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Summary 

A 3-D finite element method was used to calculate the stress intensity factors for CMSX-4 
single crystal corner cracked specimens. The anisotropic material properties and inclinations of 
the cracks were shown to have significant effects on the stress intensities. Then the 2-D resolved 
shear stress approach for predicting the crack planes and crack growth directions in single 
crystals was extended to the 3-D case. Finally the approach was extended to the more complex 
geometries of actual gas turbine components, for which an efficient crack growth analysis 
method is proposed, based on the influence function method. 
 
 



  
-4- 

NLR-TP-2005-470 
 

  

 
 

Contents 

1 Introduction 5 

2 Isotropic and anisotropic stress intensity factors 7 

3 Stress intensity factors for single crystal corner cracked specimens 8 
3.3 Angled crack, isotropic properties 12 
3.1.1 (Near) edge positions 12 
3.1.2 (Near) centre position 13 
3.1.3 Angled crack projection approximation 13 
3.4 Angled crack, orthotropic properties 14 

4 Resolved shear stress intensity parameter 15 
4.1 Original crack normal to tensile axis, perfect crystallographic alignment 16 
4.2 Original  +45° crack, perfect crystallographic alignment 16 
4.3 Original +45°crack, imperfect crystallographic alignment 17 

5 Application to single crystal gas turbine components 18 
5.1 Crack propagation analysis constituents 18 
5.1.1 Direction of crack propagation 19 
5.1.2 Fracture mechanics parameters 19 
5.1.3 Method to determine fracture mechanics parameter 19 
5.1.4 Method for crack propagation analysis 20 
5.2 Closed form SIF for complex geometries 20 
5.2.1 Method to determine closed form SIF 21 
5.2.2 Application of the method 23 
5.3 Crack propagation analysis method for single crystal gas turbine components 26 

6 Concluding remarks 26 

7 Acknowledgements 27 

8 References 27 
 
  5 Tables 
15 Figures 

(28 pages in total) 
 



  
-5- 

NLR-TP-2005-470 
 

  

 
 

Stress intensity factors and crack propagation in single crystal 
nickel based superalloy CMSX-4 

 
Tiedo Tinga* 

 
National Aerospace Laboratory NLR, Anthony Fokkerweg 2, 1059 CM, Amsterdam, The 

Netherlands 
 
 

Abstract 
A 3-D finite element method was used to calculate the stress intensity factors for CMSX-4 
single crystal corner cracked specimens. The anisotropic material properties and inclinations of 
the cracks were shown to have significant effects on the stress intensities. Then the 2-D resolved 
shear stress approach for predicting the crack planes and crack growth directions in single 
crystals was extended to the 3-D case. Finally the approach was extended to the more complex 
geometries of actual gas turbine components, for which an efficient crack growth analysis 
method is proposed, based on the influence function method. 
 
Keywords: Stress intensity factor; single crystal; anisotropy; CMSX-4 superalloy; gas turbine; 
influence function method 
 

1 Introduction 

To improve gas turbine efficiency the turbine inlet temperatures have steadily increased. 
This makes greater demands on the materials used for the turbine rotor blades and stator vanes. 
One way to meet these demands is to use single crystal materials. In modern jet engines single 
crystal materials are used for the turbine blades and vanes.  

As part of component life assessment the material fatigue crack propagation behaviour 
must be modelled. Two major differences exist for the crack growth analysis of single crystal 
materials compared to the polycrystalline case. Firstly the material behaviour is anisotropic, 
which results in different stress and deformation fields around the crack tip. Secondly, cracks  
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Nomenclature 
a, acr  crack length 
a, b, c  material orientation angles in analysis tool 
aij  material constitutive matrix 
BE  boundary element 
Cij  material constitutive matrix (in FE) 
ΔK  stress intensity factor range 
E  Young's modulus 
FCC  face centred cubic (crystal lattice) 
FE  finite element 
G  shear modulus / energy release rate 
HPT  high pressure turbine 
K, KI, KII, KIII stress intensity factors (modes I, II and III) 
Keff  effective stress intensity factor 
Krss  resolved shear stress intensity parameter on slip system 
LEFM  linear elastic fracture mechanics 
r  distance to crack tip 
S  remotely applied stress 
SIF  Stress Intensity Factor   
t  specimen width 
T  projected specimen width 
α, β  crack orientation angles in analysis tool  
β  geometrical correction function for SIF 
ε  strain 
μi  roots of characteristic equation 
ν  Poisson's ratio 
σ  stress 
τrss  resolved shear stress 
θ  angle with respect to the normal crack plane 

 
 
propagate along distinct crystallographic planes, which means they are often angled cracks not 
on a plane normal to the major principal stress, unlike cracks in isotropic materials.  
To model single crystal crack propagation behaviour the anisotropic stress intensity factors 
should be determined for both normally-oriented and angled cracks. Many studies have been 
done on the fracture mechanics of anisotropic materials, both on bulk materials [1-4,9,15] and 
notched geometries [5,6]. The earlier papers [1-3,9,15] mainly focus on 2-dimensional cases and 
analytical approaches, whereas the more recent work [5-7,17] directs towards 3-dimensional 
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cases and numerical methods. However, still anisotropic stress intensity factor solutions are 
usually not available. Therefore it has often been assumed, or shown for specific materials 
[1,2,4], that the differences between isotropic and anisotropic solutions are negligible and that 
the isotropic solution can be used. Similarly, it has been assumed [2,4] that the standard stress 
intensity factor solutions for normally-oriented cracks can be used for angled cracks, provided 
the angles made with the normal plane are small. 

The first objective of the present work is to show that standard stress intensity factor 
solutions cannot be used for the anisotropic CMSX-4 and angled cracks. The second objective is 
to extend to 3 dimensions the 2-dimensional resolved shear stress method [1,3,4,8] for 
predicting the crack planes and crack growth directions in single crystals. The final objective is 
to develop a method for the analysis of crack growth in complex geometries of real gas turbine 
components, which translates the work to an engineering level. 
 
 
2 Isotropic and anisotropic stress intensity factors 

The basis of linear elastic fracture mechanics (LEFM) theory is the stress intensity 
factor (SIF or K) concept, which relates the local elastic stress field near the crack tip to the 
known global stress or displacement field. Relations for the stress intensity factor can be derived 
by calculating the stress or displacement field as functions of the distance r and angle θ, see 
Figure 1. The stress field in a small region surrounding the crack tip is given by [9,10] 

[ ] ( )6..,,1,),(),(),(
2
1),( =++= jihKgKfK

r
r ijIIIijIIijIij θμθμθμ

π
θσ  (1) 

In this relation  fij , gij and hij are geometrical functions defining the angular dependency of the 
stress field, and KI, KII and KIII are the mode I, II and III stress intensity factors. For the 
anisotropic case the stress field also depends on the root μ of the characteristic equation, which 
is defined below. In an infinite plate containing a crack with length 2a and loaded by a normal 
stress σyy and shear stresses τxy and τyz, the stress intensity factors are defined as 

aKaKaK yzIIIxyIIyyI πτπτπσ === ;;                      (2) 

For any situation deviating from this ideal situation the value of K is modified by a factor β(a), 
e.g.:  

)(aaK IyyI βπσ ⋅=  (3) 

The function β(a) accounts for geometrical effects like finite width corrections. A number of 
handbooks are available [11,12] in which the function β(a) is supplied for most common 
problems, but it can also be obtained from a finite element (FE) analysis by comparing the 
calculated displacement field (which in an FE analysis is more accurate than the stress 
distribution) with the (theoretical) displacement field around a crack in an infinite plate loaded 
in plane tension. 
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Figure 1  Definition of crack tip coordinate frame 

 
For isotropic materials the functions fij , gij and hij can be related directly to the material 

properties E and ν, but for anisotropic materials, they are functions of the complex roots μi of 
the characteristic equation [9] 

02)2(2 2226
2

6612
3

16
4

11 =+−++− aaaaaa μμμμ  (4) 

where the coefficients aij are the (compliance) elements of the elastic constitutive matrix, 
relating the stresses and strains according to  

( )6..,,1, == jia jiji σε  (5) 

This constitutive matrix must be defined in the coordinate frame of the crack (see Figure 1). 
In the next section we describe how  an FE analysis is used to calculate the anisotropic 

stress intensity factors for single crystal corner cracked specimens of a nickel-base superalloy.  
 
 
3 Stress intensity factors for single crystal corner cracked specimens 

The commercial finite element code MSC.Nastran was used to calculate the stress 
intensity factors for  single crystal corner cracked specimens of a nickel-base superalloy. 
MSC.Nastran provides special crack tip elements (CTEs), whose midside nodes are moved to 
the quarter positions to better represent the stress field singularity at the crack tip. The 
calculated stress intensity factors are directly given as element output.  

The NLR in-house tool NLR-C3D [13] was used to insert an initial crack in an existing 
finite element model. NLR-C3D replaces elements in the mesh by crack blocks, which define 
the crack plane and locally refine the mesh, see  

Figure 2. It also inserts the CTEs, six (6) along the crack front in the present case, and 
automatically calculates stress intensity factors for different crack sizes.  
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Figure 2   Slice of FE model near the crack plane and detailed view of crack blocks inserted  
            by NLR-C3D tool 
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Figure 3  Schematic representation of crystal orientation in test specimen and important  
               crystal directions and planes 

 
Stress intensity factors were calculated for two cases: a corner crack propagating on  the 

plane normal to the applied load, and a corner crack propagating on a 45° plane as shown in 
Figure 3. The latter case represents the situation in which a crack propagates along a {111}-type 
plane in  a single crystal FCC material aligned with the [001] direction along the tensile axis (z-
axis), and the [100] and [010] directions along the x- and y-axes. Since corner cracks are 3-
dimensional, the stress intensity factor (SIF) solutions were calculated for six (6) different 
positions along the crack fronts, corresponding to the angular centres of each CTE. The two FE 
meshes are shown in Figure 4. These are somewhat more detailed than the meshes used by 
Pickard [10].  
 



  
-10- 

NLR-TP-2005-470 
 

  

 
 

               
    
Figure 4  Finite element models for corner cracked specimen with a crack normal to the tensile  
               axis (left) and a crack under a 45° angle (right) 

 
To quantify the effect of material anisotropy on the stress intensity factors, the SIF 

values for both the normal and 45° angled cracks were calculated with isotropic and anisotropic 
material properties, see Table 1.  

 
Table 1   Material properties for Ni-based superalloy 

Property Isotropic Orthotropic 

E 200 Gpa 200 GPa 
ν 0.30 0.30 
G 76.9 Gpa 220 GPa 
a11 5.00E-12 Pa-1 5.00E-12 Pa-1 
a12 -1.50E-12 Pa-1 -1.50E-12 Pa-1 
a14 1.30E-11 Pa-1 4.55E-12 Pa-1 

 
3.1 Normal crack, isotropic properties 
 The FE model was checked by calculating the corner crack mode I SIFs for a normal crack 
in an isotropic material and comparing them to the solutions given by Pickard [10] and in an 
AGARD publication [14]. Figure 5a shows the comparisons for SIFs along the specimen edges 
(actually 7.5° from the specimen edges for the MSC.Nastran results): the agreement is generally 
good to excellent. 

Figure 5b compares the edge and centre position SIFs  according to Pickard's FE model 
and the present one. Both models predict higher SIFs along the specimen edges. This difference 
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can be explained by the fact that edge positions are nominally in plane stress, whereas the centre 
position is nominally in plane strain.  
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Figure 5  KI for normal crack  and isotropic material: a) comparison of edge solutions and b) 
               showing the difference between a centre and edge position on the crack front 

 
3.2  Normal crack, orthotropic properties 

Figure 6 shows that changing the material properties from isotropic to anisotropic, in 
the present case orthotropic, more than doubles the KI values for the normal crack orientation. 
Also, the difference in KI between the edge and centre positions is almost the same (factor ~1.3) 
for both isotropic and orthotropic properties. This is worth noting because in the orthotropic 
case the elastic properties in the near-<100> directions associated with the crack edge (7.5°) 
positions are different from those for the near-<110> directions associated with the crack centre 
(37.5°, 52.5°) positions.  

There are two ways in which material anisotropy can affect the value of the stress 
intensity factor. Firstly, just using the anisotropic method influences the SIF. Secondly, the 
material anisotropy changes the local stress distribution, which also affects the SIF. Snyder and 
Cruse [15] concluded that the first effect is quite small (comparing isotropic or anisotropic 
solutions in the same stress field), but the second effect is much larger. This second effect is 
automatically included when SIFs are calculated with an FE method, and so Snyder’s and 
Cruse's conclusion is confirmed by the results in Figure 6. 

edge 
centre 
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Figure 6   KI for normal crack, using isotropic and orthotropic material properties 

 
3.3 Angled crack, isotropic properties 

The MSC.Nastran stress intensity factors for an angled crack in an isotropic material are 

compared with the results of Pickard [10] in Figures 7a and 7b for  edge and centre positions, 

respectively, and are discussed in the following paragraphs: 
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Figure 7   SIF solutions for 45° angled crack: a) for an edge position (7.5o), b) for a centre 
                position (37.5o, 52.5°): note that the abscissa is a/T, where T = t for a normal crack 
                and T = t √2 for a 45° crack 

 

3.1.1 (Near) edge positions 
For the edge positions, Figure 7a, the crack plane is at  45° to the tensile axis, which 

means that both mode I and mode II loading are present, with the same magnitude, but mode III 
is absent. Therefore one expects similar KI and KII values and negligible KIII. This is the case for 
the MSC.Nastran results. However, Pickard's data show  clear differences between KI and KII 
and  significant KIII values. These results are hard to explain. They may be due to differently 
applied boundary conditions, which resulted in the specimen deforming in a less defined way.  
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On the other hand, the values of Keff, which is the overall driving force for crack growth 
on the angled plane, and is defined for isotropic materials by 

222
IIIIIIeff KKKK ++=  (6) 

 are fairly similar for the MSC.Nastran and Pickard solutions. 

 
3.1.2 (Near) centre position 

For the centre position it can be seen  from  
Figure 3 that the crack  propagates in a direction normal to the tensile axis but on a 

plane tilted 45°. Thus the loading is basically mode I, but with a mode III (tearing load) 
contribution. One would therefore expect similar KI values for normal and angled cracks: 
comparison of the lowest curve in Figure 6 with the uppermost curve in Figure 7b shows that 
this is indeed the case.  

Furthermore, KII should be negligible and KIII should be non-zero. The MSC.Nastran 
results in Figure 7b do not agree well with these expectations. The most likely reason is the use 
of only six CTEs, which means that K values are obtained for near centre (37.5°, 52.5°) 
positions rather than the exact centre (45°). At the 45° position KII does become zero [10], while 
KIII reaches a maximum there. For the MSC.Nastran results, the KII-values at 37.5° and 52.5° 
have similar values but opposite sign, so interpolation yields KII = 0 at 45o. 

Pickard's results in Figure 7b  are again hard to explain, especially the KI curve, which 
is much lower than the MSC.Nastran KI curve. As a result, also the Keff curves show a large 
difference in this case. 
 
3.1.3 Angled crack projection approximation 
It is often suggested to approximate the SIFs for an angled crack by using the normal crack SIF 
solution with the projected crack length, i.e. the apparent length of an angled crack when it is 
projected onto the normal plane. Figure 8 shows that this approximation is invalid for an edge 
position of a 45° crack, whether one compares the normal crack KI (= Keff) curve with the 
angled crack KI or Keff curves. A similar result will be obtained for the centre position. 
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Figure 8   Comparison between normal crack and 45° angled crack for an edge position: note 
                that the abscissa is a/T, where T = t for a normal crack and  T = t √2 for a 45° crack 

 
3.4 Angled crack, orthotropic properties 

The calculated results for the angled crack, using orthotropic material properties are 
shown in Figure 9. It appears from Figure 9a that for an edge position the effect of using 
orthotropic instead of isotropic properties leads to different SIF solutions, especially for KII. 
However, both KI and KII are lower for the orthotropic case, whereas for a normal crack Figure 
6 shows that the orthotropic KI is significantly greater. Figure 9b shows that for a centre 
position the difference between orthotropic and isotropic stress intensity factors is smaller, 
especially for KII, but  the trends are the same as for an edge position. 
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Figure 9   SIF solutions for 45° angled crack. Comparison between isotropic and orthotropic 
                properties for a) edge position and b) centre position: note that the abscissa is a/T, 
               where T = t for a normal crack and T = t √2 for a 45° crack 
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4 Resolved shear stress intensity parameter 

The crack planes and propagation directions in single crystals cannot be predicted from 
the stress field alone, since cracking is restricted to distinct crystallographic planes. Telesman 
and Ghosn [1] and Chen and Liu [3] presented a 2-dimensional prediction method based on a 
resolved shear stress intensity parameter that represents the stress intensity on a specific 
crystallographic plane. The resolved shear stress intensity parameter is defined as 

rK rssrrss πτ 2lim
0→

=  (7) 

where the value of τrss is obtained by Schmid-decomposition of the stress tensor to a specific 
slip system. The limiting value of Krss is obtained by calculating several values near the crack 
tip and extrapolating to r = 0. Crack propagation will occur on the slip plane with the highest 
value of Krss.  

As stated in section 2, calculations of SIF values with an FE method are most accurate 
when they are based on displacements. However, a displacement vector cannot be projected to a 
slip system. to obtain the resolved shear stress. Telesman and Ghosn [1] calculated Krss from a 
2-dimensional reconstructed stress field around the crack tip of an isotropic material, using a 
boundary integral equation method.  

In the present work the stress tensor was reconstructed from the 3-dimensional 
anisotropic (orthotropic) FE  calculations of SIF values for  specific  situations, together with 
equation (1). Use of equation (1) requires choosing values of θ. The most obvious choice is the 
angle between the slip plane (possibly destined to become the new crack plane) and the plane 
normal to the tensile axis, as was done by Telesman and Ghosn [1].  

The Krss calculation was incorporated into an analysis tool that requires the following 
information: 
(1)  The elastic properties (E, G and ν for the <100> cube directions) of the material. 
(2)   SIF values (KI, KII and KIII for the appropriate orthotropic material and crack orientation) 

at certain crack lengths.  
(3)  The crystallographic orientation of the material with respect to the specimen coordinate 

frame. This is specified by three angles (a, b and c), which define the rotation around the 
specimen x-, y- and z-axes, respectively. 

(4)  The orientation of the original crack plane with respect to the specimen coordinate frame.  
This is specified by another two angles (α and β), which define the rotation of the crack plane 
around the specimen x- and y-axes.  
The analysis tool then calculates Krss for every slip plane and finds the maximum value. The 
corresponding slip plane then determines the plane and directions of subsequent crack growth. 
This can be done for any material orientation and any crack orientation.  
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        More specifically, for the present work the analysis tool was used to predict the planes 
and directions of crack propagation in the corner cracked specimens described in section 3. The 
predictions are compared in subsections 4.1-4.3 with representative experimental results for 
fatigue crack growth in single crystal CMSX-4 specimens [16].  
 
4.1 Original crack normal to tensile axis, perfect crystallographic alignment        

When the original crack plane is normal to the tensile axis (α = β = 0) and the 
crystallographic alignment of the specimen is perfect (a = b = c = 0) there are four slip systems 
with the same Krss . This is illustrated in Table 2 for an arbitrary original crack length of 1.5 
mm: the Krss value of 1.30 for the Edge 1 position shows that subsequent crack propagation is 
likely at both -45o and +45o to the tensile axis. The first column in Table 2 specifies the position 
along the original crack front. 
 
Table 2  Originally normal crack ideal situation (a = b  = c = 0, α = β = 0, acr = 1.5 mm) 

Position Krss Active slip systems Subsequent crack angle 

Edge 1 1.30 
1.30 

]101)[111(,]110)[111(  
]110)[111(,]011)[111(  

-45o 

+45o 

Centre 1.47 
1.47 

]110)[111(  
]110)[111(  

-54.7o 

+54.7o 

Edge 2 1.30 
1.30 

]011)[111(,]110)[111(  
]110)[111(,]101)[111(  

-45o 

+45o 

 
4.2 Original  +45° crack, perfect crystallographic alignment 

In this second example the original crack was at +45o to the tensile axis. Starting with 
an edge  length of only 0.1 mm, the predictions were that the crack stays on the original slip 
plane until at least 0.5 mm length. This is shown in the first row of Table 3. However, when the 
crack becomes larger than 0.5 mm it is predicted to switch to the -45o slip plane, see the second 
row in Table 3.  
 
Table 3  Originally +45° angled crack (a = b  = c = 0, α = 45o, β = 0) 

Position Krss Active slip systems Subsequent crack 
angle 

Edge 1 - acr = 0.5 mm 0.655 ]011)[111(                    +45o 

Edge 1 - acr = 0.6 mm 0.621 ]110)[111(                     -45o 

 
 After some amount of crack growth, the same process will cause the crack to switch 

back to the +45o slip plane. In fact, what actually happens is that a crack grows in a zig-zag 
fashion, alternating between +45° and -45° and remaining macroscopically in the plane normal 
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to the tensile axis. This was  observed for specimen A of the experimental programme [16], see 
figure 10a, although the alignment for this specimen was not perfect. This is discussed further in 
subsection 4.3. 

 

      
Figure 10  a) fracture surface in corner cracked specimen A. The crack front is 
                 macroscopically normal to the tensile axis. b) specimen B fracture surface, 
                 showing the transition from normal to angled crack plane. Both photographs from 
                [Ref.11] 

 
4.3 Original +45°crack, imperfect crystallographic alignment 
     If the crystallographic alignment of the specimen is imperfect, there should be a 
preference for crack growth on one slip plane. Then, since the crack does not switch to another 
slip plane, a macroscopically angled crack develops. 

Using the Krss approach the misalignment behaviour was analysed for a +45° original 
crack and five simple crystallographic misalignments, whereby a = 3°, 5°, 7°, 10°, and 15°, and 
b = c = 0. Starting with an edge crack length of 0.1 mm, the predictions were that all cracks stay 
on the original slip plane until lengths of 1.1 - 4.5 mm, depending on the misalignment, see 
Table 4. These crack lengths are significantly larger than the 0.5 mm for a perfectly aligned 
specimen (see Table 3) and as the misalignment increases there is eventually no change of slip 
plane.  

This means that the crack grows in a zig-zag fashion until the crack length is reached 
where no transition to another slip plane is possible anymore. Table 4 shows that for small 
misalignments (a ~ 3o - 5o) there is no such crack length and for large misalignments (a ~ 10o - 
15o) this crack length is zero, indicating that an angled crack develops from the beginning. For 
intermediate misalignments there is a crack length at which the crack switches, but there is also 
a length above which no switching can occur anymore.  
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Table 4   Crack lengths at which preferred direction changes from +45o to -450 for different  
     material orientations (b = c = 0,  α = 45o, β = 0) 

Position a = 3o a = 5o a = 7o a = 10o a = 15o 

Edge 1 1.4 mm  2.2 mm 4.5 - 6.5 mma no change no change 
Edge 2 0.0 mm 1.1 mm 1.6 - 3.7 mma 2.1 - 3.3 mma no change 
a preferred direction changes to -45o at first crack length, but is again +45o for cracks larger than 
the second crack length (= no subsequent change beyond this crack length). 
 
Thus a macroscopically normal crack can develop in two situations: 
(1)   Perfect crystallographic alignment: a zig-zag crack develops because switching is not   

bounded by a certain crack length. 
(2)   Intermediate misalignment: the bounding crack length at which the zig-zag crack 

transitions   into an angled crack is beyond the crack length at failure.     
The data in Table 4 enable explaining the fatigue crack growth behaviour of the 

specimens shown in Figure 10. Specimen A had a primary crystallographic misalignment of 
8.5o and also a considerable secondary misalignment of c = 8o [16]. Crack growth occurred in a 
zig-zag fashion, Figure 10a. This is an example of an intermediate misalignment with a 
transition to an angled crack beyond the crack length at failure. However, specimen B had a 
primary misalignment a = 7.3° and only a slight secondary misalignment. This resulted in one 
transition from the normal crack plane to an angled crack plane at an edge crack length of 3.8 
mm, see the L.H. edge in Figure 10b. The transition crack lengths agree reasonably with the 
predictions in Table 4. 

 
 

5 Application to single crystal gas turbine components 

Although the corner cracked specimen is a simple geometry, the approach in the present 
work is based on finite element analyses. This means that it can be extended to the more 
complex geometries of actual gas turbine components (single crystal turbine blades and vanes). 
In this section the constituents of a crack growth analysis and an efficient method to do the 
analysis on a geometrically complex single crystal component are discussed and proposed. 

 
5.1 Crack propagation analysis constituents 

A crack propagation analysis relates a load sequence in terms of a fracture mechanics 
parameter to the material crack growth behaviour. A wide range of approaches for such analyses 
has been developed, as reviewed by Timbrell et al. [17]. Depending on the application, choices 
are made for the following four constituents:  
(1)   A criterion for the direction of crack propagation.  
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(2)   A fracture mechanics parameter representing the load sequence. 
(3)   A method to determine the fracture mechanics parameter. 
(4)   A method to calculate the crack propagation as a function of number of cycles. 
These constituents will be discussed separately in the next subsections, and the choices for the 
method proposed in the present work will be motivated. 
 

5.1.1 Direction of crack propagation 
The direction of crack propagation is generally assumed to be the direction normal to the 
maximum principal stress or the direction of maximum energy release rate. In the previous 
sections it was shown that for single crystal materials the maximum value of Krss is a suitable 
criterion to determine the direction of crack propagation. This parameter will therefore be used. 

 
5.1.2 Fracture mechanics parameters 
The primary fracture mechanics parameters of interest for crack propagation are the stress 
intensity factor K and the energy release rate G. A complication of the stress intensity factor is 
the division into three modes, represented by KI, KII and KIII.  In complex 3D geometries mixed 
mode loading often occurs, which means that the three values of  KI, KII and KIII must be 
combined into one effective loading parameter. Equation (6) is often used to calculate Keff

  for 
isotropic materials [2,4], whereas Krss is the most appropriate quantity for single crystal 
materials.  

To avoid the complexity of three different modes, many analysis codes use the energy 
release rate G as fracture mechanics parameter. However, this needs frequent numerical 
recalculation of G during the analysis, since it cannot be obtained in closed form. Moreover, 
material crack growth curves are generally presented in terms of ΔK. If the stress intensity 
factor is used in the growth analysis, these curves can be applied directly. When the energy 
release rate is used the data must be transformed, which is inconvenient and a source of 
additional inaccuracy.  

In the proposed approach the stress intensity factors KI, KII and KIII will be used as 
fracture mechanics parameters, since they can be used to calculate Krss. 
 
5.1.3 Method to determine the fracture mechanics parameter 
There are three main numerical approaches to provide the stress intensity factors: 
(1)  Closed form solution. 
(2)  Boundary element method. 
(3)  Finite element method. 
       In the closed form approach a known solution provides stress intensity factors as 
functions of geometry, crack size and loading. These solutions may be derived from analytical 
expressions or interpolated from results obtained using boundary element or finite element 
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methods. They are available from several handbooks [10-12]. The main advantage of this 
approach is that it provides a potentially fast method to calculate crack propagation, since no 
complex analysis is required to determine the stress intensity factors for each change in crack 
length or loading. However, the approach also has limitations. The number of cases for which a 
solution is available is limited, and load redistribution is not accounted for as the crack grows. 
  The boundary element (BE) and finite element (FE) methods allow for the analysis of 
almost any combination of geometry and loading. The main advantage of the boundary element 
method is that only the boundary of the structure needs to be discretised. The finite element 
method requires discretisation of the complete structure, but this is compensated for by great 
flexibility in terms of overall analysis capabilities. In contrast to the closed form approach, 
using BE or FE methods requires recalculation of the stress intensity factors or energy release 
rate at each change of crack length or loading. 

In the current work it is proposed to calculate the stress intensity factor solution in closed 
form using the finite element method in combination with the influence function method. This is 
described in section 5.2. 
 
5.1.4 Method for crack propagation analysis 
Finally a method must be chosen to perform the actual crack propagation analysis. There are 
basically two approaches. In the first approach the calculation of the stress intensity factor and 
the actual crack propagation analysis are separated. This requires the stress intensity factor to be 
available in closed form. The actual crack propagation analysis is then very fast, which enables 
a cycle-by-cycle analysis of the load sequence and the use of advanced (empirical) crack growth 
models.   

In the second approach the crack propagation analysis is integrated in the calculation of 
the stress intensity factor or the energy release rate in a BE or FE method. Since the fracture 
mechanics parameter is not available in closed form, it must be calculated again for every 
analysis step. The associated computation time prohibits the cycle-by-cycle analysis of the load 
sequence, which is replaced by a block-type analysis. This also prohibits the use of advanced 
crack growth models. These two facts decrease the accuracy of an analysis following the second 
approach. 

Therefore in the present work the first approach of separated calculation of stress 
intensity factor and actual crack propagation analysis is chosen. 
 
5.2 Closed form SIF for complex geometries  

Use of a closed form stress intensity factor solution is feasible for a complex 3D 
geometry only if two conditions are fulfilled:   
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(1)  The stress intensity factor solution can be determined for an arbitrary loading condition 
and is representative for any loading condition that can possibly occur during the crack 
propagation analysis. 

(2) The stress intensity factor solution can be scaled by the value of the 3D stress tensor at a 
uniquely defined location near the crack.  

 In this subsection, firstly a method to determine the closed form SIF is proposed, and 
the two conditions are checked. Secondly the method is demonstrated with two examples. 
 
5.2.1 Method to determine closed form SIF 
It is readily deduced from the definition of the stress intensity factor K that the values of the 
three SIFs depend on one single stress tensor component only [11]. Using the crack orientation 
as defined in Figure 1, these dependencies are given by 

yzIII

xyII

yyI

K

K

K

σ

σ

σ

↔

↔

↔

 (8) 

For the value of the SIF it is irrelevant which remote loading condition causes the stress 
state. Therefore, if a normalised stress intensity factor solution (e.g. KI/σyy)  is calculated using 
an arbitrary loading condition, this solution is representative for any loading condition, as will 
be shown in the next subsection. The value of K can be obtained by scaling with the actual 
stress. This fulfils the first condition. 

The location of the stress tensor used for normalising and scaling the SIF solution is 
subject to two more or less contradictory requirements: 
(1) The location must be outside the region that is affected by the redistribution of the stress 

field around the crack.    
(2)  The location must be close to the crack to be representative for the loading of the crack, 

especially in a strongly non-uniform stress field as is often present in a 3D component. 
   From the principle of superposition, as illustrated in  
Figure 11, it can be shown that the stress distribution along the virtual crack in the uncracked 
model is representative for the loading of the crack and thus quantifies the stress intensity 
factor. The three problems in  
Figure 11 are: 
(a)  An uncracked elastic body subjected to a remote external load σ and a body force (Fx, Fy), 
(b)  A cracked elastic body subjected to the same external load and body force, 
(c)  A cracked elastic body of the same configuration loaded along the cracked surface by a 

distributed stress which is equal to the stress distribution along the virtual crack surface in 
(a) required to keep the (virtual) crack closed. 
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Figure 11  Principle of superposition applied to the crack problem 

 
   Since K = 0 for problem (a), the values of K for problems (b) and (c) must have equal 

values but opposite signs. Therefore, changing the sign of the stress distribution in (c) yields 
exactly the K of problem (b). Further, the stress distribution required to keep a (virtual) crack in 
problem (a) closed is equal to the stress distribution that is normally present in the body, but 
again with opposite sign and thus exactly equal to the changed distribution in (c). That proves 
that the stress distribution at the virtual crack in the uncracked and remotely loaded body is 
representative for the stress intensity factor in the cracked and remotely loaded body. Since no 
actual crack is present, the first requirement for the location of the stress tensor is automatically 
satisfied.  

For some problems a location close to the crack can be selected to satisfy the second 
requirement. But for a non-uniform stress field the loading of the crack faces is also non-
uniform and therefore cannot be represented by the stress tensor in a single location. The 
variation of the stress along the crack faces must be taken into account. 
     The influence function method proposed by Shiratory et al. [18] and applied by 
Yamashita et al. [19] was used to solve this problem. The relative influence of the stresses at the 
different parts of the crack face were originally taken into account using the following relation 

∑
=

=
N

i
iiKK

1

σ  (9) 

where σi is the nodal stress at the i-th node along the crack face (due to superposition equal to 
the stress at the virtual crack face in the uncracked body, see  
Figure 11), Ki is the influence coefficient of the i-th node, and N is the total number of nodes 
along the crack faces. The influence coefficient Ki is the stress intensity factor of the same crack 
acted upon by a unit load in the i-th node only. The method is modified slightly to obtain an 
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expression for effective stress, which can be used to normalise and scale the SIF. Therefore the 
influence coefficients in equation (9) were normalised and used as weights in the calculation of 
the effective stress: 
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i σσ ∑
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This effective stress is then used to normalise and scale the value of K, which fulfils the second 
condition for a closed form SIF. 

Whereas in [18] and [19] an influence coefficients database for a limited number of 
standard problems was used, in the present work the coefficients were calculated by the FE 
method. This expands the applicability of the method significantly because there is no limitation 
to standard problems anymore. On the other hand, the computational effort is increased 
somewhat, because N influence coefficients must be calculated for a series of crack lengths for 
the problem in hand. 

For some special cases the influence function method can be reduced to an even simpler 
method. For relatively small crack lengths all influence coefficients Ki are very similar and can 
be assumed to be equal, which means that the effective stress equals the average stress along the 
crack faces. If, in addition, the loading is also uniform, the nodal stresses will also become very 
similar and then σeff = σi. In those cases, as an engineering approach, the average stress in the 
uncracked model or even the stress tensor at only one location (e.g. near the virtual crack tip) 
can be used to normalise and scale the SIF. 
 
5.2.2 Application of the method 

To demonstrate that the stress intensity factor solution determined in this way is 
representative for any loading condition, two examples were used. Firstly it is shown that the 
standard SIF solution for an edge crack in a finite width sheet under a bending load can be 
obtained from the solution of the sheet under a uniaxial tensile stress. Secondly, the feasibility 
of the method is demonstrated on an FE model of a high pressure turbine blade.  

For a simple geometry like the finite width sheet shown in Figure 12 the stress 
distribution in the uncracked sheet can be calculated analytically. The sheet under tensile 
loading was used to determine the SIF solution. By using a uniform stress of 100 MPa, the 
values of KI for a range of crack lengths were obtained from a handbook [11] and normalised by 
the applied stress, as shown in Table 5.  

For the sheet under bending, with an applied moment of 1 MNm, the bending stress and 
the average stress on the crack face were calculated and finally the normalised SIF solution was 
scaled by the average stress to obtain the KI values for the bending case.  

The calculated values were plotted in Figure 13 together with the KI-values for the 
bending case as obtained from [11]. Comparison of the results shows that for this configuration 
the engineering approach of using the average stress is valid for crack lengths smaller than 5 
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mm (a/b < 0.5). Figure 13 also shows the SIF values calculated by the influence function 
method (IFM) for three crack lengths. This shows that the IF method also provides accurate 
results for larger crack lengths. The relatively large deviation for the value at 3.5 mm is caused 
by the coarse FE mesh that was used and the resulting small number of influence coefficients 
(small N in equation (9)).  

 
Table 5  SIF solution for bending case obtained from tensile case 

crack length (mm) 0.01 0.2 0.5 1 2 3 4 5 6 7 

σtensile (MPa) 100 100 100 100 100 100 100 100 100 100 

KI / σ (tensile) 0.006 0.09 0.14 0.21 0.34 0.51 0.75 1.13 1.76 2.82 

σbending (MPa) 600 576 540 480 360 240 120 0 -120 -240 

average σbending 600 588 572 540 480 420 360 300 240 180 

KI (bending) 3.77 52.2 81.2 113.4 165.2 214.7 269.7 338.0 416.0 507.2 
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Figure 12  Edge crack in a     Figure 13  SIF values calculated by IFM and  
            finite width  sheet,            engineering approach compared to  
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Figure 14  High pressure turbine blade finite element model (lower half shown) and detail of 
 iserted crack 

 
The second example is an FE model of a high pressure turbine blade. A 1.4 mm through 

crack was inserted in the high pressure turbine blade model.  
Figure 14a) using the in-house tool NLR-C3D [13], as is shown in  
Figure 14b). The stress intensity factors KI, KII and KIII were calculated for five different 

load cases, using combinations of centrifugal loads, pressure loads and tip rubbing loads. This 
resulted in five quite different stress states at the location of the crack. 

Also, the stress distribution in the uncracked model was calculated for the same five 
load cases. Since in this case the crack is relatively small and the loading in the region of  the 
crack is rather uniform, again the engineering approach as mentioned above is followed. This 
means that no influence coefficients were calculated, but one of the elements in the uncracked 
model was assumed to be representative for the loading of the crack.  The 3D stress tensor in 
one of the four elements that were later replaced by crack blocks was transformed to an element 
local coordinate frame aligned with the crack coordinate frame as defined in Figure 1.  

The three stress intensity factors were plotted versus the stress tensor component that is 
representative for the loading mode (see equation (8)) in Figure 15. This shows that the value of 
the stress intensity factors is proportional to the stress component across the range of load cases. 
The correlation for KIII is not as good as for KI and KII, owing to the low relative values of KIII 
making the calculation of KIII less accurate. The very strong correlation between K and the 
corresponding stress component shows again that the SIF solution can be scaled by the three 
stress components for any stress state and that the selected element in the uncracked model is 
the appropriate location for the stress tensor to be used for scaling.  
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Figure 15   Sress intensity factors plotted versus the stress component that is representative 
 or the loading mode 

 
5.3 Crack propagation analysis method for single crystal gas turbine components 
Based on the considerations in the previous subsections a method for crack propagation analysis 
is proposed consisting of the following steps. The stress intensity factor solution is calculated 
for a real component for an arbitrary load case using the finite element method. The load 
sequence for the crack propagation analysis is calculated by performing a fully thermo-
mechanical finite element analysis on the uncracked model using a representative load history. 
Then a representative (effective) stress tensor is calculated by using the influence function 
method and is used to normalise and scale the SIFs. This yields the values of  KI, KII and KIII at 
any moment in the load history. The tool that was described in the first part of this paper is then 
used to transform the values of KI, KII and KIII to a value of Krss. Finally, the sequence of Krss is 
used together with the material crack growth data and an appropriate crack growth model to 
calculate the crack propagation.  

This results in a fast and efficient analysis method that combines the benefits of a 
separated analysis using a closed form stress intensity factor solution with the versatility and 
ability to include load redistribution effects of (integrated) FE or BE approaches.  

 
 

6 Concluding remarks 

This study has shown that for single crystals of a nickel-base superalloy, CMSX-4, it is 
inappropriate to use isotropic stress intensity factor solutions, and also projected crack lengths 
for angled cracks. However, anisotropic stress intensity factor solutions incorporated into a 3-
dimensional stress tensor reconstruction, followed by calculations of the resolved shear stress 
intensity factor, Krss , gave predictions that explain the fatigue crack growth behaviour in single 
crystal CMSX-4 corner cracked specimens. 
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The approach in the present work is based on finite element analyses. This means that it 
can be extended to the more complex geometries of actual gas turbine components (single 
crystal turbine blades and vanes). An efficient crack propagation method is proposed, based on 
the calculation of a closed form stress intensity factor solution and Krss.  
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