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Problem area 
This report considers the problem of 
maneuvering target tracking from 
possibly missing and false 
measurements with non-
homogeneous density of false 
measurements. For this problem 
particle filtering is studied as an 
alternative for multitarget track 
maintenance versions of Interacting 
Multiple Model (IMM) in 
combination with Probabilistic Data 
Association (PDA) or Joint PDA 
(JPDA)  
 
Description of work 
The approach taken is to first 
characterize the problem in terms of 
filtering for a jump linear descriptor 
system with both Markovian and 
i.i.d. coefficients, and next to use 
this for the derivation of the exact 
recursive equation for the Bayesian 
filter. This result is used to develop 
two Sampling Importance 
Resampling (SIR) type particle 
filters, one which resamples a fixed 
number of joint particles (SIR joint 
particle filter) and one which 
resamples a fixed number of joint  
particles per joint mode (SIR-H 
joint particle filter). It is also shown 
that application of some 
approximating assumptions to the 
exact Bayesian filter equations 
leads to a compact version of the 
Interacting Multiple Model Joint 

probabilistic Data Association 
(IMMJPDA) filter. For this 
(compact) IMMJPDA filter also a 
track-coalescence-avoiding version 
(IMMJPDA*) is developed by 
introduction of a particular pruning 
of permutation hypotheses. All four 
novel filter algorithms cover the 
situation of non-homogeneous 
density of false measurements. 
 
Results and conclusions 
Through Monte Carlo simulations 
for a series of simple scenarios with 
two targets and two associated 
tracks these four novel filters have 
been compared to each other and to 
a filter which runs per track a single 
target IMMPDA. All four clearly 
outperformed IMMPDA. The SIR-
H joint particle filter appears to 
approximate the Bayesian filter 
well, whereas the SIR joint particle 
filter did not. On all scenarios, 
IMMJPDA* performs significantly 
better than IMMJPDA and 
sometimes even remarkably close to 
the performance of the SIR-H joint 
particle filter. 
 
Applicability 
The applicability of the work 
comprises the implementation of 
the resulting filtering algorithms in 
a multitarget tracker, in particular 
the Advanced suRveillance Tracker 
And Server ARTAS. 
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Joint particle filtering of multiple maneuvering
targets from unassociated measurements

Henk A.P. Blom and Edwin A. Bloem
National Aerospace Laboratory NLR

Amsterdam, The Netherlands
e-mail: blom@nlr.nl, bloem@nlr.nl

Abstract— The problem of maintaining tracks of multiple
maneuvering targets from unassociated measurements is formu-
lated as a problem of estimating the hybrid state of a Markov
jump linear system from measurements made by a descriptor
system with independent, identically distributed (i.i.d.) stochastic
coefficients. This characterization is exploited to derive the exact
equation for the Bayesian recursive filter, to develop two novel
Sampling Importance Resampling (SIR) type particle filters,
and to derive approximate Bayesian filters which use for each
target one Gaussian per maneuver mode. The two approximate
Bayesian filters are a compact and a track-coalescence avoiding
version of Interacting Multiple Model Joint Probababilistic Data
Association (IMMJPDA). The relation of each of the four novel
filter algorithms with literature is well explained. Through Monte
Carlo simulations for a two target example, these four filters
are compared to each other and to the approach of using one
IMMPDA filter per target track. The Monte Carlo simulation
results show that each of the four novel filters clearly outperforms
the IMMPDA approach. The results also show under which
conditions the IMMJPDA type filters perform close to exact
Bayesian filtering, and under which conditions not.

Index Terms— Bayesian filtering, Multitarget tracking, Sudden
maneuvers, false measurements, Missing measurements, Descrip-
tor system, particle filtering.

1. INTRODUCTION

In literature approximate Bayesian approaches towards
maintaining tracks of multiple maneuvering targets from unas-
sociated measurements have focussed on the development of
combinations of Interacting Multiple Model (IMM) and Joint
Probabilistic Data Association (JPDA) approaches. Initially,
combinations of IMM and JPDA have been developed along
two heuristic directions. Bar-Shalom et al. [4] heuristically
developed an IMMJPDA-Coupled filter for situations where
the measurements of two targets are unresolved during periods
of close encounter. The filters of the individual targets are
coupled through cross-target-covariance terms. The filtering
results obtained have not been very encouraging to continue
this heuristic approach. De Feo et al. [20] combined JPDA
and a rather crude approximation of IMM, under the name
IMMJPDA. The first proper combination of IMM and JPDA
has been developed by Chen & Tugnait [18]. Focus of
this development was on showing that fixed-lag IMMJPDA
smoothing performed far better than IMMJPDA filtering at
the cost of 3 scans delay. In [9], [10] we used the descriptor

0Manuscript received July 7, 2004; revised December 31, 2005 and May 2,
2006; released for publication May 15, 2006. Refereeing of this contribution
was handled by Shozo Mori.

system approach [8] to develop a track-coalescence-avoiding
version of IMMJPDA (for short IMMJPDA*). Moreover, we
showed that both IMMJPDA and IMMJPDA* perform much
better than just applying IMMPDA filtering per maintained
track. In spite of these developments it remains unclear how
IMMJPDA and IMMJPDA* filtering performs in comparison
with the exact Bayesian filter.

This motivates to study the Sampling Importance Resam-
pling (SIR) based Particle Filter (PF) paradigm [21], [28],
[43] for maintaining tracks of multiple maneuvering targets
from unassociated measurements. During the last decade this
paradigm has been recognized as a practical means in ap-
proximating an exact Bayesian filter arbitrarily well. This has
stimulated the development of a large variety of particle filters
(e.g. [1], [22], [38], [42]) that typically outperform established
approximate non-linear filtering and target track maintenance
approaches such as Extended Kalman Filtering, Probabilistic
Data Association (PDA), Interacting Multiple Model (IMM)
algorithm, and their combinations.

The extension of these results to multiple target tracking
situations also received significant attention. Early on it was
recognized that the JPDA formalism provided a logical starting
point for this development. Gordon [26] developed a SIR-PF
version by replacing JPDA’s Gaussian density by a density
the evolution of which is approximated with help of a SIR
particle filter. Avitzour [2] developed a more advanced SIR
particle filter by using joint-target particles; we refer to this as
SIR joint PF. Karlsson and Gustafsson [30] compared the RMS
position errors of a SIR joint PF with those of a JPDA filter
for maintaining tracks in an example of two perpendicular
crossing targets. For this ”easy” example the difference in
performance appeared to be small. Salmond et al. [45] showed
that a SIR joint PF works well for the initialization of two non-
manoeuvring targets that start from the same initial position.
Gordon et al. [27] developed a SIR joint PF approach for
tracking a group of targets, the members of which stay close to
each other. Through several complementary studies, efficiency
improvements have been developed for these particle filters,
e.g. [29], [41], [42], [48]. To track multiple objects for robotic
vision, Schultz et al. [46] developed an occlusion extension
for SIR PF and showed that this outperformed JPDA on a
multi person tracking problem. Tracking multiple objects with
occlusion situations by SIR joint PF for robotic vision has
been shown by [33] and [34].

A complementary development in SIR particle filtering is
to use sensor measurements at pixel level as observations.
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This allows handling the problems of target detection and
target tracking in an integrated way, and thus to shortcut the
traditional sequence of signal processing first, followed by
target detection (thresholding) and then target tracking. The
feasibility of a track-before-detect particle filtering approach
has been introduced in [15], [44] for a single target. Extensions
to multiple targets have been developed in [40] using single
target particles, and in [17], [32], [35] using joint particles. For
the current paper we assume that track maintenance has to be
performed on the basis of detected measurement observations,
and that pixel level sensor measurements are not available.
Hence, the track-before-detect problem setting goes beyond
the scope of the current study.

The aim of this paper is to extend the SIR joint particle
filter approach towards track maintenance, to the situation
of multiple manoeuvering targets and to evaluate for an
example how the performance of these particle filters compares
with IMMJPDA and IMMJPDA* filtering. This asks for the
combination of SIR joint PF for unassociated measurements
with SIR PF for tracking a suddenly manoeuvering target [16],
[36], [37]. The basis for this integration is provided by the
exact Bayesian filter for this particular problem. We developed
such an exact Bayesian characterisation using the descriptor
system approach [10], [14]. The current paper extends these
results in the sense of incorporating a non-homogeneous false
measurement density [39].

The specialty of this exact characterization is that both the
mode switching and the data association are performed jointly
for all targets and that false plot density is non-homogeneous.
Based on such exact equations, we develop a standard SIR
particle filter to evaluate the exact Bayesian equations. A
weakness of this standard SIR joint particle filter is that after
a resampling step for some of the joint modes there may
be hardly any or even no particles left. In theory this can
be compensated by significantly increasing the number of
particles. However, a more effective approach is to resample
a fixed number of joint particles per joint mode. We refer to
this as hybrid SIR joint particle filtering. Through Monte Carlo
simulations for a simple example the standard SIR and hybrid
SIR joint particle filters are compared with the following three
combinations of IMM and PDA:

• IMMPDA filter, which updates an individual IMM track
using MMPDA [25] and implicitly assuming there are no
other targets;

• A compact version of IMMJPDA, which we derive in this
paper in a systematic way from the exact Bayesian filter
equations; and

• The track coalescence avoiding version (IMMJPDA*) of
this compact IMMJPDA.

The paper is organized as follows. Section II formulates the
multi target track maintenance problem considered. Section III
embeds this in filtering for a jump linear descriptor system.
Section IV develops an exact Bayesian characterization of the
evolution of the conditional density for the state of the multiple
targets. Section V develops the standard SIR joint particle
filter. Section VI develops the hybrid SIR joint particle filter.
Section VII adopts the IMMJPDA assumptions, and shows

the impact on the filter equations relative to those of [18].
Section VIII develops IMMJPDA*. Section IX illustrates and
compares the performance of these filters through Monte Carlo
simulation results. As a performance reference we also run
single target IMMPDA filters on the same scenario. Finally,
Section X draws conclusions.

2. MULTITARGET TRACK MAINTENANCE PROBLEM

Consider M targets and assume that the state of the i-th
target is modelled as a jump linear system:

xi
t = ai(θi

t)x
i
t−1 + bi(θi

t)w
i
t, i = 1, ..., M, (1)

where xi
t is the n-vectorial state of the i-th target, θi

t

is the Markovian switching mode of the i-th target and
assumes values from M = {1, .., N} according to a transition
probability matrix Πi, ai(θi

t) and bi(θi
t) are (n × n)- and

(n × n′)-matrices and wi
t is a sequence of i.i.d. standard

Gaussian variables of dimension n′ with wi
t , wj

t independent
for all i 6= j and wi

t ,(xi
0, θ

i
0), (xj

0, θ
j
0) independent for all

i 6= j. At t = 0, the joint density pxi
0,θi

0
is known for each

i ∈ [1,M ]; typically these are i-variant.

A set of measurements consists of measurements originating
from targets and measurements originating from clutter. We
assume that a potential measurement originating from target
i is also modelled as a jump linear system:

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t , i = 1, ..., M (2)

where zi
t is an m-vector, hi(θi

t) is an (m × n)-matrix and
gi(θi

t) is an (m × m′)-matrix, and vi
t is a sequence of i.i.d.

standard Gaussian variables of dimension m′ with vi
t and vj

t

independent for all i 6= j. Moreover vi
t is independent of xj

0

and wj
t for all i,j.

Let xt
4
= Col{x1

t , ..., x
M
t }, θt

4
= Col{θ1

t , ..., θM
t },

A(θt)
4
= Diag{a1(θ1

t ), ..., aM (θM
t )}, B(θt)

4
=

Diag{b1(θ1
t ), ..., bM (θM

t )}, and wt
4
= Col{w1

t , ..., wM
t }.

Then we can model the state of our M targets as follows:

xt = A(θt)xt−1 + B(θt)wt (3)

with A and B of size Mn×Mn and Mn×Mn′ respectively,
with {θt} assuming values from MM according to transition
probability matrix Π = [Πη,θ]. If the M targets switch mode
independently of each other, then:

Πη,θ =
M∏

i=1

Πi
ηi,θi (4)

for every η ∈MM and θ ∈MM .
Next with zt

4
= Col{z1

t , ..., zM
t }, H(θt)

4
=

Diag{h1(θ1
t ), ..., hM (θM

t )}, G(θt)
4
=

Diag{g1(θ1
t ), ..., gM (θM

t )}, and vt
4
= Col{v1

t , ..., vM
t },

we obtain:
zt = H(θt)xt + G(θt)vt (5)

with H and G of size Mm×Mn and Mm×Mm′ respectively.

We next assume that with a non-zero detection probability,
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P i
d, target i is indeed observed at moment t. In addition to

this there may be false measurements, the density of which
is not homogeneous. Similar as [39] we assume that the
number of false measurements at moment t, Ft, has a Poisson
distribution:

pFt
(F ) = (F̂t)

F

F ! exp
(−F̂t

)
, F = 0, 1, 2, . . .

= 0, else
(6.a)

where F̂t is the expected number of false measurements. Let
ft denote the column vector of i.i.d. false measurements, then
the conditional density of ft given Ft satisfies:

pft|Ft
(f |F ) =

F∏

i=1

pf (f i) (6.b)

where pf (·) is the (measurable) probability density function
of a false measurement. Hence, the local density λ(·) of false
measurements satisfies:

λ(f i) = F̂tpf (f i) (6.c)

Furthermore we assume that the process {Ft, ft} is a sequence
of independent vectors, which are independent of {xt}, {wt}
and {vt}.

At moment t = 1, 2, . . . , T a vector observation yt is made,
the components of which consist of the potential observations
zi
t of the detected targets plus the false measurements {Ft, ft}.

The multi-target track maintenance problem considered is to
estimate xt, θt given observations Yt

4
= {ys; 0 ≤ s ≤ t} with

y0 representing the initial joint density px0,θ0 .

3. STOCHASTIC MODELLING OF OBSERVATION EQUATION

This section characterizes the exact relation between ob-
servation vector yt and the false and potential observations
at moment t > 0. For this we largely follow [8]. The
measurement vector yt consists of measurements originating
from targets and measurements originating from clutter. Firstly
the relation for measurements originating from targets is iden-
tified. Subsequently the clutter measurements are randomly
inserted between the target measurements.
Let φi,t ∈{0,1} be the detection indicator for target i, which
assumes the value one with a time invariant probability P i

d >
0, independently of φj,t, j 6= i and independently of the
processes introduced in section II. This approach yields the
following detection indicator vector φt of size M :

φt
4
= Col{φ1,t, ..., φM,t}.

Thus, the number of detected targets is Dt
4
=

∑M
i=1 φi,t.

Furthermore, we assume that {φt} is a sequence of i.i.d.
vectors.
In order to link the detection indicator vector with the mea-
surement model, we introduce the following operator Φ: for
an arbitrary vector φ′ of length M ′ and having (0, 1) valued
components, we define D(φ′)

4
=

∑M ′

i=1 φ′i and the operator Φ
producing Φ(φ′) as a (0, 1)-valued matrix of size D(φ′)×M ′

of which the ith row equals the ith non-zero row of Diag{φ′}.

Next we define, for Dt > 0, a vector that contains all
measurements originating from targets in a fixed order.

z̃t
4
= Φ(φt)zt, where Φ(φt)

4
= Φ(φt)⊗ Im,

with Im a unit-matrix of size m, and ⊗ the Kronecker product,
i.e.

[
a b
c d

]
⊗ Im

4
=




aIm

... bIm

. . . . . .

cIm

... dIm




In reality, however, we do not know in which order the targets
are observed. Hence, we introduce the stochastic Dt × Dt

permutation matrix χt, which is independent of the processes
introduced in section II and is conditionally independent of
{φt} given Dt. We also assume that {χt} is a sequence of
independent matrices. Hence, for Dt > 0,

˜̃zt
4
= χ

t
z̃t, where χ

t

4
= χt ⊗ Im,

is a vector that contains all measurements originating from
targets at moment t in a random order.
Let the random variable Lt be the total number of measure-
ments at moment t. Thus,

Lt = Dt + Ft

We next describe the relation between the potential measure-
ment vector zt, the false plot vector ft and the measurement
vector yt

4
= Col{y1,t, ..., yLt,t

}, where yi,t denotes the i-th
m-vectorial measurement at moment t. Because yt contains
a random mixture of Dt target measurements and Lt − Dt

false measurements, the relation between zt and yt can be
characterized by the following pair of equations for the target
and false measurements respectively:

Φ(ψt)yt = χ
t
Φ(φt)zt , if Dt > 0,

= {} , if Dt = 0
(7.a)

Φ(ψ∗t )yt = ft , if Lt > Dt,
= {} , if Lt = Dt

(7.b)

where ψt, ψ∗t , χt are explained below.
First we explain the target measurement eq. (7.a). This
equation has stochastic i.i.d. coefficients Φ(ψt) and χ

t
Φ(φt).

The detected target measurements in the observation vector
yt are in random order. Hence the potential detected
measurements of targets need to be randomly mixed. To
perform this by a simple matrix multiplication, a sequence
of independent stochastic permutation matrices {χt} of size
Dt ×Dt is defined and assumed to be independent of {φt}.
To take into account the measurement vector size m, χt needs
to be ”inflated” to the proper size of Dtm by means of the
Kronecker product with Im. To this end, χ

t

4
= χt ⊗ Im with

Im a unit-matrix of size m, and ⊗ the Kronecker product.
Hence χ

t
Φ(φt)zt is a column vector of potential detected

measurements of targets in random order.
ψt

4
= Col{ψ1,t, ..., ψLt,t} is the target indicator vector, where

ψi,t ∈{0,1} is a target indicator at moment t for measurement
i, which assumes the value one if measurement i belongs to
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a detected target and zero if measurement i is false. Because
there are as many detected targets as target measurements,
the following constraint applies:

D(ψt) = D(φt) (8)

Under this equality constraint, {ψt} is a sequence of indepen-
dent vectors that is Dt-conditionally independent of all earlier
defined processes.
In order to let ψt select the correct measurements by simple
matrix multiplication, the matrix operator Φ defined above
is used. To take into account the measurement vector size
m, Φ(ψt) needs to be ”inflated” to the proper size of Dtm
by means of the Kronecker product with Im. To this end,
Φ(ψ′)

4
= Φ(ψ′) ⊗ Im with Im a unit-matrix of size m, and

⊗ the Kronecker product. Hence Φ(ψt)yt is a column vector
that contains all detected target measurements in yt.
ψ∗t

4
= Col{ψ∗1,t, ..., ψ

∗
Lt,t} is a false indicator vector of size

Lt with ψ∗i,t = 1− ψi,t. To select the false measurements by
matrix multiplication, the matrix operator Φ is used again.
Hence Φ(ψ∗t )yt is a column vector that contains all false
measurements from yt.
Finally we develop a characterization for yt. For this we first
verify the following for Lt > Dt > 0:

Φ(ψt)T Φ(ψt) + Φ(ψ∗t )T Φ(ψ∗t ) = ILt×Lt

Hence

yt =
[
Φ(ψt)T Φ(ψt) + Φ(ψ∗t )T Φ(ψ∗t )

]
yt if Lt > Dt > 0

Substituting (7.a) and (7.b) into this equation yields the
following model for the observation vector yt:

yt = Φ(ψt)T χ
t
Φ(φt)zt + Φ(ψ∗t )T ft if Lt > Dt > 0

= Φ(ψt)T χ
t
Φ(φt)zt if Lt = Dt > 0

= Φ(ψ∗t )T ft if Lt > Dt = 0
= {} if Lt = 0

(9)
Together with equations (3), (4), (5) and (6), equation (9)
forms a complete characterization of our tracking problem in
terms of stochastic difference equations.

Example: Assume we maintain tracks of five targets
(M = 5), of which we detect detect and observe four
(Dt = 4) together with two false measurements (Ft = 2),
and with:

χt =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


,

φt =
[

1 0 1 1 1
]T

ψt =
[

1 1 0 1 1 0
]T

i.e. the 2nd target is not detected, and the 3rd and 6th
measurements are false. This implies:

Φ(φt) =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


,

Φ(ψt) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


,

Φ(ψ∗t ) =
[

0 0 1 0 0 0
0 0 0 0 0 1

]
,

χtΦ(φt) =




0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0


,

Φ(ψt)T χ
t
Φ(φt)zt =

[
z5,t z4,t 0 z1,t z3,t 0

]T ,

Φ(ψ∗t )T ft =
[

0 0 f1,t 0 0 f2,t

]T
,

Substituting this in (9) yields:

yt =
[

z5,t z4,t f1,t z1,t z3,t f2,t

]T

4. EXACT FILTER EQUATIONS

In this section a Bayesian characterization of the conditional
density pxt,θt| Yt

(x, θ) is given where Yt denotes the σ-algebra
generated by measurements yt up to and including moment
t. Subsequently, characterizations are developed for the mode
probabilities and the mode conditional means and covariances.
First we introduce an auxiliary indicator matrix process χ̃t of
size Dt × Lt, as follows:

χ̃t
4
= χT

t Φ(ψt) if Dt > 0. (10)

Pre-multiplying the left- and right hand terms in (9) with χ̃
t
=

χ̃⊗ Im and subsequent straightforward evaluation yields:

χ̃
t
yt = Φ(φt)H(θt)xt + Φ(φt)G(θt)vt, if Dt > 0, (11)

where the size of χ̃
t

is Dtm× Ltm and the size of Φ(φt) is
Dtm×Mm.
Notice that (11) is a linear Gaussian descriptor system [19]
with stochastic i.i.d. coefficients χ̃

t
and Φ(φt) and Markovian

switching coefficients H(θt) and G(θt).
From (11), it follows that for Dt > 0 all relevant associations
and permutations can be covered by (φt, χ̃t)-hypotheses. We
extend this to Dt = 0 by adding the combination φt = {0}M

and χ̃t = {}Lt . Hence, through defining the weights

βt(φ, χ̃, θ)
4
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt},

the law of total probability yields:

pxt,θt|Yt
(x, θ) =

∑

χ̃,φ

βt(φ, χ̃, θ)pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃)

(12)
And thus, our problem is to characterize the terms in the last
summation. This problem is solved in two steps, the first of
which is the following Proposition.
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Proposition 1. For any φ ∈{0, 1}M , such that D(φ)
4
=∑M

i=1 φi ≤ Lt, and any χ̃t matrix realization χ̃ of size
D(φ)× Lt, the following holds true:

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) =

=
pz̃t|xt,θt,φt

(χ̃yt | x, θ, φ) · pxt|θt,Yt−1(x | θ)
Ft(φ, χ̃, θ)

(13)

βt(φ, χ̃, θ) = Ft(φ, χ̃, θ) ·

·
Lt−D(φ)∏

j=1

λ
(
[Φ(1Lt

− χ̃T χ̃1Lt
)yt]j

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ] · pθt|Yt−1(θ)/ct(14)

where χ̃
4
= χ̃ ⊗ Im, 1Lt

= [1, ..., 1]T is an Lt vector with
1-valued elements and Ft(φ, χ̃, θ) and ct are such that they
normalize pxt|θt,φt,χ̃t,Yt

(x | θ, φ, χ̃) and βt(φ, χ̃, θ) respec-
tively.

Proof: See Appendix A

The next step starts with substituting (13) and (14) into
(12), which yields:

pxt,θt|Yt
(x, θ) =

=
∑

χ̃,φ

[
pz̃t|xt,θt,φt

(χ̃yt | x, θ, φ) · pxt|θt,Yt−1(x | θ)
Ft(φ, χ̃, θ)

·

·Ft(φ, χ̃, θ) ·
Lt−D(φ)∏

j=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]j

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ]
]
· pθt|Yt−1(θ)/ct

Simplifying this and rearranging terms yields:

pxt,θt|Yt
(x, θ) =

=
∑

χ̃,φ

[
pz̃t|xt,θt,φt

(χ̃yt | x, θ, φ) · pxt,θt|Yt−1(x, θ) ·

·
Lt−D(φ)∏

j=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]j

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ]/ct

]
(15)

with

pz̃t|xt,θt,φt
(z̃ | x, θ, φ) =

= N{z̃; Φ(φ)H(θ)x, Φ(φ)G(θ)G(θ)T Φ(φ)T } (16)

Define F̃t(φ, χ̃, x, θ)
4
= pz̃t|xt,θt,φt

(χ̃yt | x, θ, φ). Hence from
(16) we get:

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]− 1
2 ·

· exp{−1
2
ν̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)−1ν̃t(φ, χ̃, x, θ)} (17)

where

ν̃t(φ, χ̃, x, θ)
4
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
4
= Φ(φ)

(
G(θ)G(θ)T

)
Φ(φ)T

Substituting (17) into (15) and rearranging terms yields

pxt,θt|Yt
(x, θ) =

1
ct

∑

χ̃,φ

[
F̃t(φ, χ̃, x, θ)·

·
Lt−D(φ)∏

j=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]j

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ]
]
· pxt,θt|Yt−1(x, θ) (18)

Theorem 1. For any φ ∈{0, 1}M , such that D(φ)
4
=∑M

i=1 φi ≤ Lt, the following recursive equation holds true
for the conditional density pxt,θt|Yt

(x, θ):

pxt,θt|Yt
(x, θ) =

=
1
ct

∑

φ∈{0,1}M

[
M∏

i=1

[ (
1− P i

d

)(1−φi) (
P i

d

)φi

]
·

·
∑

χ̃

NmD(φ){χ̃yt; Φ(φ)H(θ)x, Φ(φ)G(θ)G(θ)T Φ(φ)T }·

·
Lt−D(φ)∏

j=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]j

)
]
·

·
∫

RMn

NMn{x; A(θ)x′, B(θ)B(θ)T } ·

·
∑

η∈MM

[
Πηθ pxt−1,θt−1|Yt−1(x

′, η)
]
dx′ (19)

with normalization ct, NK{·; x̄, p̄} a K-dimensional Gaussian
with mean x̄ and covariance P̄ , and 2nd sum running over all
χ̃ = χΦ(ψ) with χ a D(φ) × D(φ) permutation matrix and
ψ ∈ {0, 1}Lt such that D(ψ) = D(φ).

Proof: IMM’s basic derivation [38, App. A] yields:

pxt,θt|Yt−1(x, θ) =
∫

RMn

NMn{x; A(θ)x′, B(θ)B(θ)T } ·

·
∑

η∈{1,...,N}M

[
Πηθ pxt−1,θt−1|Yt−1(x

′, η)
]
dx′ (20)

Substituting (17) and (20) in (18) and rearranging the summa-
tion over χ̃ yields eq. (19).

Eq. (19) is a recursive equation for the exact Bayesian solution
of tracking multiple targets from possibly false and missing
measurements. From eq. (19) follows that if the initial density
is a Gaussian mixture, then the exact conditional density
solution of recursive equation (19) is a Gaussian mixture, the
number of Gaussians increasing exponentially with time.

Remark 1: For jump-linear systems such recursive filter
equation has been characterized by [23], and for jump-non-
linear systems by [3], [16]. In [14] we provide a version of
Theorem 1 under the assumption that λ is homogeneous.
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Remark 2: Proposition 1 and Theorem 1 also apply when
initial densities are permutation symmetric over the targets,
i.e. a situation studied by [32].

5. SIR JOINT PARTICLE FILTER

In this section a SIR joint particle filter of the exact filter
characterization of Theorem 1 is developed. In this SIR joint
PF a particle is defined as a triplet (µj , xj , θj), µj ∈ [0, 1],
xj ∈ RMn, θj ∈ MM , j ∈ [1, S]. One filter cycle consists of
the following steps:

• SIR joint particle filter Step 0: Initiation.
Each filter cycle starts with a set of S joint particles in
[0, 1]× RMn ×MM , i.e.:

{(µj,t−1 = 1/S, xj,t−1, θj,t−1); j ∈ [1, S]}

with for t = 0, θj,0 and xj,0 independently drawn from pθ0(·)
and px0|θ0(·|θj,0) respectively for each j ∈ [1, S].

• SIR joint particle filter Step 1: Joint mode switching.
Determine the new joint mode per joint particle (µj,t−1 and
xj,t−1 are not changed)

{(µj,t−1, xj,t−1, θ̄j,t); j ∈ [1, S]}

by generating for each joint particle a new value θ̄j,t according
to the transition probabilities:

Prob{θ̄j,t = θ̄ | θj,t−1 = θ} = Πθ,θ̄ (21)

• SIR joint particle filter Step 2: Prediction.
Determine the new state per joint particle (the weights µj,t−1

are not changed)

{(µj,t−1, x̄j,t, θ̄j,t); j ∈ [1, S]}

by running for each particle a Monte Carlo simulation from
(t− 1) to t according to the model

x̄j,t = A(θ̄j,t)xj,t−1 + B(θ̄j,t)wj,t−1 (22)

• SIR joint particle filter Step 3: Measurement update.
Determine new weight per joint particle, i.e.

{(µ̄j,t, x̄j,t, θ̄j,t); j ∈ [1, S], }

with for the new weights, using eqs. (17) and (18):

µ̄j,t = µj,t−1 · 1
ct

∑

χ̃,φ

[
F̃t(φ, χ̃, x̄j,t, θ̄j,t) ·

·
Lt−D(φ)∏

i=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]i

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ]
]

(23)

where

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]− 1
2 ·

· exp{−1
2
ν̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)−1ν̃t(φ, χ̃, x, θ)} (24)

with

ν̃t(φ, χ̃, x, θ)
4
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
4
= Φ(φ)

(
G(θ)G(θ)T

)
Φ(φ)T

and ct a normalizing constant such that

S∑

j=1

µ̄j,t = 1

• SIR joint particle filter Step 4: MMSE output equations:

γ̂t(θ) =
S∑

j=1

µ̄j,t1θ̄j,t
(θ)

x̂t(θ) =
S∑

j=1

µ̄j,tx̄j,t1θ̄j,t
(θ)

P̂t(θ) =
S∑

j=1

µ̄j,t[x̄j,t − x̂t(θ)][x̄j,t − x̂t(θ)]T 1θ̄j,t
(θ)

x̂t =
∑

θ∈MM

γ̂(θ)x̂t(θ)

P̂t =
∑

θ∈MM

γ̂(θ)
(
P̂t(θ) + [x̂t(θ)− x̂t][x̂t(θ)− x̂t]T

)

• SIR joint particle filter Step 5: Resampling.
Generate the new set of joint particles

{(µj,t = 1/S, xj,t, θj,t); j ∈ [1, S]}

with θj,t and xj,t the j-th of the S samples drawn
independently from the joint particle spanned conditional
densities for θt given yt and for xt given Yt and θt = θj

t :

pθt|Yt
(θ) ≈ γ̂t(θ)

pxt|θt,Yt
(·|θj,t) ≈

S∑

l=1

µ̄l
t1θ̄l,t

(θj,t)δx̄l,t
(·)

In the next section we modify the enumeration of the particles
and adopt the particle resampling step 5.
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6. HYBRID SIR JOINT PARTICLE FILTER

In this section a hybrid SIR joint particle filter of the
exact filter characterization of Theorem 1 is developed. The
difference with the SIR joint particle filter is that we now
resample a fixed number of joint particles per joint mode. A
joint particle is defined as a triplet (µθ,j , xθ,j , θ), µθ,j ∈ [0, 1],
xθ,j ∈ RMn, θ ∈ MM , j ∈ [1, S′]. One cycle of this hybrid
SIR joint particle filter consists of the following steps:

• Hybrid SIR joint particle filter Step 0: Initiation.
Each filter cycle starts with a set of S = NS′ joint particles
in [0, 1]× RMn ×MM , i.e.:

{(µθ,j
t−1, x

θ,j
t−1, θ

θ,j
t−1 = θ); j ∈ [1, S′], θ ∈MM}

with for t = 0, µθ,j
0 = pθ0(θ)/S′, and xθ,j

0 independently
drawn from px0|θ0(·|θ) for each j ∈ 1, ..., S′.

• Hybrid SIR joint particle filter Step 1: Mode switching.
Determine the new mode per particle (µθ,j

t−1 and xθ,j
t−1 are not

changed)

{(µθ,j
t−1, x

θ,j
t−1, θ̄

θ,j
t ); j ∈ [1, S′], θ ∈MM}

by generating for each joint particle a new value θ̄θ,j
t according

to the model

Prob{θ̄θ,j
t = θ̄ | θθ,j

t−1 = θ} = Πθ,θ̄ (25)

• Hybrid SIR joint particle filter Step 2: Prediction.
Determine the new state per joint particle (the weights µθ,j

t−1

are not changed)

{(µθ,j
t−1, x̄

θ,j
t , θ̄θ,j

t ); j ∈ [1, S′], θ ∈MM}
by running for each particle a Monte Carlo simulation from
(t− 1) to t according to the model

x̄θ,j
t = A(θ̄θ,j

t )xθ,j
t−1 + B(θ̄θ,j

t )wt−1 (26)

• Hybrid SIR joint particle filter Step 3: Measurement update.
Determine new weight per joint particle, i.e.

{(µ̄θ,j
t , x̄θ,j

t , θ̄θ,j
t ); j ∈ [1, S′], θ ∈MM}

with for the new weights, using eqs. (17) and (18):

µ̄θ,j
t = µθ,j

t−1 ·
1
ct

∑

χ̃,φ

[
F̃t(φ, χ̃, x̄θ,j

t , θ̄θ,j
t ) ·

·
Lt−D(φ)∏

i=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]i

) ·

·
M∏

i=1

[(1− P i
d)

(1−φi)(P i
d)

φi ]
]

(27)

where

F̃t(φ, χ̃, x, θ) = [(2π)mD(φ)Det{Q̃t(φ, θ)}]− 1
2 ·

· exp{−1
2
ν̃T

t (φ, χ̃, x, θ)Q̃t(φ, θ)−1ν̃t(φ, χ̃, x, θ)} (28)

with

ν̃t(φ, χ̃, x, θ)
4
= χ̃yt − Φ(φ)H(θ)x

Q̃t(φ, θ)
4
= Φ(φ)

(
G(θ)G(θ)T

)
Φ(φ)T

and ct a normalizing constant such that

∑

θ∈MM

S′∑

j=1

µ̄θ,j
t = 1

• Hybrid SIR joint particle filter Step 4: MMSE output
equations:

γ̂t(θ) =
∑

η∈MM

S′∑

j=1

µ̄η,j
t 1θ̄η,j

t
(θ)

x̂t(θ) =
∑

η∈MM

S′∑

j=1

µ̄η,j
t x̄η,j

t 1θ̄η,j
t

(θ)

P̂t(θ) =
∑

η∈MM

S′∑

j=1

µ̄η,j
t [x̄η,j

t − x̂t(θ)][x̄
η,j
t − x̂t(θ)]T 1θ̄η,j

t
(θ)

x̂t =
∑

θ∈MM

γ̂(θ)x̂t(θ)

P̂t =
∑

θ∈MM

γ̂(θ)
(
P̂t(θ) + [x̂t(θ)− x̂t][x̂t(θ)− x̂t]T

)

• Hybrid SIR joint particle filter Step 5: Resampling per
mode.
Generate the new set of joint particles

{(µθ,j
t = γ̂t(θ)/S′, xθ,j

t , θθ,j
t = θ); j ∈ [1, S′], θ ∈MM}

with xθ,j
t the j-th of the S′ samples drawn independently from

the particle spanned conditional density for xt given Yt and
θt = θ:

pxt|θt,Yt
(·|θ) ≈

∑

η∈MM

S′∑

l=1

µ̄η,l
t 1θ̄η,l

t
(θ)δx̄η,l

t
(x)

For homogeneous λ, this hybrid SIR joint particle filter has
been introduced in [11] under the name Joint IMMPDA
particle filter.

7. IMMJPDA ASSUMPTIONS

The assumptions that are underlying to the IMMJPDA of
[18] are:

C1) pθt|Yt−1(θ) =
∏M

i=1 pθi
t|Yt−1

(θi);
C2) pxt|θt,Yt−1(x|θ) =

∏M
i=1 pxi

t|θi
t,Yt−1

(xi|θi);
C3) pxi

t|θi
t,Yt−1

(xi|θi) is Gaussian with mean x̄i
t(θi) and

covariance P̄ i
t (θ

i)

Application of these assumptions, to the exact equations of
Proposition 1 yields the following theorem.
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Theorem 2. Assume C1, C2 and C3 are satisfied. Then
βt(φ, χ̃, θ) of Proposition 1 satisfies:

βt(φ, χ̃, θ) =




Lt−D(φ)∏

i=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]i

)

 ·

·
M∏

i=1

[
f i

t (φ, χ̃, θi)(1− P i
d)

(1−φi)(P i
d)

φi · pθi
t|Yt−1

(θi)
]
/ct

(29)

with for φi = 0: f i
t (φ, χ̃, θi) = 1, and for φi = 1:

f i
t (φ, χ̃, θi) = [(2π)mDet{Q̄i

t(θ
i)}]− 1

2 φi ·

· exp{−1
2

Lt∑

k=1

(
[Φ(φ)T ]i∗χ̃∗kνik

t (θi)T [Q̄i
t(θ

i)]−1νik
t (θi)

)}

(30.a)

νik
t (θi) = yk

t − hi(θi)x̄i
t(θ

i) (30.b)
Q̄i

t(θ
i) = hi(θi)P̄ i

t (θ
i)hi(θi)T + gi(θi)gi(θi)T (30.c)

where [Φ(φ)T ]i∗ and χ̃∗k are the i-th row and k-th column
of Φ(φ)T and χ̃, respectively. Moreover, pxi

t|θi
t,Yt

(xi|θi), i ∈
[1,M ], is a Gaussian mixture, while its overall mean x̂i

t(θ
i)

and its overall covariance P̂ i
t (θi) satisfy:

pθi
t|Yt

(θi) =
∑
φ,χ̃,η

ηi=θi

βt(φ, χ̃, η) (31.a)

x̂i
t(θ

i) = x̄i
t(θ

i) + W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)νik

t (θi)

)
(31.b)

P̂ i
t (θ

i) = P̄ i
t (θ

i)−W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)

)
+

+W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)νik

t (θi)νik
t (θi)T

)
W i

t (θ
i)T +

−W i
t (θ

i)

(
Lt∑

k=1

βik
t (θi)νik

t (θi)

)
·

·
(

Lt∑

k′=1

βik′
t (θi)νik′

t (θi)

)T

W i
t (θ

i)T (31.c)

with:

W i
t (θ

i) = P̄ i
t (θ

i)hi(θi)T [Q̄i
t(θ

i)]−1 (31.d)

βik
t (θi)

4
= Prob{[Φ(φt)T ]i∗[χ̃t]∗k = 1 | θi

t = θi, Yt} =

=
∑

φ,χ̃,η
φ6=0

ηi=θi

[Φ(φ)T ]i∗χ̃∗kβt(φ, χ̃, η)]/pθi
t|Yt

(θi)

(31.e)

Proof: See Appendix B.
Eq. (30a) replaces six nested equations of [18, eqs. (18) and
(20)-(24)]. As a direct consequence, Theorem 2 leads to a more
compact version of IMMJPDA, the detailed steps of which we
give in the next section.

8. TRACK-COALESCENCE-AVOIDING IMMJPDA FILTER

Fitzgerald [24] has shown that less likely permutation
hypotheses pruning provides an effective strategy towards
reducing JPDA’s sensitivity to track coalescence if λ = 0 and
P i

d = 1. In [8] we have shown that for λ > 0 or P i
d < 1, the

appropriate strategy is to prune per (φt, ψt)-hypothesis all but
the most likely χt-hypothesis prior to measurement updating.
This hypothesis pruning strategy is now extended as follows:
evaluate all (φt, ψt,θt) hypotheses and prune per (φt, ψt,θt)-
hypothesis all but the most-likely χt-hypothesis. For every φ,
ψ and θ, satisfying D(ψ) = D(φ) ≤Min{M, Lt}, the most
likely χ hypothesis satisfies the mapping χ̂t(φ, ψ,θ):

χ̂t(φ, ψ, θ)
4
= Argmax

χ
βt(φ, χT Φ(ψ), θ)

where the maximization is over all permutation matrices χ of
size D(φ)×D(φ).
The pruning strategy of evaluating all (φ, ψ, θ)-hypotheses and
only one χ-hypothesis per (φ, ψ, θ)-hypothesis implies that we
adopt the following pruned hypothesis weights β̂t(φ, ψ, θ):

β̂t(φ, ψ, θ)= βt(φ, χ̂(φ, ψ, θ)T Φ(ψ), θ)/ĉt

if 0 < D(φ) ≤ Min{M,Lt}
= βt({0}M , {}Lt , θ)/ĉt if D(φ) = 0
= 0 else

with ĉt a normalization constant for β̂t; i.e. such that
∑
φ,ψ,θ

D(ψ)=D(φ)

β̂t(φ, ψ, θ) = 1

Through combining the equations of Theorem 2 with the above
step, we arrive at the track-coalescence-avoiding IMMJPDA,
for short IMMJPDA*:

IMMJPDA* Step 1: For each target this comes down to the
interaction step of the IMM algorithm [7] for all i ∈ [1,M ]:
Starting with

γ̂i
t−1(θ

i)
4
= pθi

t−1|Yt−1
(θi), θi ∈M

x̂i
t−1(θ

i)
4
= E{xi

t−1|θi
t−1 = θi, Yt−1}, θi ∈M

P̂ i
t−1(θ

i)
4
= E{[xi

t−1 − x̂i
t−1(θ

i)][xi
t−1 − x̂i

t−1(θ
i)]T |

| θi
t−1 = θi, Yt−1}, θi ∈M

one evaluates the mixed initial condition for the filter matched
to θi

t = θi as follows (due to eq. (4)):

γ̄i
t(θ

i) =
N∑

ηi=1

Πi
ηi,θi · γ̂i

t−1(η
i)

x̂i
t−1|θi

t
(θi) =

N∑

ηi=1

Πi
ηi,θi · γ̂i

t−1(η
i) · x̂i

t−1(η
i)/γ̄i

t(θ
i)

P̂ i
t−1|θi

t
(θi) =

N∑

ηi=1

Πi
ηi,θi · γ̂i

t−1(η
i) ·

·
(
P̂ i

t−1(η
i) + [x̂i

t−1(η
i)− x̂i

t−1|θi
t
(θi)] ·

·[x̂i
t−1(η

i)− x̂i
t−1|θi

t
(θi)]T

)
/γ̄i

t(θ
i)
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IMMJPDA* Step 2: Prediction for all i ∈ [1,M ], θi ∈M:

x̄i
t(θ

i) = ai(θi)x̂i
t−1|θi

t
(θi) (32.a)

P̄ i
t (θ

i) = ai(θi)P̂ i
t−1|θi

t
(θi)ai(θi)T + bi(θi)bi(θi)T (32.b)

Q̄i
t(θ

i) = hi(θi)P̄ i
t (θ

i)hi(θi)T + gi(θi)gi(θi)T (32.c)

IMMJPDA* Step 3: Gating, which is based on [5].
Identify for each target the mode for which Det Q̄i

t(θ) is
largest:

θ∗it = Argmax
θ

{Det Q̄i
t(θ)}

and use this to define for each target i a gate Gi
t ∈ Rm as

follows:

Gi
t
4
= {zi ∈ IRm; [zi − hi(θ∗it )x̄i

t(θ
∗i
t )]T ·

·Q̄i
t(θ

∗i
t )−1[zi − hi(θ∗it )x̄i

t(θ
∗i
t )] ≤ κ}

with κ the gate size. Now we define Lt to denote the number
of measurements yt that are in one or more of the gates Gi

t.

IMMJPDA* Step 4: Evaluation of the detec-
tion/association/mode hypotheses is based on Theorem
2; for all φ ∈ {0, 1}M , χ̃ ∈ {0, 1}D(φ)×Lt , θ ∈MM ,

βt(φ, χ̃, θ) ∼=



Lt−D(φ)∏

i=1

λ
(
[Φ(1Lt − χ̃T χ̃1Lt)yt]i

)

 ·

·
M∏

i=1

[f i
t (φ, χ̃, θi) · γ̄i

t(θ
i) ·

· (1− P i
dChi2m(κ)

)(1−φi) (
P i

dChi2m(κ)
)φi ]/ct

if χ̃1Lt = 1D(φ),

= 0 else (33.a)

with for φi = 0: f i
t (φ, χ̃, θi) = 1, and for φi = 1:

f i
t (φ, χ̃, θi) ∼= [(2π)mDet{Q̄i

t(θ
i)}]− 1

2 φi ·

· exp{−1
2

Lt∑

k=1

[Φ(φ)T ]i∗χ̃∗kνik
t (θi)T [Q̄i

t(θ
i)]−1νik

t (θi)]}

(33.b)
νik

t (θi) = yk
t − hi(θi)x̄i

t(θ
i) (33.c)

IMMJPDA* Step 5: Track-coalescence hypothesis pruning.
First evaluate for every (φ, ψ,θ) such that 0 < D(ψ) =
D(φ) ≤ Min{M, Lt}:

χ̂t(φ, ψ, θ)
4
= Argmax

χ
βt(φ, χT Φ(ψ), θ)

Next evaluate all χ̂t(φ, ψ,θ) hypothesis weights:

β̂t(φ, ψ, θ)= βt(φ, χ̂t(φ, ψ, θ)T Φ(ψ), θ)/ĉt

if 0 < D(ψ) = D(φ) ≤ Min{M, Lt}
= βt({0}M , {}Lt , θ)/ĉt

if D(ψ) = D(φ) = 0
= 0 else

where ĉt is a normalizing constant for β̂t.

IMMJPDA* Step 6: Measurement update equations (also
based on Theorem 2); for all i ∈ [1, M ], θi ∈M,

γ̂i
t(θ

i) ∼=
∑
φ,ψ,η

ηi=θi

β̂t(φ, ψ, η) (34.a)

x̂i
t(θ

i) ∼= x̄i
t(θ

i) + W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)νik

t (θi)

)
(34.b)

P̂ i
t (θ

i) ∼= P̄ i
t (θ

i)−W i
t (θ

i)hi(θi)P̄ i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)

)

+W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)νik

t (θi)νik
t (θi)T

)
W i

t (θ
i)T

−W i
t (θ

i)

(
Lt∑

k=1

β̂ik
t (θi)νik

t (θi)

)
·

·
(

Lt∑

k′=1

β̂ik′
t (θi)νik′

t (θi)

)T

W i
t (θ

i)T (34.c)

with:

W i
t (θ

i) = P̄ i
t (θ

i)hi(θi)T [Q̄i
t(θ

i)]−1 (34.d)

β̂ik
t (θi) =

( ∑

φ,ψ,η
φ,ψ 6=0
ηi=θi

[Φ(φ)T ]i∗[χ̂t(φ, ψ, η)T Φ(ψ)]∗k ·

·β̂t(φ, ψ, η)
)

/γ̂i
t(θ

i) (34.e)

where [.]∗k is the k-th column of [.] and [.]i∗ is the i-th row
of [.] .

IMMJPDA* Step 7: Output equations:

x̂i
t =

N∑

θi=1

γ̂i
t(θ

i) · x̂i
t(θ

i) (35.a)

P̂ i
t =

N∑

θi=1

γ̂i
t(θ

i)
(
P̂ i

t (θ
i) + [x̂i

t(θ
i)− x̂i

t] · [x̂i
t(θ

i)− x̂i
t]

T
)

(35.b)

Remark 3: By deleting the track coalescence hypothesis prun-
ing step 5 from IMMJPDA*, and by replacing β̂(φ, ψ, η) by
β(φ, ψ, η) in steps 6 and 7, we get the compact IMMJPDA
filter. As already announced in remark 2, the reason to refer to
compact IMMJPDA is that equation (33.b) replaces six nested
equations in the IMMJPDA of [18, eqs. (18) and (20)-(24)].

9. MONTE CARLO SIMULATIONS

In this section some Monte Carlo simulation results are
given for the two novel joint particle filters, for the (compact)
IMMJPDA and IMMJPDA* filter algorithms, and for a multi
target tracker using an IMM-PDA for each track. The two
particle filters ran on a total of S = 104 joint particles.
The simulations aim at gaining insight into the behavior and
performance of the filters regarding track maintenance when
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two targets move in and out close approach situations, while
giving the filters enough time to converge after a manoeuvre
has taken place. In the example scenarios there are two tracked
targets, each modeled with two possible modes. The first mode
represents a constant velocity model and the second mode
represents a constant acceleration model. It is assumed that
both targets are initially tracked well, that for their initial track
estimates there is no uncertainty regarding which track belongs
to which target. Both objects move towards each other, each
with constant initial velocity Vinitial. At a certain moment in
time both objects start decelerating with -50 m/s2 until they
both have zero velocity. The moment at which the deceleration
starts is such that when the objects both have zero velocity, the
distance between the two objects equals d (see figure 1). After
spending a significant number of scans with zero velocity, both
objects start accelerating with 50 m/s2 away from each other
without crossing until their velocity equals the opposite of
their initial velocity. From that moment on the velocity of both
objects remains constant again (thus the final relative velocity
Vrel, final = Vrel, initial). Note that d < 0 implies that the objects
have crossed each other before they have reached zero velocity.
Each simulation the filters start with perfect estimates and run
for 40 scans. Examples of the trajectories for d ≥ 0 and d < 0
are depicted in figures 1a and 1b respectively.

0 10 20 30 40
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−500

0

500

1000
Trajectories for d    0≥

time

po
si

tio
n

 d    0 ≥

1a. Trajectories examples for d ≥ 0

0 10 20 30 40
−1000

−500

0

500

1000
Trajectories for d < 0

time

po
si

tio
n

 d < 0 

1b. Trajectories examples for d < 0

Fig. 1. Trajectories examples for d ≥ 0 and for d < 0

For each target, the underlying model of the potential target

measurements is given by (1) and (2), i.e.:

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t

with for i ∈ {1, 2} and θi
t ∈ {1,2}:

ai(1) =




1 Ts 0
0 1 0
0 0 0


 , ai(2) =




1 Ts
1
2T 2

s

0 1 Ts

0 0 1




bi(1) = σi
a ·




0
0
1


 , bi(2) = σi

a ·



0
0
0




hi =
[

1 0 0
]
, gi = σi

m

Π =
[

1− Ts/τ1 Ts/τ1

Ts/τ2 1− Ts/τ2

]

where σi
a represents the standard deviation of acceleration

noise and σi
m represents the standard deviation of the

measurement error. For simplicity we consider the situation
of similar targets only; i.e. σi

a = σa, σi
m = σm, P i

d = Pd.
With this, the scenario parameters are Pd, λ, d, Vinitial, Ts,
σm, σa, τ1, τ2, and the gate size γ. We used fixed parameters
σm = 30, σa = 50, τ1 = 50, τ2 = 5, and γ = 25. Table 1
gives the other scenario parameter values that are being used
for the Monte Carlo simulations.

TABLE I
SCENARIO PARAMETER VALUES1 .

Scenario Pd λ d Vinitial Ts

1 1 0 Variable 75 1
2 1 0.001 Variable 75 1
3 0.9 0 Variable 75 1
4 0.9 0.001 Variable 75 1

During our simulations we counted track i ”OK”, if

| hix̂i
T − hixi

T |≤ 9σm

and we counted track i 6= j ”Swapped”, if

| hix̂i
T − hjxj

T |≤ 9σm

Furthermore, two tracks i 6= j are counted “Coalescing” at
scan t, if

| hix̂i
t − hj x̂j

t |≤ σm∧ | hixi
t − hjxj

t |> σm

For each of the scenarios Monte Carlo simulations containing
100 runs have been performed for each of the tracking filters.

1IMMPDA’s λ = 0.00001 for scenarios 1 and 3
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The initial track estimates are

x̂1
0(θ) =



−750
75
0


 , x̂2

0(θ) =




750
−75
0


 , θ ∈ {1, 2}

P̂ i
0(1) =




100 0 0
0 100

9 0
0 0 1

9


 , P̂ i

0(2) =




100 0 0
0 100

9 0
0 0 1

36




γ̂i
0(1) = 0.9, γ̂i

0(2) = 0.1 , for i = 1, 2

The results of the Monte Carlo simulations for the four
scenarios are shown in tables and figures as follows:
• The percentage of Both tracks ”OK”, see Table II, and

figures 2a, 3a, 4a and 5a.
• The percentage of Both tracks ”OK” or ”Swapped”, see

Table III, and figures 2b, 3b, 4b and 5b.
• The average number of ”coalescing” scans, see Table IV,

and figures 2c, 3c, 4c and 5c.
• The average CPU time per scan (in seconds), see Table

V.

TABLE II
AVERAGE % BOTH TRACKS ”OK”.

Sc. IMMPDA IMMJPDA IMMJPDA* SIR joint SIR-H joint
1 19 66 73 70 75
2 10 56 68 65 70
3 6 63 69 70 72
4 4 41 50 43 57

TABLE III
AVERAGE % BOTH TRACKS ”OK” OR ”SWAPPED”.

Sc. IMMPDA IMMJPDA IMMJPDA* SIR joint SIR-H joint
1 28.3 99.96 100 97.8 96.2
2 18.9 92.5 96.8 91.6 94.6
3 8.5 99.8 100 97.6 95.8
4 5.6 76.6 80.96 66.0 82.3

TABLE IV
AVERAGE NUMBER OF COALESCING SCANS.

Sc. IMMPDA IMMJPDA IMMJPDA* SIR joint SIR-H joint
1 9.7 1.5 0.4 1.2 1.3
2 11.0 2.1 0.3 1.2 1.4
3 18.9 1.7 0.5 1.3 1.3
4 14.5 2.6 0.5 1.3 1.5

The results in Tables II-IV and figures 2-5 show that for targets
that come close to each other, IMMJPDA, IMMJPDA* and
the particle filters perform much better than IMMPDA. As
expected, these simulation results show increased difficulty for
Pd = 0.9 when compared to Pd = 1 and for λ = 0.001 when
compared to λ = 0. Furthermore λ = 0.001 has more impact
on the performance than Pd = 0.9. This can be explained by
the fact that for λ = 0.001 a target track may diverge because
of false measurements. The SIR-H joint particle filter suffers
the least from this.

Measured in terms of ”both tracks OK” (Table II and figures
2a-5a) the SIR-H joint particle filter performed best, the
IMMJPDA* second best, the SIR-H joint particle filter third
and the IMMJPDA fourth. The both tracks ”OK” figures (2a-
5a) show a slight difference for d < 0 and d > 0. This is
because for d < 0 the target trajectories cross each other before
they have reached zero velocity, while for d > 0 they do not
cross (see figure 1).

Figures 2a-5a show that IMMJPDA and IMMJPDA* filters
have oscillating variation in performance which is lacking for
SIR-H joint particle filter. This phenomenon can be explained
by the observation that the effect of ”overshoot” during a
manoeuvre is for IMMJPDA and IMMJPDA* more profound
than for the SIR-H joint particle filter, because the latter filters
perform time extrapolation from only one state estimate per
mode, whereas the SIR-H joint particle filter performs time
extrapolation for many particles per mode. The effect is that
for some d values IMMJPDA and IMMJPDA* actually benefit
from overshoot in the sense that it keeps the tracks separated,
while for other d values the overshoot actually moves the
tracks closer to each other. This effect is less profound for the
SIR-H joint particle filters due to time extrapolation for many
particles per mode; hence oscillating variation in performance
does not occur.

Rather surprisingly, IMMJPDA* outperforms Hybrid SIR joint
particle filter regarding the both tracks ”OK” or ”swapped”
criterion (Table III and figures 2b-5b) on the ”easy” scenarios
1-3. Scenario 4 shows that IMMJPDA* also is outperformed
on this criterion by the SIR-H joint particle filter when missing
and false measurement conditions become more challenging.

Table IV and Figures 2c-5c show that IMMJPDA* performs
best on track coalescence avoidance. Next best are the two
particle filters, and fourth is IMMJPDA. The ”dip” in ”mean
time in coalescence” around zero is due to the definition of
”coalescing tracks”. That is, when the targets are actually
moving very close to each other, which is the case for small d
values, there are no coalescing scans counted. Scans are only
counted coalescing when the targets are separated from each
other far enough.

TABLE V
AVERAGE CPU TIME PER SCAN (IN MILLISECONDS).

Sc. IMMPDA IMMJPDA IMMJPDA* SIR joint SIR-H joint
1 16 22 23 385 439
2 38 54 48 7245 7959
3 14 20 20 377 438
4 38 61 56 7170 7810

Table V indicates a significant CPU-time increase for joint
particle filters relative to the others. The increase is one order
of magnitude for scenarios without clutter and two orders of
magnitude for scenarios with clutter.

It should be noticed that there are various complementary
methods available that allow to reduce the number of particles
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and/or CPU time significantly without reducing performance
(e.g. [1], [38]). Hence when reading Table V one should be
aware that these methods have not been investigated in this
paper.

10. CONCLUDING REMARKS

In this paper we studied the problem of maneuvering target
tracking from possibly missing and false measurements. The
density of the false measurements was assumed to be non-
homogeneous. For this problem we studied particle filtering as
an alternative for a multi-target track maintenance versions of
IMM in combination with PDA or JPDA. The approach taken
is to first characterize the problem in terms of filtering for a
jump linear descriptor system with both Markovian and i.i.d.
coefficients, and next to use this for the derivation of the exact
recursive equation for the Bayesian filter (Theorem 1). This
result has been used to develop two SIR type particle filters,
one which resamples a fixed number of joint particles (SIR
joint particle filter) and one which resamples a fixed number of
joint particles per joint mode (SIR-H joint particle filter). We
have also shown that application of the approximating assump-
tions of [18] to the exact Bayesian filter equations (Theorem 2)
leads to a compact version of their IMMJPDA filter equations.
For this (compact) IMMJPDA filter we also developed a track-
coalescence-avoiding version (IMMJPDA*) by introduction of
a particular pruning of permutation hypotheses. All our four
novel filter algorithms cover the situation of non-homogeneous
density of false measurements.

Through Monte Carlo simulations for a series of simple
scenarios with two targets and two associated tracks these
four novel filters have been compared to each other and to
a filter which runs per track a single target IMMPDA. All
four clearly outperformed IMMPDA. The particle filters used
104 joint particles; with this the SIR-H joint particle filter
appears to approximate the Bayesian filter well, whereas the
SIR joint particle filter did not. On all scenarios, IMMJPDA*
performs significantly better than IMMJPDA and sometimes
even remarkably close to the performance of the SIR-H joint
particle filter. Apparently, the performance reduction by the
IMMJPDA approximation of the exact Bayesian filter can be
partly compensated by introducing the additional IMMJPDA*
approximation. IMMJPDA and IMMJPDA* have in common
to perform less good as the SIR-H joint PF on the following
two points:
• The performance of both IMMJPDA and IMMJPDA*

varies heavily with changes in the geometry of encoun-
tering target paths; this varying kind of behavior is not
shown by the SIR-H joint particle filter;

• The SIR-H joint particle filter is least sensitive to diver-
gence of track because of switching to running on false
measurements; this advantage shows both when targets
are clearly separated from each other and when target
paths come close to each other.

Recently both [12] and [47] explored the potential effect
on performance of extending IMMJPDA and IMMJPDA*
to joint tracking versions, i.e. to versions where the multi-
target states/modes are jointly estimated. Tugnait [47] showed

slightly improved simulation results for a particular example.
In [12] we showed examples where the joint tracking versions
performed better and examples where they performed worse.
On average, the joint tracking versions even performed worse.
In [13], [14] we showed that an appropriate pruning of per-
mutation hypothesis also yields a track-coalescence-avoiding
joint tracking version. The two weak points listed above for
IMMJPDA and IMMJPDA* also apply to these joint versions.

Because the computational load of IMMJPDA* is one to
two orders of magnitude lower than the computational load of
the SIR-H joint particle filter is, this may be a fair reason
to prefer IMMJPDA* above the SIR-H joint particle filter
for particular applications. One should also be aware that the
efficiency of the SIR-H joint particle filter can be significantly
improved by incorporating various methods from literature
(e.g. [1], [38],[42]).

In addition to the option of improving the efficiency of the
SIR-H joint particle filtering, it is an option to improve the
adaptation of the output equations. In this paper we considered
mean and covariance of target states only, and thus averaged
over the states of all particles. One alternative direction might
be trying to incorporate the permutation hypothesis pruning
strategy of IMMJPDA* within the output equations of the
SIR-H joint particle filter. Another direction [32] is to apply
clustering of particles prior to averaging.

There are several other interesting extensions possible for
the jump-linear descriptor framework and the novel exact and
approximate filters. For example, to incorporate the target
initiation and termination approach of [39], or to incorporate
unresolved measurements (e.g. [31]).
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APENDIX A

Proof: If φ = 0 we get

pxt|θt,φt,χ̃t,Yt
(x | θ, 0, χ̃) = pxt|θt,Yt−1(x | θ) (A.1)

Else, i.e. φ 6= 0:

pxt|θt,φt,χ̃t,Yt
(x | θ, φ, χ̃) =

= pxt|θt,φt,χ̃t,yt,Lt,Yt−1(x | θ, φ, χ̃, yt, Lt) =
= pxt|θt,φt,χ̃t,yt,Lt,ỹt

,Yt−1
(x | θ, φ, χ̃, yt, Lt, χ̃yt) =

= pxt|θt,φt,ỹt
,Yt−1

(x | θ, φ, χ̃yt) =

= pz̃t|xt,θt,φt
(χ̃yt | x, θ, φ) · pxt|θt,Yt−1(x | θ)/Ft(φ, χ̃, θ)

(A.2)

with
Ft(φ, χ̃, θ)

4
= pz̃t|θt,φt,Yt−1(χ̃yt | θ, φ) (A.3)

Subsequently

βt(φ, χ̃, θ)
4
= Prob{φt = φ, χ̃t = χ̃, θt = θ | Yt} =

= pφt,χ̃t,θt|Yt
(φ, χ̃, θ) =

= pφt,χ̃tθt|yt,Lt,Yt−1(φ, χ̃, θ | yt, Lt) =
= pyt,χ̃t,θt|φt,Lt,Yt−1(yt, χ̃, θ | φ,Lt) ·

·pφt|Lt,Yt−1(φ | Lt)/c′t =
= pyt,χ̃t|θt,φt,Lt,Yt−1(yt, χ̃ | θ, φ, Lt) ·

·pφt|Lt,Yt−1(φ | Lt)pθt|Yt−1(θ)/c′t
(A.4)

If φ 6= 0, we have Dt > 0 and

χ̃T
t χ̃t = Φ(ψt)T χtχ

T
t Φ(ψt) = Φ(ψt)T Φ(ψt) = Diag{ψt}

(A.5)
Hence

ψt = Diag{ψt}1Lt = χ̃T
t χ̃1Lt
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with 1Lt an Lt column vector with Lt 1-valued components.
Moreover, because

χ̃tΦ(ψt)T = χT
t Φ(ψt)Φ(ψt)T = χT

t (A.6)

this shows that the transformation from (ψt, χt) into χ̃t has
an inverse. For the first term at the right hand side of (A.4)
this implies:

pyt,χ̃t|θt,φt,Lt,Yt−1(yt, χ
T Φ(ψ) | θ, φ, Lt) =

= pyt,ψt,χt|θt,φt,Lt,Yt−1(yt, ψ, χ | θ, φ, Lt) (A.7)

Furthermore, because the transformation from (yt, ψt, χt) into
(z̃t, ft, ψt, χt) is a permutation, we get for Lt > D(φ) > 0

pyt,ψt,χt|θt,φt,Lt,Yt−1(yt, ψ, χ | θ, φ, Lt) =

= pz̃t,ft,ψt,χt|θt,φt,Lt,Yt−1(χ
T Φ(ψ)yt, Φ(1Lt

− ψ)yt, ψ, χ|
|θ, φ, Lt) (A.8)

Substituting (A.8) in (A.7) and this in (A.4) yields:

βt(φ, χT Φ(ψ), θ) =
pz̃t,ft,ψt,χt|θt,φt,Lt,Yt−1(χ

T Φ(ψ)yt, Φ(1Lt − ψ)yt, ψ, χ|
|θ, φ, Lt) · pφt|Lt,Yt−1(φ | Lt)pθt|Yt−1(θ)/c′t (A.9)

Hence, for Lt > D(φ) > 0, this yields:

βt(φ, χT Φ(ψ), θ) = pz̃t|θt,φt,Yt−1(χ
T Φ(ψ)yt|θ, φ)·

·pft|φt,ψt,Lt
(Φ(1Lt − ψ)yt | φ, ψ)pψt|φt,Lt

(ψ | φ) ·
·pχt|φt

(χ | φ)pLt|φt
(Lt | φ)pφt(φ)pθt|Yt−1(θ)/c′′

(A.10)

Evaluation of the terms in (A.10) yields:

pft|φt,ψt,Lt
(Φ(1Lt − ψ)yt|φ, ψ) =

= pft|Ft,ψt
(Φ(1Lt − ψ)yt|Lt −D(φ), ψ) =

(6.b)
=

Lt−D(φ)∏

i=1

pf

(
[Φ(1Lt − ψ)yt]i

)
=

=
Lt−D(φ)∏

i=1

pf

(
[Φ(1Lt − χ̃T χ̃1Lt)yt]i

)
(A.11)

pψt|φt,Lt
(ψ|φ,Lt) = D(φ)!(Lt −D(φ))!/Lt! (A.12)

pχt|φt
(χ|φ) = 1/D(φ)! (A.13)

pLt|φt
(Lt|φ) = pFt(Lt −D(φ)) =

= (F̂t)(Lt−D(φ)) exp{−F̂t}/(Lt −D(φ))!
if Lt ≥ D(φ)

= 0 if Lt < D(φ) (A.14)

pφt(φ) =
M∏

i=1

[
(P i

d)φi(1− P i
d)1−φi

]
(A.15)

Substituting (A.3) and (A.11) through (A.15) into (A.10) and
subsequent evaluation yields for Lt > D(φ) > 0:

βt(φ, χT Φ(ψ), θ) = Ft(φ, χT Φ(ψ), θ)·

·F̂ (Lt−D(φ))
t ·

Lt−D(φ)∏

j=1

pf

(
[Φ(1Lt − χ̃T χ̃1Lt)yt]j

) ·

·
M∏

i=1

[(P i
d)

φi(1− P i
d)

(1−φi)] · pθt|Yt−1(θ)/ct

with ct a normalizing constant. It can be easily verified that
the last equation also holds true if Lt = D(φ) or if D(φ) = 0.
Together with (6.c) this yields (14).

APPENDIX B
Proof: From the proof of Proposition 1 we have

Ft(φ, χ̃, θ) = pz̃t|θt,φt
(χ̃yt|θ, φ) =

=
∫

RMn

pz̃t|xt,θt,φt,Yt−1(χ̃yt|x, θ, φ) ·
·pxt|θt,φt,Yt−1(x, θ)dx (B.1)

pz̃t|xt,θt,φt
(χ̃yt|x, θ, φ) =

=
M∏
i=1

φi=1

pz̃i
t|xi

t,θ
i
t
([Φ(φ)χ̃]ikyk

t |xi, θi) (B.2)

This together with C2) yields:

Ft(φ, χ̃, θ) =
M∏

i=1

f i
t (φ, χ̃, θ) (B.3)

with

f i
t (φ, χ̃, θ) =

∫

Rn

pz̃i
t|xi

t,θ
i
t
([Φ(φ)χ̃]ikyk

t |xi, θi) ·
·pxi

t|θi
t,Yt−1

(xi|θi)dxi if φi = 1

= 1 if φi = 0 (B.4)

Together with C3) the last two equations yield (29) and
(30.a,b,c).
Substitution of (B.2) and C2) into (13) yields

pxi
t|θi

t,φt,χ̃t,Yt
(xi|θi, φ, χ̃) =

=
pzi

t|xi
t,θ

i
t
([Φ(φ)χ̃]ikyk

t |xi, θi) · pxi
t|θi

t,Yt−1
(xi|θi)

f i
t (φ, χ̃, θ)

(B.5)

If pxi
t|θi

t,Yt−1
(xi|θi) is Gaussian with mean x̄i

t(θ
i) and co-

variance P̄ i
t (θ

i), then the density pxi
t|φt,χ̃t,θi

t,Yt
(xi|φ, χ̃, θi) is

Gaussian with mean x̂i
t(φ, χ̃, θi) and covariance P̂ i

t(φ, θi)
satisfying for φi 6= 0,

x̂i
t(φ, χ̃, θi) = x̄i

t(θi) + Ki
t(φ, θi)

[
[χ̃yt]i − hi(θi)x̄i

t(θi)
]

P̂ i
t (φ, θi) = P̄ i

t (θ
i)−Ki

t(φ, θi)hi(θi)P̄ i
t (θ

i)

and for φi = 0:

x̂i
t(φ, χ̃, θi) = x̄i

t(θi)
P̂ i

t (φ, θi) = P̄ i
t (θi)

Hence, pxi
t|θi

t,Yt
(. | θi) is a Gaussian mixture, and all equations

in Theorem 2 follow from a lengthy but straightforward
evaluation of this mixture.
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Fig. 2. Simulation results for scenario 1
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Fig. 3. Simulation results for scenario 2
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Fig. 4. Simulation results for scenario 3
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Fig. 5. Simulation results for scenario 4
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