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Summary

A multi-agent approach for system development has been used for solving more and more

complex systems. Recent work has shown the benefits of this approach for building decision

support applications in a complex real-time environment. In this paper, the development of an

agent-based, time-critical decision support tool in the field of Command, Control,

Communications, and Intelligence (C3I), is described. For the design of this tool, techniques

from agent-based computing, object-orientation, and design patterns have been combined, and

reuse has been a key design consideration from the start. The work has been carried out as a part

of the EUCLID RTP 6.1 project, which is a European collaborative military research

programme, aimed at developing an advanced workstation for C3I.
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1 Introduction

In this paper, the development of an agent-based, time-critical decision support tool, called the

Resource Allocator for Close Air Support (RACAS), will be described. All parts of the adopted

lifecycle, from analysis to implementation and evaluation, will be discussed, with an emphasis

on design.

In designing RACAS, decomposition by means of separation of concerns has been applied to

design agents that will be easy to reuse in other applications. The resulting design of RACAS

consists of three co-operating agents. In design, agent based computing has been combined with

object orientation to cover the various levels of detail. At the higher levels of abstraction, the

approach is agent-based, at the lower level the approach is object-oriented.

RACAS has been implemented on top of CABLE [2], which is the multi-agent architecture of

an innovative multi-user C3I workstation, in which Artificial Intelligence (AI), advanced

software engineering and advanced HCI techniques have been applied. This workstation is one

of the products of the EUCLID RTP 6.1 project [8].

EUCLID (EUropean Collaboration for the Long term In Defence) is a European collaborative

military research programme aimed at developing defence-related technologies and promoting

co-operation and harmonisation across European industry. In the framework of EUCLID,

several Common European Priority Areas (CEPAs) have been defined which range from

modern radar technology to training simulators. CEPA 6 includes all Advanced Information

Processing (AIP) techniques and comprises many different RTPs (Research and Technology

Programmes). RTP 6.1, titled “Advanced Workstation for Command, Control,

Communications, and Intelligence (C3I)”, started in September 1993 and finished in November

1998, and was carried out by the GRACE (Grouping for Research into Advanced C3I for

Europe) consortium [5].

The objectives of EUCLID RTP 6.1 were the following:

•  To demonstrate key Artificial Intelligence and Human Computer Interaction (HCI) methods

and tools of particular relevance to advanced C3I systems;

•  To define and implement a workstation architecture able to accommodate existing and

emerging methods and tools, and to forge new standards;

•  To form domain simulations drawn from land tactical and naval systems to aid the

development and testing of the architecture and its methods;

•  To encourage European companies to work together effectively.
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The paper has been organised as follows. In Section 2, the problem will be described in its

historical context. In Section 3, the approach to specification and its application to RACAS will

be discussed. In Section 4, the approach to system design and the system design of RACAS will

be described. The RACAS application consists of three co-operating agents. The design of these

agents will be described in Section 5. In Section 6, the approach towards constructing an

ontology will be discussed, and an example of the object oriented design of the ontology will be

given. In Section 7, some details of the implementation will be given. The evaluation and

validation of RACAS will be discussed in Section 8, and, finally, in Section 9, some

conclusions will be drawn.
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2 Problem description

EUCLID RTP 6.1 started in 1993 with the objective to develop an innovative workstation for

military C3I. To meet this requirement, an agent-based approach for software engineering was

selected. This selection was justified by the following foreseen benefits of agents:

•  A powerful metaphor for conceptualising complex systems.

The agent-based approach provides a powerful metaphor for software developers. It is quite

natural to think of complex systems in terms of agents providing services.

•  An organisational approach to modelling organisational problems.

The ability to directly map real-world roles onto software components provides a powerful

form of abstraction, especially in domains that are organisational in nature, such as the

military domain.

•  Distribution of control.

Multi-agent architectures may provide distributed, heterogeneous computing environments

in which multiple, concurrently-operating, intelligent agents exist. Agents may inter-operate

in a seamless fashion, irrespective of where they exist within the environment.

•  The ability to support “plug-and-play”.

Due to a very loose coupling between agents, prototype applications may be developed

quickly in order to experiment with ideas and algorithms, and later in the development cycle

be replaced with minimal effect on the rest of the system.

•  Facilities for reuse.

The agents that reside in the agent community will typically be developed by many different

people to address the needs of different applications or subsystems. If agents are well

written and their capabilities made generic then they may be reused by many other

applications.

At the start of EUCLID RTP 6.1, in 1993, the majority of agent applications were developed in

an ad-hoc fashion because of a lack of a proven design methodology. Given the size of the

consortium undertaking this project, i.e. 19 companies in 7 countries, a common approach was

necessary in order to end up with applications capable of being integrated into a single

demonstrator. The adopted approach to specification and design will be described in more detail

in the following sections.

An additional problem was the lack of a multi-agent architecture capable of supporting real-time

decision support applications. Already at the start of the project, the implementation of many

different Artificial Intelligence techniques was foreseen. This implied that the resulting system

would consist of a very heterogeneous collection of agents, which should nevertheless be

capable of communicating with each other. Therefore, one of the first tasks of the consortium
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has been an ontological analysis of military C3I resulting in the definition of concepts to be

communicated between agents. The rather pragmatic approach to the construction of the

ontology will be described in more detail in Section 6. A description of the multi-agent

architecture CABLE, which has been developed as a part of the EUCLID RTP 6.1 project, can

be found in [2].
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3 Specification

3.1 Approach

The EUCLID RTP 6.1 approach to specifying functionality is called the FUN method [2]. The

key concept in this approach is the Functional UNit (FUN). A FUN is a specialised class of

agent that is used to represent an organisation of agents. The main difference between a FUN

and a (normal) agent is that a FUN has associated roles via which it can delegate tasks to its

members. The roles of a FUN are played by agents which bring capabilities to the organisation

in the form of tasks. Some of these agents may themselves be FUNs representing subsidiary

parts of the organisation.

In general, a FUN can do anything that a normal agent can do although typically the FUN will

delegate most of its activities to its roles. In the minimalist case a FUN can be though of as an

organisation’s receptionist, passing on service requests to individual agents within the

organisation. In a typical case a FUN can be thought of as a manager of an organisation,

actively co-ordinating the activities of the agents playing roles within the organisation.

The specification of a FUN involves identifying the following concepts:

•  Objectives, the desired goals towards which the FUN’s tasks are directed;

•  Strategy, for meeting its objectives;

•  Services, provided to clients (end-users, or another FUN or agent); a service is the client’s

abstract view of the task(s) undertaken by the FUN;

•  Resources, usually data stores which are owned by one agent (which may update it) but may

be read by multiple other agents;

•  Roles, that co-operate to provide the services.

In defining FUNs an organisational analogy is recommended to ensure that the objectives,

services, resources and roles are meaningful in the problem domain, and not just computing

constructs. Criteria to break down functionality in FUNs may be the following:

•  To use a FUN to model a human organisation in the real world.

Real-world organisations have evolved throughout history to structures that have proven to

be most efficient. Copying these structures in a system may aid to arrive at a better system

architecture.

•  To provide an abstract architecture that is easy to understand.

An analogy with real-world organisations to analyse and describe system architectures will

result in architectures which are easier to understand, in particular for non-developers.
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•  To enable ‘plug-and-play’ with agents.

Many different agents may implement the same role. Which agent actually takes on the role

may be decided at run-time without affecting the rest of the system.

•  To facilitate reuse.

Common functionality may be organised in general FUNs which may provide services to

many other FUNs. Examples of common functionality are message handling, file

operations, and display.

•  To simplify distribution of functionality over a heterogeneous distributed computing

environment.

3.2 Application of FUN approach to RACAS

The FUN specification of RACAS has been made with emphasis on the latter three topics. The

specification consists of one functional unit, RACAS itself, and one role within that functional

unit, the role of an anytime, heuristic searcher. This specification allows a design in which the

search algorithm will be in a separate agent. Such a design will create the possibility to make

multiple implementations of a searcher agent to “plug-and-play” with these agents in order to

compare search strategies. Furthermore, the search agent will not contain any code for user

interaction, which will improve reusability in other applications. Finally, separating the searcher

from the user interface will allow RACAS to run on a heterogeneous, distributed environment.

The user interface could run on a light-weight PC, while the searcher could run on a powerful

workstation.

The functional unit specification of RACAS is as follows:

FUN: Resource Allocation for Close Air Support (RACAS)

Objective: Support the commander in identifying targets for Close Air Support missions

and Artillery Fire Support and allocating resources to them.

Strategy: Anytime provision of best resource allocations.

Services: Provide Interactive Resource Allocation

Resources: User Interface Components

Roles: Anytime Heuristic Searcher

Role Tasks: Provide best allocations using an anytime algorithm
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4 System design

4.1 Approach

The design approach adopted in the EUCLID RTP 6.1 project is agent-based at higher levels of

abstraction, and object-oriented at lower levels. The main concept in system design is the

concept of an agent. An application must be designed to consist of a number of autonomous, co-

operative agents, which are together capable of solving the problem at hand. Agents perform

tasks, and within these tasks, data is handled. For task and data design, an object oriented

approach, the well-known Object Modelling Technique (OMT) [11], has been used. Design

patterns [4], such as the command pattern and the storable pattern, have been used where

appropriate.

In adopting a multi-agent approach, an analogy with human organisations is made to represent

the application at the high level. Uncertainty about how to partition the system at the high level

may be resolved by appealing to the organisational analogy, or by appealing to software

engineering rules-of-thumb, such as, in our case, separation of concerns.

In selecting agents, there are two goals. The first goal is to encapsulate a capability that can

operate autonomously using a subset of relevant domain data and knowledge. The second goal

is to ensure that this entity provides services that are relevant to the C3I domain. If functionality

is chunked into agents in a way that is inappropriate or too fine-grain, then the mapping onto the

C3I domain will fail.

4.2 Application of system design approach

Reuse has been the key design consideration during the design of the Resource Allocator for

Close Air Support (RACAS). Experience has shown that, even when adopting an object

oriented approach, reuse does not come naturally. A system has to be designed for reuse in order

to be succesfully reused. In the case of RACAS, design for reuse has been implemented by

means of separation of concerns. The concerns identified are user interaction, domain

knowledge, and search strategy. By dividing these concerns among three separate agents, these

agents can be reused for roles in many other applications. For instance, a domain independent

heuristic searcher will be capable of guiding search through the solution space of many problem

domains. And an agent with knowledge of Close Air Support weapon systems and doctrine will

be capable of serving applications other than resource allocation.
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As a result, the design of RACAS (see Figure 1) identifies three co-operating agents:

•  Agent THERESA (THE RESource Allocator), which manages the application and the

interaction with the user and with other applications;

•  Agent GRAP (General Resource Allocation Planner), which is a domain-independent

anytime heuristic searcher implementing a simulated annealing algorithm;

•  Agent DECA (Domain Expert on Close air support and Artillery fire support), which has

knowledge of the military domain, and is capable of generating feasible solutions to the

resource allocation problem.

Figure 1  RACAS multi-agent system design

Other
Applications RACASTheresa

Grap

Deca

Problem

Problem
Best Allocations

Feasible Allocations

User
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5 Agent design

An agent design describes an agent by means of core activity, service activities, and internal

activities to support the service activities. The core activity of an agent is the task that an agent

executes indefinitely during its existence, for instance, sense its environment. Service activities

are tasks performed by an agent to provide services to other agents. A service is defined by

means of a number of entries by which the service may be called, and by means of a protocol,

i.e. valid sequences of entry calls, to be used by client agents. Protocols have been specified by

means of State Transition Diagrams. Internal activities are similar to service activities, but can

only be called upon by the agent itself.

In the following subsections, the design of the three agents of RACAS will be described in more

detail.

5.1 Agent Theresa

Agent Theresa is the agent playing the role of the Functional Unit (FUN). During its

initialisation, agent Theresa must set up the required agent community by requesting from the

architecture the population of its roles. The architecture contains a component, the agent

manufacturer, which is responsible for finding agents that are capable of fulfilling the roles. In

theory, any agent capable of fulfilling a role may be selected to fulfil that role. However, in the

current implementation, only one agent exists for each role.

The core activity of agent Theresa consists of setting up the user interface and starting an

internal activity to continuously monitor the environment for changes which affect the planning

problem addressed by the RACAS application.

5.2 Agent Grap

Agent Grap takes on the role of the anytime, heuristic searcher as specified in Section 4.

Therefore, agent Grap must have a service for providing best allocations using an anytime

algorithm. This service is called Generate Resource Allocation Plans and has three entries:

•  StartPlanning(aProblem): Initialises the domain expert agent Deca (see Section Error!

Reference source not found.) with aProblem, and starts an internal activity which

implements a simulated annealing algorithm;

•  GetBestAllocationsSoFar(theNumberOfAllocationsRequested):

•  Returns theNumberOfAllocationsRequested best allocations found so far by the simulated

annealing algorithm;

•  StopPlanning(): Stops the simulated annealing algorithm.
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These entries must be called by a client agent in the order specified by the protocol in Figure 2.

Figure 2  Protocol for service Generate Resource Allocation Plans

The internal activity Planning as shown in Figure, is the implementation of a simulated

annealing algorithm. Simulated Annealing is based upon the physical process of annealing as

applied to solids. Metropolis et al. [9] modeled this physical process with the introduction of an

algorithm based on selective application of randomisation techniques (Monte Carlo techniques).

Kirkpatrick et al. [7] and Cerny [1] first applied this algorithm to combinatorial optimisation

problems. Simulated Annealing seeks near-optimal solutions to a problem at a reasonable

computational cost, with no guarantee of optimality, but with a “best-so-far” solution available

at any time. The Simulated Annealing technique has proven to provide robust and flexible

algorithms which can be applied, with only very minor changes, to a wide spectrum of problems

[e.g. 12]. These algorithms require only a method for determining the quality of a solution and a

method to move between solutions, both of which are relatively simple tasks for the majority of

problem types. For the problem described in this paper, these methods are implemented by

Agent Deca (see Section Error! Reference source not found.). Simulated Annealing control

parameters have been determined empirically. No effort has been allocated to formally prove

correctness and convergence of the algorithm. For randomly generated problems, the

implemented algorithm converges to a good quality solution in finite time.

The implemented algorithm is as follows:

1. Initialise control parameters.

2. Ask Agent Deca for an arbitrary solution (including a quality attribute) and store this

solution as the best solution so far, and as the current solution to continue search from.

3. Ask Agent Deca for a neighbour solution of the current solution.

3a. If the neighbour has a better quality, then neighbour becomes current solution to search

from, and if neighbour is better than best solution so far, store neighbour as best

solution.

3b. If quality of neighbour is equal, or worse, then:

StartPlanning(aProblem)

GetBestAllocationsSoFar(
 theNumberOfAllocationsRequested)

StopPlanning()

StartPlanning(aProblem)

Planning

Stopped
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3b1. Determine probability that neighbour will nevertheless be better solution to

continue search from. This probability is determined by a number of algorithm

control parameters and declines every iteration of the algorithm. The tendency to

continue searching from a worse solution therefore decreases as the search

progresses (the possibility to continue search from a worse solution has been

introduced to avoid local optima).

3b2. If the probability is high enough, replace current solution by neighbour, else

increase the number of failed iterations.

4. Repeat Step 3 until the number of failed iterations exceeds the maximum number of failed

iterations allowed.

5.3 Agent Deca

In order to apply the simulated annealing algorithm of agent Grap to the resource allocation

problem described in Section 3, Agent Deca has to implement a service, called Provide

Resource Allocation Domain Knowledge, which has the following six entries:

•  InitialiseProblem(aProblem): Initialises the service with the Close Air Support and Artillery

assets available for allocation, and the targets to which these must be allocated;

•  RandomSolution(): Implements the initial solution function as described above;

•  RandomNeighbour(aSolution): Implements the neighbour function as described above;

•  SolutionSpaceSize(): Returns an estimate for the size of the solution space;

•  MinimumScore(): Returns an estimate for the quality of the worst possible solution;

•  MaximumScore(): Returns an estimate for the quality of the best possible solution.

These entries must be called by a client agent in the order specified by the protocol in Figure 3.

The functions required by the above entries are functions to generate an initial solution, to

generate a neighbour solution, and to calculate the quality of a solution. These functions have

been implemented in the following way.

To find an initial solution, for each asset, a target is selected by traversing a randomly shuffled

list of targets, until a target is found that does not violate any domain constraints. In the current

implementation, these constraints are:

•  The target must be in range of the asset;

•  The target must not yet be allocated to the required extent;

•  The asset must have weapons capable of damaging the target.

If such a target cannot be found, the asset is not allocated to any target (which is considered a

valid option).
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Figure 3  Protocol for service Provide Resource Allocation Domain Knowledge

A neighbour solution is generated from a given solution by randomly selecting an asset and

allocating that asset to a different target satisfying the domain constraints.

The quality of a solution is determined by the expected damage to the targets. For each target,

the expected damage is calculated based on the types and amount of weapons used against the

target, and the effectiveness value of the weapon types against the target type. These

effectiveness values are parts of the domain knowledge. The expected damage is multiplied by

the target priority to give a target score. The quality of a solution is the sum of all target scores.
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6 Ontology

An essential element of a multi-agent system is the language (ontology) that the agents use to

communicate. Since the agents represent autonomous capabilities in the C3I domain, their

language should consist of accepted terminology in the military C3I domain. At the higher level

this corresponds to a defined use of English. At the lower levels this corresponds to a shared

interpretation of objects and services.

The definition of ontology adopted within the EUCLID RTP 6.1 project is similar to the

definition of Gruber [6]. In the project standards, ontology has been defined as follows:

Ontology defines the basic terms and relations comprising the vocabulary of a topic area, as

well as the rules for combining terms and relations to define extensions to the vocabulary with

the aim of establishing the ground rules for modelling in a domain.

Within EUCLID RTP 6.1, the approach towards constructing the ontology has been rather

pragmatic. Only a partial ontology for the military C3I domain, called the Grace Common

Model, which describes the general, high-level concepts of the C3I domain, has been

constructed. RACAS, as each application in EUCLID RTP 6.1, has developed its own task-

specific extension to this common model.

A possible procedure for extracting ontology [3] begins by analysing a paper knowledge base

that describes the task domain in English. In the context of EUCLID RTP 6.1, the ATCCIS

(Allied Tactical Command and Control Information System) model for generic command and

control, and NATO Allied Tactical Procedures (ATPs) have served as a basis for the ontology.

In addition to paper knowledge bases, project internal as well as external domain experts have

provided valuable inputs to the ontology.

During the design of the Resource Allocator for Close Air Support, the ontology has been

translated into an object-oriented design using Rumbaugh’s Object Modeling Technique

(OMT). An example object model is shown in Figure 4. In this figure, the concept of asset is

defined. An asset may be either a weapon or a sensor, which have been defined in the common

part of the ontology, the Grace Common Model (GCM). Therefore, two additional concepts,

weapon asset and sensor asset, have been defined. These concepts inherit the characteristics of

both the GCM concepts and the asset concept (range and configuration). The prefixes Mra- and

Tra- are specific to RACAS concepts and have been introduced to avoid name clashes with

other EUCLID applications, which may also define a concept such as asset, but with a different

meaning.
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Figure 4 Example of ontology object model
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7 Implementation

RACAS has been implemented on top of the EUCLID RTP 6.1 project’s multi-agent

architecture CABLE [2]. This architecture has provided the agent developers with an Agent

Definition Language, which contains keywords to define an agent’s memory (i.e. objects

available to all tasks and services of the agent), tasks, and services. A pre-processor translates

these definitions to C++ classes, which hide multiple thread management and communication

through Orbix, a commercial implementation of the Common Object Request Broker

Architecture (CORBA, [10]). The agent services and tasks, as well as the ontology objects have

been implemented in C++ directly. The User Interface of the application has been developed

with Ilog Views, a commercial tool for designing user interfaces, and implemented in C++ as an

applet, similar to the concept of applets in JAVA.
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8 Evaluation and validation

For quantitative assessment of RACAS, 24 test runs have been made on a SUN Ultra2 Creator

workstation. Each test run was at least one-and-a-half hours long, with three hours being the

longest run. The problems submitted to RACAS have been extracted from the project’s

scenario. Therefore, the maximum number of targets during a test run has been 20.

The size of the problems is in the order of (T+1)A, in which T is the number of targets and A is

the number of assets. Exhaustive search for the optimal solution to the submitted problems is

impractical. As a result, an absolute measurement of the quality of the solutions found by

RACAS cannot be given. Therefore, during evaluation, data showing how fast the simulated

annealing algorithm of RACAS converges have been gathered. During each run, the time of the

first solution, quality of the first solution, quality after one minute of search, and after five and

ten minutes of search, have been measured. The qualities have afterwards been measured

against the best solution found after one-and-a-half hours of search. Please note that this

solution is not necessarily the best solution possible. The results are in Table 1.

Table 1: Evaluation results for RACAS

Assets Targets Time 1st

(seconds)

Quality

1st (%)

Quality

1 min (%)

Quality

5 min (%)

Quality

10 min (%)

12 10 0.65 48 88 100 100

12 20 0.63 63 97 98 100

48 10 0.70 36 79 91 91

48 20 0.55 19 75 88 96

84 10 0.75 35 71 87 89

84 20 0.90 13 56 87 96

The results in Table 1 show that, even for large problems, the simulated annealing algorithm

converges quickly. Within ten minutes, the quality is already over 90% of the quality after one-

and-a-half hours.

RACAS has been demonstrated to military experts at several occasions. The overall assessment

of the tool is very positive. Because of the automation of lower level tasks of the allocation

process, less time is needed to find feasible allocations. As a result, more time is left to select an

appropriate allocation to the situation at hand and work out the details.
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An operational validation of RACAS has not been performed yet. EUCLID RTP 6.1 is an

“open” project and therefore does not use classified military information. As a result, the

domain models have been simplified to simulate operational application, and need adaptation

for operational use. The feasibility of the approach, however, has been demonstrated.
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9 Conclusions and further work

In this paper, the development of an agent-based, time-critical decision support tool in the field

of Command, Control, Communications, and Intelligence (C3I), has been described. This tool,

called the Resource Allocator for Close Air Support (RACAS), applies a simulated annealing

algorithm to the problem of allocating Tactical Air Resources to Close Air Support missions

against a number of prioritised targets.

For specification, the FUN method has been used. This method has proven to be elegant and

useful on the higher levels of abstraction. However, since the lowest level of detail in the FUN

specification is the task, some essential analysis information is missing. Therefore, the transition

from analysis to design is difficult, especially when documentation is the only source of

information to the design team.

For the design of RACAS, techniques from agent-based computing, knowledge engineering

(ontology), object-oriented design, and design patterns have been combined. Reuse has been the

key design consideration from the start. This design decision has been implemented by applying

a separation-of-concerns guideline. The result is a design with three agents: one for

communication with the user and application external agents, one for executing the simulated

annealing algorithm, and one for providing the necessary domain knowledge. An early benefit

of this approach is the possibility to run the interface agent on a light-weight PC, while the

computational agents  run on a SUN Ultra 2 Workstation.

The ontology has been designed using Rumbaugh’s Object Modeling Technique, and

implemented in C++. The ontology work has contributed to an important extent to the design

for reuse of RACAS. The ontology describes the problem-specific knowledge, independently

from the proposed solution (anytime simulated annealing algorithm). By implementing the

ontology in one agent, and the search algorithm in another, an explicit division has been made

between problem and solution. This explicit division should make reuse of both agents in other

applications much easier.

RACAS has been implemented in C++ on a SUN UltraSparc with Solaris 2.5, and successfully

demonstrated on several occasions. The application consists of three co-operating agents

running on a project-specific, multi-agent architecture, called CABLE, which uses a

commercial-of-the-shelf CORBA implementation as the underlying middle-ware. The User

Interface of the application has been developed with Ilog Views, and implemented in C++ as an

applet, similar to the concept of applets in JAVA.



-23-
NLR-TP-99007

RACAS will be integrated in the NLR Command and Control Facility, which is currently under

development. This facility will bring together the products of various projects. These products

include advanced situational awareness, multi-sensor data fusion, adaptive planning, mission

generation, and mission monitoring tools.

Research into real-time planning and re-planning will continue both in the military and in the

civil domain. The complete demonstrator of EUCLID RTP 6.1, including the multi-agent

architecture CABLE, will be installed at NLR to serve as an experimentation facility for agent

applications. The NLR is also looking for opportunities to combine real-time planning and

intelligent agents in the European Community’s Fifth Framework Programme.
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