed experimentally for a number of different

temporal basis functions that can be defined within the current framework.
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3.1 Interpolation
In finite element methods the solution of a differential equation is approximated in a finite di-

mensional subspace. The map of the solution onto the finite element space is called interpolation

and is one of the sources of discretization errors. Temporal basis functions determine the finite

element space and the accuracy of interpolation. A thorough analysis of the interpolation proce-

dure will result in clear conditions on temporal basis functions for small interpolation errors.

For an arbitrary function u(t) the interpolator I defines the interpolant û(t) by

û = I (u) =
N∑

j=1

ũjTj (8)

for coefficients ũj , which will be defined later, and Tj(t) temporal basis functions (5). The inter-

polation error is given by ||u − Iu|| where the type of norm will be specified later. Recall that

for the CFIE the first and second time derivative have to be evaluated in the retarded time as well.

Therefore, the interpolation errors ||u′−Iu′|| and ||u′′−Iu′′|| are also of interest. The derivative

of a function is interpolated with the derivative of the same basis functions, i.e.,

Iu′ =
∑N

j=1 ũjT
′
j , (9)

Iu′′ =
∑N

j=1 ũjT
′′
j . (10)

For a correct interpolation procedure, two choices have to be made, namely the definition of the

finite element space and the map onto this space. Since basis functions in the form of (7) are

used, the finite element space is defined by the space of piecewise polynomials of degree d. The

map onto the finite element space is based on the definition of the coefficients ũj that depend

on u, i.e.,

ũj = Nj(u) (11)

for a functional Nj , called a nodal variable (Ref. 5). This nodal variable should be chosen such

that the interpolation can be analyzed easily. Additionally, a natural requirement is that the well-

known shifted Lagrange basis functions should fit within this choice for the nodal variables.

It is common practice to use an interpolation that is a projection. A sufficient condition is Ni(Tj) =

δij for i, j = 1, 2, . . . , N , with δij denoting the Kronecker delta. For the nodal variables and tem-

poral basis functions that will be used in this paper, this condition is satisfied a posteriori.
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3.2 Quadratic basis functions
Consider temporal basis functions based on quadratic polynomials. For an arbitrary time point τ ,

satisfying t`−1 < τ ≤ t`, the interpolant (8) reads

Iu(τ) =
N∑

j=1

ũjTj(τ) =
2∑

k=0

ũ`−kFk(k∆t− σ) (12)

with Fk as defined in (7). For a given τ ∈ (t`−1, t`] the pointwise interpolation error

||u− Iu|| = |u(τ)− Iu(τ)| (13)

will be used to analyze the accuracy of the interpolation. The coefficients ũ`−k that determine the

interpolation are defined by (11). As nodal variable, use

Nj(u) = u(tj) + α∆tu′(tj) (14)

for a constant α. This choice allows a straightforward analysis of the interpolation accuracy by

using Taylor series. The interpolant can then be written in terms of the unknown solution in the

arbitrary time point τ .

Quadratic polynomials may lead to an interpolation that is third order accurate (Ref. 5), to be

precise,

|u(τ)− û(τ)| = O(∆t3). (15)

To obtain this accuracy temporal basis functions have to satisfy

F0,σ + F1,σ + F2,σ = 1, (16)

F1,σ + 2F2,σ =
σ

∆t
+ α, (17)

F1,σ + 4F2,σ =
σ2

∆t2
+ 2α

σ

∆
t + 2α2 (18)

for F0,σ = F0(−σ), F1,σ = F1(∆t − σ), and F2,σ = F2(2∆t − σ), as derived in the appendix.

The first equation is the well-known unit sum condition for interpolants. Recall that the first and

second derivative have to be interpolated as well. Since the derivatives of the same basis function

are used, the interpolation of the derivatives are based on polynomials of a lower degree. This

reduces the accuracy of interpolation for the derivatives, to be precise,∣∣u′(τ)− û′(τ)
∣∣ = O(∆t2), (19)∣∣u′′(τ)− û′′(τ)
∣∣ = O(∆t). (20)
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The interpolation for the CFIE is thus first order accurate.

To obtain the claimed orders of interpolation accuracy, the temporal basis function has to satisfy

conditions (16)–(18). This system of three equations can be solved uniquely as

T (t) =



1
2 t̃2 + (3

2 − α)t̃ + α2 − 3
2α + 1, −1 < t̃ ≤ 0,

−t̃2 + 2αt̃− 2α2 + 1, 0 < t̃ ≤ 1,

1
2 t̃2 − (3

2 + α)t̃ + α2 + 3
2α + 1, 1 < t̃ ≤ 2,

0, else.

(21)

For any constant α this temporal basis function results in a first order accurate interpolation of

the CFIE. A sophisticated choice of α can be made by requiring a continuous basis function.

When α satisfies

α

(
α− 1

2

)
= 0 (22)

the temporal basis function will be continuous. The two solutions α = 0 and α = 1
2 can be

substituted into the general representation (21) of the temporal basis function. The choice of α =

0 results in

T (t) =



1
2 t̃2 + 3

2 t̃ + 1, −1 < t̃ ≤ 0,

−t̃2 + 1, 0 < t̃ ≤ 1,

1
2 t̃2 − 3

2 t̃ + 1, 1 < t̃ ≤ 2,

0, else,

(23)

which can be recognized as the quadratic Lagrange basis function (Ref. 17). The choice of α =
1
2 results in

T (t) =



1
2 t̃2 + t̃ + 1

2 −1 < t̃ ≤ 0,

−t̃2 + t̃ + 1
2 0 < t̃ ≤ 1,

1
2 t̃2 − 2t̃ + 2 1 < t̃ ≤ 2,

0 else.

(24)

This is the temporal basis function based on quadratic B-splines (Refs. 29, 9). Although only

continuity has been required, the spline basis function has a continuous derivative as well.
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3.3 Cubic basis functions
To increase the interpolation accuracy of the MOT scheme cubic basis functions can be used,

since cubic polynomials may result in fourth order accurate interpolation (Ref. 5). The deriva-

tion of temporal basis functions that satisfy this accuracy will be analogous to the derivation for

quadratic basis functions.

The nodal variable that will characterize the basis functions is chosen to be

Nj(u) = u(tj) + α∆tu′(tj) + β∆t2u′′(tj) (25)

for constants α and β. For cubic polynomials one can obtain fourth order accurate interpolation.

The differentiated functions in the CFIE are interpolated with lower order polynomials and there-

fore a lower order of accuracy can be obtained. So, an interpolation procedure is searched for

that satisfies

|u(τ)− û(τ)| = O(∆t4), (26)∣∣u′(τ)− û′(τ)
∣∣ = O(∆t3), (27)∣∣u′′(τ)− û′′(τ)
∣∣ = O(∆t2). (28)

With a straightforward extension of the derivation in the appendix, it can be shown that cubic

polynomial basis functions have to satisfy

F0,σ + F1,σ + F2,σ + F3,σ = 1, (29)

F1,σ + 2F2,σ + 3F3,σ =
σ

∆t
+ α, (30)

F1,σ + 4F2,σ + 9F3,σ =
σ2

∆t2
+ 2α

σ

∆t
+ 2(α2 − β), (31)

F1,σ + 8F2,σ + 27F3,σ =
σ3

∆t3
+

α

2
σ2

∆t2
+ (α2 − β)

σ

∆t
+ α3 − 2αβ. (32)

This system of equations can be solved uniquely as

F0(t) = 1
6 t̃3 +

(
1− 1

2α
)
t̃2 +

(
11
6 + α2 − 2α− β

)
t̃

+ 1− α3 + 2α2 − 11
6 α + 2αβ − 2β, (33)

F1(t) = − 1
2 t̃3 −

(
1− 3

2α
)
t̃2 +

(
1
2 − 3α2 + 2α + 3β

)
t̃

+ 1 + 3α3 − 2α2 − 1
2α− 6αβ + 2β, (34)

F2(t) = 1
2 t̃3 −

(
1 + 3

2α
)
t̃2 −

(
1
2 − 3α2 − 2α + 3β

)
t̃

+ 1− 3α3 − 2α2 + 1
2α + 6αβ + 2β, (35)

F3(t) = − 1
6 t̃3 +

(
1 + 1

2α
)
t̃2 −

(
11
6 + α2 + 2α− β

)
t̃

+ 1 + α3 + 2α2 + 11
6 α− 2αβ − 2β. (36)
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This general representation of temporal basis functions still has the freedom to choose the pa-

rameters α and β. Some choices of the parameters result in temporal basis functions that can be

found in literature (Ref. 9). However, to the best of the authors’ knowledge, this family of tem-

poral basis function has not been given in literature and therefore novel temporal basis functions

can be designed readily. The specific choices made in this paper will be based on requirements

on smoothness.

Requiring a continuous temporal basis function results in the condition

α3 − α2 +
1
3
α− 2αβ + β = 0. (37)

When one requires a continuous derivative, the condition
1
3

+ α2 − α− β = 0 (38)

has to be satisfied. Temporal basis functions that are C1(R) continuous have to satisfy both con-

ditions (37) and (38). Its unique real-valued solution is (α, β) = (1, 1
3). For this choice of param-

eters, the temporal basis function reads

T (t) =



1
6 t̃3 + 1

2 t̃2 + 1
2 t̃ + 1

6 , −1 < t̃ ≤ 0,

−1
2 t̃3 + 1

2 t̃2 + 1
2 t̃ + 1

6 , 0 < t̃ ≤ 1,

1
2 t̃3 − 5

2 t̃2 + 7
2 t̃− 5

6 , 1 < t̃ ≤ 2,

−1
6 t̃3 + 3

2 t̃2 − 9
2 t̃ + 9

2 , 2 < t̃ ≤ 3,

0, else.

(39)

Although only C1(R) continuity has been required, it is in fact C2(R) continuous. Therefore, it is

called the cubic spline basis function. This temporal basis function results in a second order ac-

curate interpolation procedure for the CFIE and has the striking feature of being C2 continuous.

Alleviating the smoothness requirement makes it possible to design different basis functions. For

continuity, condition (37) on α and β is the only one and has infinitely many solutions. Recall

that the nodal variable (25) has been chosen such that well-known basis functions can be ob-

tained. To show this capability of the framework, consider the solution (α, β) = (0, 0). This

choice results in

T (t) =



1
6 t̃3 + t̃2 + 11

6 t̃ + 1, −1 < t̃ ≤ 0,

−1
2 t̃3 − t̃2 + 1

2 t̃ + 1, 0 < t̃ ≤ 1,

1
2 t̃3 − t̃2 − 1

2 t̃ + 1, 1 < t̃ ≤ 2,

−1
6 t̃3 + t̃2 − 11

6 t̃ + 1, 2 < t̃ ≤ 3,

0, else,

(40)
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which is the cubic Lagrange basis function (Ref. 3).

The various temporal basis functions introduced in this section are depicted in Fig. 1 and their

properties are summarized in Table 1.
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Fig. 1 The shape of the temporal basis functions.

temporal basis function acc. T acc. T ′ acc. T ′′ total acc. smoothness

quadratic Lagrange O(∆t3) O(∆t2) O(∆t) O(∆t) C0(R)

quadratic spline O(∆t3) O(∆t2) O(∆t) O(∆t) C1(R)

cubic Lagrange O(∆t4) O(∆t3) O(∆t2) O(∆t2) C0(R)

cubic spline O(∆t4) O(∆t3) O(∆t2) O(∆t2) C2(R)

Table 1 Interpolation accuracy for the three temporal terms, the total interpolation accuracy of

the CFIE and the smoothness of the various temporal basis functions.

In this section, quadratic and cubic temporal basis functions have been designed that result in

an interpolation procedure for the CFIE with first and second order accuracy, respectively. The

current framework can readily be extended to higher order polynomials with larger support. The
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natural extension of the nodal variable is to include higher order derivatives. These extensions

introduce more degrees of freedom for the design of temporal basis functions. As is derived in

this paper, higher orders of interpolation accuracy or better smoothness characteristics can be ob-

tained. However, the degrees of freedom can also be used to fullfill other types of design criteria.

For instance, the choice of temporal basis function has an effect on the efficiency of the linear

solver. In every iteration of the MOT scheme (6) a system of linear equations has to be solved,

which is computationally expensive for large condition numbers. The shape of the temporal ba-

sis function has influence on the condition number of discretization matrices. Further research is

required to derive concise conditions on these degrees of freedom.

Remark Depending on the smoothness properties of the incoming wave and the smoothness

of the scatterer, the electric surface current density will be in a certain function space. Terrasse

(Ref. 27) has shown that if the temporal behaviour of the incoming wave is in H3/2, the temporal

behaviour of the surface current density is in H1/2. (The significance of the Sobolev parameters

mainly lies in the fact that for these parameters uniqueness can be proven.) For these function

spaces, pointwise evaluation of the function does not make sense mathematically, as these func-

tions are actually equivalence classes which may differ on sets of zero measure.

The focus of the current paper is on the accuracy of the interpolator, and not on the accuracy of

the numerical scheme. The standard approach to determine the accuracy of a numerical scheme

is to split the difference of the exact solution and the computed solution into two differences: 1)

the difference between the exact solution and the projection of the exact solution on the finite el-

ement space; this is the interpolation error; 2) the difference between the projection of the exact

solution and the computed solution. In such an analysis, the interpolation error must be deter-

mined in the function space of the exact solution. As we are mainly interested in the interpolator,

this will not be pursued in this paper: the interpolation error is determined in the space of smooth

functions. This greatly facilitates the analysis, but by doing so, the accuracy of the interpolator

may not bear any relation with the accuracy of the numerical scheme. This will become evident

in the next chapter, where the accuracy of the numerical scheme is evaluated experimentally.

4 Experimental verification

Four temporal basis functions have been designed with the presented framework. In this section,

the implications of the different smoothness and accuracy characteristics on the performance of

the MOT scheme will be verified experimentally. Particularly, the effect of smoothness on the
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quadrature accuracy and the effect of interpolation accuracy on global accuracy in time will be

analyzed.

Two test cases will be considered, namely a cube with edges of 1 m and a sphere with a diameter

of 1 m. As depicted in Fig. 2, the cube and sphere are partitioned into 480 and 238 triangular

patches, respectively. A Gaussian plane wave

Ei(r, t) = 120πp
4√
πT

e−(4(c(t−t0)−r·k)/T )2 (41)

will be used as incident field, with the parameters given by: polarization p = x̃, propagation k =

−z̃, pulse width T = 6 lm, and pulse delay t0 = 4 lm. To get an equal contribution from the

EFIE and MFIE, the CFIE-0.5 will be used, i.e., κ = 0.5 in (3). If not specified, the outer spatial

integral has been calculated with Gaussian quadrature with 7 points on each triangle patch and

the inner integral calculated analytically (Ref. 24).

Fig. 2 The mesh of the cube and sphere used as test problem.

4.1 Smoothness
An important feature of the spline basis functions (24) and (39) is the continuous derivative on

the whole time axis whereas shifted Lagrange basis functions (23) and (40) are only continuous.

The discrete surface current density calculated with the spline basis functions is therefore ex-

pected to be smooth. To verify this implication, the TDIE method will be used with a large time

step size, for which the effect of smooth basis functions on the solution will be evident. For the

sphere and cube a large time step size of 1.13 lm and 0.71 lm has been used. As a reference so-

lution, the MOT scheme has been applied with a small time step size of 0.014 lm and 0.029 lm

for the sphere and cube, respectively. Results for the different basis functions are shown in Fig. 3

and 4. Note the smoothness of the response for the spline basis functions.
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Fig. 3 Electric surface current density at the top face of the sphere.

4.2 Accuracy
The global accuracy of TDIE methods depends on different kinds of numerical errors. Important

sources of errors are

• spatial discretization,

• temporal discretization,

• quadrature integration, and

• solution of the system of discretized equations.

Spatial discretization errors originate from the representation of electric surface currents on an

object by RWG functions on a surface mesh. The analysis of these errors is outside the scope

of this paper. The temporal discretization error has been analyzed in Section 3 by deriving error

bounds on the interpolation error of temporal basis functions. Quadrature errors are present since

the spatial integrals are computed with a quadrature procedure on the triangular elements. The

errors from solving the discrete system can be neglected because an LU decomposition has been

used as linear solver.

Below, the quadrature and interpolation accuracy will be considered in more detail.
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Fig. 4 Electric surface current density at the top face of the cube.

4.2.1 Quadrature accuracy
The CFIE (3) is given by spatial integrals over the triangular surface mesh. Gaussian quadrature

has been used to evaluate the integrals, which is effective for smooth integrands. The integrands

in the CFIE depend on the temporal basis functions evaluated at retarded time levels. Smooth

temporal basis functions therefore yield integrands that are smooth in space and the quadrature

accuracy is expected to improve.

Recall that the quadrature procedure is applied to the outer integral only because the inner inte-

gral has been calculated with analytic expressions (Ref. 24). As test problem the sphere has been

used with a time step size of 0.14 lm.

The discretized EFIE (1) consists of the terms

V q
mn,j =

∫∫
Γq

fm(r) ·
∫∫

Γ

fn(r′)T̈j(τ)
4πR

dr′dr, (42)

Sq
mn,j =

∫∫
Γq

∇ · fm(r)
∫∫

Γ

∇′ · fn(r′)Tj(τ)
4πR

dr′dr (43)
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that can be related with the magnetic vector and scalar potential, respectively (Ref. 19). Γq de-

notes the surface mesh with q quadrature points on each triangular patch. Notice that the value j

determines the matrix Zj in the MOT scheme (6) of which the discrete terms are an element. For

each temporal basis function, both terms will be computed with different numbers of quadrature

points. The convergence towards the reference experiment with 73 quadrature points will be con-

sidered. The relative error is therefore defined as

||V q
mn,j − V 73

mn,j ||
||V 73

mn,j ||
.

For a given j, the `2 norm

||Vmn,j ||2 =
Ns∑

m=1

Ns∑
n=1

|Vmn,j |2

over all edge pairs has been used. The convergence results for the vector potential term (42) is

depicted in Fig. 5 with j = 3 and for the scalar potential term (43) in Fig. 6 with j = 6.
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Fig. 5 Relative error for the vector potential term on a sphere.

For the cubic basis functions, the smoothness of the spline basis function indeed improves the

convergence as depicted in Fig. 5. For the quadratic basis functions, however, exactly the same
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convergence is observed. This is expected because the vector potential term (42) contains T̈ only,

which is the same for both quadratic Lagrange and spline basis function.
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Fig. 6 Relative error for the scalar potential term on a sphere.

Because the scalar potential term does not have a time derivative, the smoothness properties of

the temporal basis functions are all different. Fig. 6 clearly shows that smoothness of the tempo-

ral basis function improves the convergence with respect to the number of quadrature points.

The positive influence of smooth basis functions on the quadrature accuracy of the discrete terms

has been verified experimentally. But a faster convergence for the elements of the interaction

matrices does not necessarily imply more accurate solutions of the MoT scheme. It is therefore

not evident that smoothness of temporal basis functions will also have a positive influence on the

discrete surface current density of the TDIE method.

The solution of the EFIE has been computed with the MOT scheme for different numbers of

quadrature points. The convergence towards the reference solution for 73 quadrature points will
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be considered. The relative error is given by

||Jq
n,j − J73

n,j ||
||J73

n,j ||

where Jq
n,j denotes the coefficients in (4) computed with q quadrature points. The norm is de-

fined in both discrete space and time as

||Jn,j ||2 =
Ns∑
n=1

100∑
j=1

|Jn,j |2 .
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Fig. 7 Relative error for the electric surface current density on a sphere.

The convergence results depicted in Fig. 7 show a faster convergence for spline basis functions

compared to shifted Lagrange basis functions of equal support. For this specific test case, the

increase in convergence rate for the surface current density is not as prominent as for the matrix

elements.

4.2.2 Interpolation accuracy
In this paper, the accuracy in time of the MOT scheme has been analyzed by deriving bounds on

the interpolation error, as summarized in Table 1. To validate the analysis, a given function will
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be interpolated, for instance a Gaussian curve u(t) = e−(12t−6)2 for 0 ≤ t ≤ 1. The inter-

polant (8) calculated with a time step size ∆t = 1/800 is denoted by û1 and with ∆t = 1/400

by û2. Then the order of interpolation accuracy can be computed as log2

(
||û2−u||
||û1−u||

)
and similar

for the derivatives. Results with the L2 norm are given in Table 2. The experimental accuracy

perfectly matches the expected accuracy.

temporal basis function u u′ u′′

quadratic Lagrange 3.000 1.994 0.995

quadratic spline 3.000 2.005 1.000

cubic Lagrange 3.999 2.990 1.992

cubic spline 3.999 3.085 2.001

Table 2 Experimental order of interpolation accuracy.

4.2.3 Global accuracy
The global accuracy in time of TDIE methods depends on the interpolation accuracy but does not

necessarily have to satisfy the same orders of accuracy. With Richardson’s extrapolation algo-

rithm the global accuracy can be investigated experimentally. Consider three experiments with

three different time step sizes, all on the same spatial mesh. The x-component of the discrete

electric surface current density on top of the object is denoted by J1(t), J2(t), and J4(t), for time

step sizes ∆t, 2∆t, and 4∆t, respectively. The order of the global accuracy in time can be com-

puted as log2

(
||J4−J2||
||J2−J1||

)
where the L2 norm has been used for 0 ≤ t ≤ 14 lm. The results for

the sphere and cube are listed in Table 3 and 4, respectively.

temporal basis function 0.014 lm 0.028 lm 0.043 lm 0.057 lm

quadratic Lagrange 1.039 1.085 1.129 1.166

quadratic spline 1.982 2.017 2.005 1.992

cubic Lagrange 2.044 2.093 2.135 2.159

cubic spline 4.079 4.229 4.028 4.016

Table 3 Experimental order of accuracy on a sphere, with the smallest time step size listed.

For the shifted Lagrange basis functions the experimental order of accuracy converges to the ex-

pected O(∆t) and O(∆t2) for the quadratic and cubic version, respectively. However, a global

error of O(∆t2) and O(∆t4) is observed for the quadratic and cubic spline basis function, re-

spectively. Apparently, the interpolation error does not restrict the global accuracy when the

spline basis functions are used and higher orders of accuracy are obtained. The smoothness of

the temporal basis functions probably results in the higher orders of accuracy. The actual cause
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temporal basis function 0.012 lm 0.023 lm 0.035 lm 0.047 lm

quadratic Lagrange 1.004 1.014 1.018 1.030

quadratic spline 1.996 2.004 1.989 2.044

cubic Lagrange 2.011 2.027 2.035 2.038

cubic spline 4.133 3.611 4.047 4.551

Table 4 Experimental order of accuracy on a cube, with the smallest time step size listed.

of this remarkably better accuracy for the spline basis functions is a topic for future research.

The focus of this paper has been on accuracy and smoothness of MoT schemes. Numerical sta-

bility is also an important property of computational methods. Our experiments indicate that cu-

bic spline basis functions are more prone to late-time instability than Lagrange functions. This

sounds counterintuitive, since smoothness is expected to improve stability (Ref. 31). Due to the

shifted weights of the cubic spline basis function, more importance is given to past influences

instead of immediate interactions. The weaker diagonal dominance of the leading matrix in the

marching algorithm (6) possibly leads to accumulating numerical errors. On the positive side,

quadratic spline basis functions result in stable solutions. The extension to stability of this frame-

work for the design temporal basis functions is a topic of further research.

5 Conclusions

In this paper a framework has been derived to design temporal basis functions with predefined

interpolation accuracy. This results in spline basis functions that have the same interpolation

accuracy and have better smoothness properties compared to shifted Lagrange basis functions.

Numerical experiments show a higher order of global accuracy for the spline basis functions than

for the shifted Lagrange basis functions with equal support.
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Appendix A Derivation of the accuracy conditions

Temporal basis functions in the MOT scheme are denoted by Tj(t) and formulated as Tj(t) =

T (t − j∆T ). The definition of T will then give a representation of all temporal basis functions.

The class of causal basis functions with a small support can be written as

T (t) =



F0(t), −∆t < t ≤ 0,

F1(t), 0 < t ≤ ∆t,

F2(t), ∆t < t ≤ 2∆t,

0, else,

(44)

for F0, F1, and F2 denoting quadratic polynomials and ∆t the time step size. Consider an ar-

bitrary retarded time level τk, for which one can find a discrete time level t` = `∆t such that

t`−1 < τk ≤ t`. With σ defined as σ = t` − τk, the analysis can be restricted to an arbitrary

σ ∈ [0,∆t).

The unknown solution of the spatially discretized CFIE in the MOT scheme is denoted by u(t).

This solution is mapped towards a finite dimensional space that include all temporal basis func-

tions. The solution inside this finite element space is denoted by û(t) and is defined by a series

expansion in terms of temporal basis functions Tj(t) as

û(t) =
N∑

j=1

ũjTj(t). (45)

The coefficients ũj are defined by a nodal variable Nj . In this case, use

ũj = Nj(u) = u(tj) + α∆tu′(tj) (46)

for a constant α. For the derivatives of the solution, the derivative of the temporal basis functions

are used, i.e.,

û′(t) =
N∑

j=1

ũjT
′
j(t) and û′′(t) =

N∑
j=1

ũjT
′′
j (t).

For quadratic polynomial basis functions (44) the interpolation procedure results in

û(τk) = F0(−σ)ũ` +F1(∆t− σ)ũ`−1 +F2(2∆t− σ)ũ`−2, (47)

û′(τk) = F ′
0(−σ)ũ` +F ′

1(∆t− σ)ũ`−1 +F ′
2(2∆t− σ)ũ`−2, (48)

û′′(τk) = F ′′
0 (−σ)ũ` +F ′′

1 (∆t−σ)ũ`−1 +F ′′
2 (2∆t−σ)ũ`−2. (49)
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The interpolation error of û, û′, and û′′ at an arbitrary retarded time level is given by |û(τk)−uσ|,
|û′(τk)−u′

σ|, and |û′′(τk)− u′′
σ|, respectively, for uσ = u(τk), u′

σ = u′(τk), and u′′
σ = u′′(τk). To

obtain the interpolation accuracy, the coefficients are written as a Taylor series in the unknown

functions in the retarded time level. That is,

ũ` = uσ + σu′
σ +

1
2
σ2u′′

σ + α∆tu′
σ + α∆tσu′′

σ +O(∆t3), (50)

ũ`−1 = uσ + (σ −∆t)u′
σ +

1
2
(σ −∆t)2u′′

σ + α∆tu′
σ + α∆t(σ −∆t)u′′

σ +O(∆t3),

(51)

ũ`−1 = uσ + (σ − 2∆t)u′
σ +

1
2
(σ − 2∆t)2u′′

σ + α∆tu′
σ + α∆t(σ − 2∆t)u′′

σ +O(∆t3)

(52)

since O(σ) = O(∆t). Substitution of the Taylor series (50)-(52) into the interpolants (47)-(49)

results in

û(τk) = A11uσ +A12u
′
σ +A13u

′′
σ +O(∆t3), (53)

û′(τk) = A21uσ +A22u
′
σ +A23u

′′
σ +O(∆t2), (54)

û′′(τk) = A31uσ +A32u
′
σ +A33u

′′
σ +O(∆t) (55)

with Aij given by

A11 = F0,σ + F1,σ + F2,σ, (56)

A12 = (σ + α∆t)F0,σ + (σ + (α− 1)∆t)F1,σ + (σ + (α− 2)∆t)F2,σ, (57)

A13 = (
1
2
σ2 + ασ∆t)F0,σ +

(1
2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F2,σ, (58)

A21 = F ′
0,σ + F ′

1,σ + F ′
2,σ, (59)

A22 = (σ + α∆t)F ′
0,σ + (σ + (α− 1)∆t)F ′

1,σ + (σ + (α− 2)∆t)F ′
2,σ, (60)

A23 = (
1
2
σ2 + α∆t)F ′

0,σ +
(1

2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F ′

1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F ′

2,σ, (61)

A31 = F ′′
0,σ + F ′′

1,σ + F ′′
2,σ, (62)

A32 = (σ + α∆t)F ′′
0,σ + (σ + (α− 1)∆t)F ′′

1,σ + (σ + (α− 2)∆t)F ′′
2,σ, (63)

A33 = (
1
2
σ2 + α∆t)F ′′

0,σ +
(1

2
σ2 + (α− 1)σ∆t− (α− 1

2
)∆t2

)
F ′′

1,σ

+
(1

2
σ2 + (α− 2)σ∆t− 2(α− 1)∆t2

)
F ′′

2,σ (64)

UNCLASSIFIED 23



UNCLASSIFIED
NLR-TP-2012-334 c© 2012 IEEE

with the abbreviations

F0,σ = F0(−σ), (65)

F1,σ = F1(∆t− σ), (66)

F2,σ = F2(2∆t− σ). (67)

To obtain a third order accurate interpolation scheme for û, one needs |û(τk) − uσ| = O(∆t3),

which is satisfied if A11 = 1, A12 = 0, and A13 = 0. These three conditions can be rewritten

into conditions on the temporal basis functions as

F0,σ + F1,σ + F2,σ = 1, (68)

F1,σ + 2F2,σ =
σ

∆t
+ α, (69)

F1,σ + 4F2,σ =
σ2

∆t2
+ 2α

σ

∆t
+ 2α2. (70)

It can be shown that conditions (68), (69) and (70) imply A21 = 0, A22 = 1, A23 = 0, A31 = 0,

A32 = 0, and A33 = 1 for all σ ∈ [0,∆t). Hence |û′(τk)− u′
σ| = O(∆t2) and |û′′(τk)− u′′

σ| =
O(∆t).

Concluding, if a temporal basis function satisfies conditions (68), (69) and (70), a first order ac-

curate interpolation procedure has been obtained for the MOT scheme of the CFIE.
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