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Noise from the auxiliary power unit 
(APU) is becoming an increasingly 
important aircraft design constraint 
because of the noise exposure 
during ground operations (“ramp- 
noise”). Reduction of noise may be 
achieved by liners in the exhaust 
duct. In this paper, we consider the 
propagation of sound through the 
APU exhaust duct, which is 
typically straight with an axially 
varying liner depth, a non-uniform 
mean flow and strong temperature 
gradients. 
 
Description of work 
A new mode matching method is 
developed for acoustic modes in 
axially sectioned lined ducts with 
parallel, but otherwise arbitrary 

mean flow. The method is evaluated 
in detail for a circularly symmetric 
configuration (where the mean flow 
only depends on the radial 
coordinate), with so-called 
Pridmore-Brown modes, satisfying 
the radial Pridmore-Brown 
equation. 
Classically, the matching of the 
modal representations at the 
interfaces between the sections is 
based on continuity of pressure and 
velocity in combination with 
projection to a suitable but 
unrelated set of test functions by 
means of a standard integral inner-
product. The alternative we propose 
here uses essentially the same 
Pridmore-Brown modes but instead 
of the standard inner-product we 
apply a particular bilinear form that 



UNCLASSIFIED 

 
 
 
UNCLASSIFIED 

 

Efficient Mode-Matching Based on Closed Form Integrals of Pridmore-
Brown Modes 
  

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR 
 
Anthony Fokkerweg 2, 1059 CM Amsterdam, 
P.O. Box 90502, 1006 BM  Amsterdam, The Netherlands 
Telephone +31 88 511 31 13, Fax +31 88 511 32 10, Web site: www.nlr.nl 

can be evaluated in closed form. 
Apart from numerical efficiency, 
this approach features also a higher 
accuracy because it avoids the 
inherently inaccurate numerical 
quadrature of oscillating functions. 
 
Results and conclusions 
The results are compared with 
results obtained by an 
implementation of the classical 
approach, and the agreement is 

excellent, with higher accuracy and 
with greater computational 
efficiency. 
 
Applicability 
The method described in this paper 
can be applied to study sound 
propagation through a duct with 
axially varying impedance, non- 
uniform mean flow velocity and 
non-uniform temperature, like for 
example an APU exhaust duct. 
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Summary 

A new mode matching method is developed for acoustic modes in axially sectioned lined ducts 
with parallel, but otherwise arbitrary mean flow. The method is evaluated in detail for a 
circularly symmetric configuration (where the mean flow only depends on the radial 
coordinate), with so-called Pridmore-Brown modes, satisfying the radial Pridmore-Brown 
equation.  
 
Classically, the matching of the modal representations at the interfaces between the sections is 
based on continuity of pressure and velocity in combination with projection to a suitable but 
unrelated set of test functions by means of a standard integral inner-product. 
 
The alternative we propose here uses essentially the same Pridmore-Brown modes but instead of 
the standard inner-product we apply a particular bilinear form that can be evaluated in closed 
form. Apart from numerical efficiency, this approach features also a higher accuracy because it 
avoids the inherently inaccurate numerical quadrature of oscillating functions. 
 
The results are compared with results obtained by an implementation of the classical approach, 
and the agreement is excellent, with higher accuracy and with greater computational efficiency. 



  
NLR-TP-2013-245 

 

 4  

 

Contents 

I. Introduction 5 

II. Problem Formulation 6 

II.A. General Parallel Flow 6 
II.B. Circular Symmetric Mean Flow in Circular Duct 7 
II.C. Boundary Conditions 8 

III. Exact Integrals of Pridmore-Brown Eigenfunctions 8 

III.A. Exact Integrals of Solutions of the Helmholtz Equation 8 
III.B. Exact Integrals of Parallel-Flow Modal Eigenfunctions 10 
III.C. Exact Integrals of Radial Pridmore-Brown Modes 12 

IV. Mode-Matching 13 

IV.A. Construction of Matrix Equations (Classical Mode-Matching) 13 
IV.B. Scattering Matrix Formalism 15 
IV.C. Matching Conditions Based on the Bilinear Map 17 

V. Numerical Results                                                                                                                 18 

VI. Conclusion 21 

Acknowledgments 22 

A. Myers’ Energy Corollary 22 

References 24 

 
 



  
NLR-TP-2013-245 

 

 5  

 

 
I. Introduction Efficient Mode-Matching Based on

Closed Form Integrals of Pridmore-Brown Modes

M. Oppeneer∗

NLR/TUE
S.W. Rienstra†

TUE
P. Sijtsma‡

NLR

A new mode matching method is developed for acoustic modes in axially sectioned lined
ducts with parallel, but otherwise arbitrary mean flow. The method is evaluated in detail for
a circularly symmetric configuration (where the mean flow only depends on the radial coordi-
nate), with so-called Pridmore-Brown modes, satisfying the radial Pridmore-Brown equation.

Classically, the matching of the modal representations at the interfaces between the sections
is based on continuity of pressure and velocity in combination with projection to a suitable but
unrelated set of test functions by means of a standard integral inner-product.

The alternative we propose here uses essentially the same Pridmore-Brown modes but in-
stead of the standard inner-product we apply a particular bilinear form that can be evaluated
in closed form. Apart from numerical efficiency, this approach features also a higher accuracy
because it avoids the inherently inaccurate numerical quadrature of oscillating functions.

The results are compared with results obtained by an implementation of the classical ap-
proach, and the agreement is excellent, with higher accuracy and with greater computational
efficiency.

I. Introduction

In this paper, we will consider the problem of sound propagation through the APU (Auxiliary Power
Unit) exhaust duct, which is typically straight, has multiple annular segments each with a different lo-
cally reacting or bulk absorbing liner, and carries a non-uniform mean flow with strong temperature
gradients [1]. A suitable approach to compute the propagation for such a geometry is mode-matching,
which consists of expressing the acoustic field in each segment as a series of modes, and then deter-
mining the modal amplitudes by matching the fields at each interface between two segments by suitable
continuity conditions [2].

The system of mode-matching equations results from taking inner-products of the duct eigenfunc-
tions with certain test functions. For uniform flow and temperature, the duct eigenfunctions are Bessel-
functions. Since closed form integrals are known for products of Besselfunctions [3], the choice of a
suitable set of Besselfunctions as test functions allows us to determine the inner-products analytically
exactly. For non-uniform flow and temperature however, the duct eigenfunctions (modal solutions of
the Pridmore-Brown equation) are not Besselfunctions anymore, and no exact integrals of products of
modes are known. For the classical mode-matching approach a set of Besselfunctions may still be used
as test functions, although the inner-products cannot (to our knowledge) be computed in closed form,
and numerical quadrature is needed.

In this paper we present a new approach that uses the same Pridmore-Brown modes as test functions,
but instead of the standard inner-product we use an associated bilinear form1 that resembles an “inner-
product”. We will show that in this way the integrals we need are available in closed form.

∗PhD student, National Aerospace Laboratory (NLR), Marknesse, The Netherlands
†Associate Professor, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands, Senior Member AIAA
‡Senior Scientist, National Aerospace Laboratory (NLR), Marknesse, The Netherlands
1Mathematically it is not exactly an inner-product. Although imprecise, we will refer to it here as inner-product because of

the role it plays in the mode matching procedure.
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II. Problem Formulation 

II.A. General Parallel Flow 

The use of this new inner-product for mode-matching may require to compute an extra set of
Pridmore-Brown modes to be used as test functions, or the solution of an inhomogeneous Pridmore-
Brown equation. Any of these solutions have to be computed only once, regardless of the number of
segments, whereas for the classical approach we need to compute all inner-products at each interface.
Furthermore, in some occasions the off-diagonal inner-products are zero, which simplify the calculations
even more.

Since the computational work is comparable to the numerical quadrature for a single interface while
the inherent numerical integration errors are avoided, we conclude that our new approach is both more
accurate and cheaper than the classical mode matching methods.

We note that the issue of possible instabilities due to the interaction of shear layer and impedance
wall (as for example discussed in [4, 5]) will not be addressed here. Ill-posedness problems associated
with a vanishing boundary layer only occur in time domain calculations, while the detection of possible
unstable modes requires a causality analysis that we have not undertaken in the present context.

II. Problem Formulation

II.A. General Parallel Flow

We start with linearised Euler equations for time-harmonic modal solutions in general parallel mean
flow. Only the mean pressure is assumed constant. If the mean flow is uniform in x-direction and only
varies in (y, z), the coefficients of the equations do not depend on x and solutions proportional to eikx

(modes) are possible. The resulting equation can be recognised as a preform of the Pridmore-Brown
equation.

Although the final application will be for a circular symmetric mean flow in a circular duct, we
derive these general equations because later we will derive and use some general results for solutions in
the form of analytically exact integrals.

Assume an inviscid, non-heat conducting ideal gas with uniform mean pressure p0, a parallel mean
flow velocity v0 in x-direction with density ρ0 and sound speed c0 varying in (y, z) only

v0 = u0(y, z)ex , ρ0 = ρ0(y, z), c0 = c0(y, z), p0 = ρ0RT0 = γ−1ρ0c2
0 = constant. (1)

It follows from the linearized Euler equations that perturbations (subscript 1) of a parallel mean flow
(subscript 0) are governed by

D0ρ1 + v1·∇ρ0 + ρ0∇ ·v1 = 0, (2a)

ρ0
(
D0v1 + v1·∇v0

)+∇ p1 = 0, (2b)

c2
0

(
D0ρ1 + v1·∇ρ0

) = D0 p1, (2c)

where the linearized convective derivative is denoted by D0 = ∂
∂t + u0

∂
∂x . The convective derivative

of the divergence of momentum equation (2b) becomes with mass equation (2a) and again momentum
equation (2b)

c2
0D3

0ρ1 + 2c2
0
∂
∂x

(∇u0·∇ p1
)− D0(c2

0∇2 p1) = 0. (3)

Since c2
0(D0v1·∇ρ0) = ∇c2

0 ·∇ p1, we have with (2c) finally (c.f. [6])

D3
0 p1 + 2c2

0
∂
∂x

(∇u0·∇ p1
)− D0∇·(c2

0∇ p1
) = 0 (4)

If we look for solutions of the form p1(x, y, z, t) = P(y, z) eikx−iωt we obtain a preform of the Pridmore-
Brown equation [7, 8]

i�3 P + 2ikc2
0 (∇u0·∇P)+ i�

(−k2c2
0 P +∇ · (c2

0∇P
)) = 0, (5)

where
� = ω − ku0.
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II.B. Circular Symmetric Mean Flow in Circular Duct 

By noting that −k∇u0 = ∇� this equation can be further simplified to

∇ ·
(

c2
0

�2
∇P

)
+
(

1− k2c2
0

�2

)
P = 0. (6)

If u0 ≡ 0, this reduces to
∇ ·(c2

0∇P
)+ (ω2 − k2c2

0

)
P = 0, (7)

which is just equivalent to the Helmholtz equation if c0 is constant.

II.B. Circular Symmetric Mean Flow in Circular Duct

The final application will be for a circular symmetric mean flow in a circular duct with radius d , which
models an APU exhaust duct (Fig. 1). Therefore, we will develop the equations in cylindrical coordinates
and consider Fourier modes in the circumferential coordinate.

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature
profile T0(r)

mean flow velocity
profile u0(r)

Figure 1. APU geometry.

In a radially symmetric mean flow u0(r), ρ0(r), c0(r) with perturbations v1 = u1ex + v1er +
w1eθ , ρ1, p1 of the form

(u1, v1, w1, ρ1, p1) = (U, V,W, R, P) e−iωt+ikx+imθ , (8)

we have the equations

−i�R + ρ0

(
ikU + V ′ + 1

r
V + im

r
W
)
+ ρ ′0V = 0, (9a)

ρ0
(−i�U + u′0V

)+ ik P = 0, (9b)

−i�ρ0V + P ′ = 0, (9c)

−i�ρ0W + im
r

P = 0, (9d)

c2
0

(−i�R + ρ ′0V
)+ i�P = 0, (9e)

where a prime denotes a derivative to r . R can be eliminated by replacing equations (9a) and (9e) by

ρ0c2
0

(
ikU + V ′ + 1

r
V + im

r
W
)
− i�P = 0, (9f)

This system can be reduced to one equation for P , known as the Pridmore-Brown equation

�2

rc2
0

(
rc2

0 P ′

�2

)′
+
(
�2

c2
0
− k2 − m2

r2

)
P = 0. (10)

which is to be compared with (6). Another form is

P ′′ +
(

1
r
+ T ′0

T0
+ 2

ku′0
�

)
P ′ +

(
�2

c2
0
− k2 − m2

r2

)
P = 0. (11)
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II.C. Boundary Conditions 
III. Exact Integrals of Pridmore-Brown Eigenfunctions 

III.A. Exact Integrals of Solutions of the Helmholtz Equation 

II.C. Boundary Conditions

Owing to the origin of the present problem (sound propagation in an APU), the boundary conditions
may involve locally reacting liners and bulk absorbers. In its generality, however, all this is not relevant
for the present paper. So we only briefly sketch how the locally and bulk absorbing liners are modeled
by means of the boundary equations for the Pridmore-Brown equation [9]. In the end we will only use
an impedance condition.

Since we want to include cases with slipping flow (like for example uniform flow), we use the
Ingard-Myers boundary condition for a boundary layer with vanishing thickness (modeled as a vortex
sheet) along a straight wall [10]. This is for time harmonic perturbations

− iω(v1·n) = (−iω + v0·∇) p1

Z
. (12)

In principle, this boundary condition can be used for both locally and non-locally reacting (bulk absorb-
ing) liners, with the proviso that for a non-locally reacting liner Z depends on the axial wavenumber k,
or in other words, on the angle of incidence of the field. In this paper we only consider locally reacting
liners with just a constant Z . For a circularly cylindrical duct, after elimination of the radial velocity,
(12) becomes

P ′ − iρ0�
2

ωZ
P = 0 at r = d. (13)

III. Exact Integrals of Pridmore-Brown Eigenfunctions

III.A. Exact Integrals of Solutions of the Helmholtz Equation

Mode-matching is a particularly successful method for acoustic wave propagation in segmented ducts
of circular or rectangular cross section with a uniform medium. The necessary integrals of the modal
eigenfunctions (Bessel functions or (co)sine functions) appear to be available in closed form, which
greatly simplifies the numerical evaluation. These closed form integrals are a manifestation of a more
general property of solutions of the Helmholtz equation. Suppose we have, for parameters α and β the
solutions φ and ψ in a region A ∈ R2 with boundary 0 (as yet, boundary conditions do not play a role)
of

∇2φ + α2φ = 0, (14a)

∇2ψ + β2ψ = 0. (14b)

When we subtract φ times the second equation from ψ times the first and integrate over A we obtain

(α2 − β2)

∫∫

A

φψdS =
∫∫

A

(
φ∇2ψ − ψ∇2φ

)
dS =

∫∫

A

∇ · (φ∇ψ − ψ∇φ) dS. (15)

After using the divergence theorem, this inner-product of φ and ψ are given by an integral along the
boundary ∫∫

A

φψdS = 1
α2 − β2

∫

0

(φ∇ψ ·n− ψ∇φ ·n) d`. (16)

If α = β, this result can not be used. Suppose that we replace equation (14b) by the far more general

∇2χ + α2χ = f, (17)

where f is an arbitrary (integrable) function. When we again cross-wise multiply and subtract as before,
we find ∫∫

A

φ f dS =
∫∫

A

(
φ∇2χ − χ∇2φ

)
dS =

∫

0

(φ∇χ ·n− χ∇φ ·n) d`. (18)
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This result was derived without specifying any boundary conditions on χ , so they can be chosen arbi-
trarily as long as there exists a solution χ . This is guaranteed2 if (the boundary conditions on χ are such,
that) α is not an eigenvalue of the homogeneous version of equation (17).

The advantage of this result is its generality. We can substitute for f any function we need, for
example f = φ, solution of (14a). The disadvantage is of course, that it requires the solution of the
additional inhomogeneous equation (17). So in practice we will use this result only if (16) breaks down.

In the specific case of a circular disk of radius 1 and circularly symmetric solutions φ = Jm(αr) eimθ

and ψ = Jm(βr) e−imθ (we choose opposite signs of imθ for non-trivial results later), substituted in (16),
we obtain the well-known [3] relation for Besselfunctions

1∫

0

Jm(αr)Jm(βr) rdr = 1
α2 − β2

[
β Jm(α)J ′m(β)− α J ′m(α)Jm(β)

]
. (19)

For the case when α = β one approach is to take the limit and use l’Hôpital’s rule, with result

1∫

0

Jm(αr)2r dr = 1
2

(
1− m2

α2

)
Jm(α)

2 + 1
2

J ′m(α)
2. (20)

A more generic approach is the one discussed above. Suppose that we have χ(r, θ) = χ̂(r) e−imθ ,
regular in r = 0, where χ̂ is a solution of the inhomogeneous Bessel equation

1
r
(r χ̂ ′)′ +

(
α2 − m2

r2

)
χ̂ = Jm(αr), (21)

(for example χ̂(r) = −r J ′m(αr)/2α), then we have the equivalent result

1∫

0

Jm(αr)2rdr = Jm(α)χ̂
′(1)− α J ′m(α)χ̂(1). (22)

Again, the boundary conditions on χ can be selected arbitrarily, except for the restriction that Aχ̂(1)+
Bχ̂ ′(1) 6= 0 if AJm(α)+ αB J ′m(α) = 0.

The above manipulations (14)-(18) can be repeated for (7) (with u0 ≡ 0) to obtain weighted inner-
product integrals of the type ∫∫

A

c2
0 P P̃ dS

but for the general case (6) this is not possible because � = �(k). Indeed, no closed form expressions
can be found for the standard inner-products with eigenfunctions of the Pridmore-Brown equation, which
are required to set up the mode-matching equations, so it seems that we have to resort to numerical
quadrature to compute the integrals. With increasing radial order the eigenfunctions become more and
more oscillatory, resulting in increasingly more difficult numerical computations.

All this is not the case, if we change the standard inner-product integrals into a dedicated integral,
associated to the prevailing equations, which we call (as it is not a real inner-product) a bilinear form.

In the following we will construct two bilinear forms consisting of products of eigenfunctions. One
for the general case of parallel mean flow (applicable for example in distortion mode problems [12]),
much in the same fashion as discussed above, and one for the particular case of circular ducts with
radially symmetric mean flow, the so-called Pridmore-Brown modes. These results may be used to
compute the coefficients of mode-matching equations in closed form. A numerical implementation will
be given, and some numerical examples comparing the classic approach and the present new one.

This result was inspired by [13], where a related integral was used to obtain a solvability condition
for a multiple scales solution of the disturbance field for a slowly varying duct with mean swirling flow.

2This result is related to the Fredholm alternative for linear operators [11]. Assume that Aχ = B∇χ ·n on 0 and suppose
that there exists a nonzero solution w of ∇2w+α2w = 0 with the same boundary conditions. Then we obtain the, for arbitrary
f , contradiction

∫∫
A w f dS = ∫0 (w∇χ ·n− χ∇w·n) d` = 0.
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III.B. Exact Integrals of Parallel-Flow Modal Eigenfunctions 

III.B. Exact Integrals of Parallel-Flow Modal Eigenfunctions

Analogous to (16) we want to construct an integral involving products of Pridmore-Brown eigenfunc-
tions and use the divergence theorem to evaluate its value through the eigenfunction values on the bound-
ary. Suppose that we have parallel mean flow in x-direction and modes of the form

[ρ1, p1, v1] = [R(y, z), P(y, z),U (y, z)ex + V (y, z)ey +W (y, z)ez] eikx−iωt . (23)

U , V and W are the velocity components in the x , y and z direction of a Cartesian coordinate system.
For modal solutions of this form which are governed by (2) we have

−i�P + iρ0c2
0kU + ρ0c2

0(Vy +Wz) = 0, (24a)

−iρ0�U + ρ0
(
u0y V + u0zW

)+ ik P = 0, (24b)

−iρ0�V + Py = 0, (24c)

−iρ0�W + Pz = 0, (24d)

where � = ω − ku0, and R follows directly from the other amplitudes, for example with 2c. (Note that
the system reduces to (6) if U , V and W are eliminated.) Together with suitable boundary conditions
this is an eigenvalue problem with eigenvalue k, but this will not be used here; k will be considered as a
given constant.

When the individual equations in (24) are multiplied by suitable combinations3 of other solutions
of the same equations (say P̃ , Ũ , Ṽ and W̃ ) with constant k̃ and corresponding auxiliary function
�̃ = ω − k̃u0, and subsequently added together, we obtain:

(−i�P + iρ0c2
0kU + ρ0c2

0Vy + ρ0c2
0Wz

) P̃
ρ0c2

0
+ (−i�ρ0U + ρ0u0y V + ρ0u0zW + ik P

) k̃ P̃

ρ0�̃

− (−i�ρ0V + Py
)

Ṽ − (−i�ρ0W + Pz) W̃ = 0 (25)

After reordering and splitting off a cross-wise divergence, this is equivalent to

− i

(
�

ρ0c2
0
− kk̃

ρ0�̃

)
P̃ P − i

�k̃ − �̃k

�̃
P̃U + iρ0�(Ṽ V + W̃ W )− V P̃y −W P̃z +

(
Ṽy + W̃z

)
P

+ k̃

�̃

(
u0y Ṽ + u0zW̃

)
P + �̃

(
P̃V − Ṽ P

�̃

)

y

+ �̃
(

P̃W − W̃ P

�̃

)

z

= 0. (26)

After using the defining equations (24) this becomes

− i

(
�

ρ0c2
0
− kk̃

ρ0�̃

)
P̃ P − i

�k̃ − �̃k

�̃
P̃U + iρ0�(Ṽ V + W̃ W )− i�̃ρ0(Ṽ V + W̃ W )

+ i

(
�̃

ρ0c2
0
− k̃2

ρ0�̃

)
P̃ P + �̃

(
P̃V − Ṽ P

�̃

)

y

+ �̃
(

P̃W − W̃ P

�̃

)

z

= 0. (27)

Recombining and dividing by �̃ yields

− i(k − k̃)
1

�̃

[(
u0

ρ0c2
0
+ k̃

ρ0�̃

)
P̃ P + ω

�̃
P̃U − ρ0u0(Ṽ V + W̃ W )

]
=

∂

∂y

(
P̃V − Ṽ P

�̃

)
+ ∂

∂z

(
P̃W − W̃ P

�̃

)
. (28)

3This choice is clearly not self-evident, and not the result of random trying. It was found by first taking the products of
the governing equations with arbitrary functions, and then imposing the required conditions on these functions. The resulting
equations appeared to be equivalent to our original equations for P , U , V and W .
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In case we want to write the left hand side in terms of P only, we can use the defining equations for U , V
and W . When we integrate (28) over a cross section A with boundary 0 and use the divergence theorem,
we obtain an integral over A of parallel-flow shape functions, in particular (with suitable boundary
conditions and eigenvalues k) parallel-flow eigenfunctions, expressed as an integral along boundary 0.
We introduce the vector of shape functions F = [P,U, V,W

]
and denote this integral by4

〈〈F,F̃ 〉〉 =
∫∫

A

1

�̃

[(
u0

ρ0c2
0
+ k̃

ρ0�̃

)
P̃ P + ω

�̃
P̃U − ρ0u0(Ṽ V + W̃ W )

]
dS

= i

k − k̃

∫

0

P̃(V ny +W nz)− (Ṽ ny + W̃ nz)P

�̃
d`, (29)

where ny and nz denote the y and z components of the outward normal vector on 0 and k 6= k̃.
If u0 ≡ 0 this reduces to a regular integral innerproduct (with a weight function ∝ ρ−1

0 ∝ c2
0)

〈〈F,F̃ 〉〉 = k + k̃
ω2

∫∫

A

P̃ P
ρ0

dS = 1

(k − k̃)ω2

∫

0

P̃(Pyny + Pznz)− (P̃yny + P̃znz)P
ρ0

d`, (30)

a result, very similar to (16), and which could have been obtained directly from (7).
For a slipping mean flow along an impedance wall at 0 we apply Ingard-Myers conditions V ny +

W nz = �P/ωZ and Ṽ ny + W̃ nz = �̃P̃/ω Z̃ and obtain

〈〈F,F̃ 〉〉 = i

k − k̃

∫

0

P̃ P

�̃ω

(
�

Z
− �̃

Z̃

)
d`. (31)

The integrals vanish for hard walls, when Z = Z̃ = ∞. For a no-slip mean flow with u0 = 0 along 0
and impedance boundary conditions P = Z(V ny +W nz) and P̃ = Z̃(Ṽ ny + W̃ nz), we obtain

〈〈F,F̃ 〉〉 = i

k − k̃

∫

0

P̃ P
ω

(
1
Z
− 1

Z̃

)
d`. (32)

Interestingly, the integral vanishes for different modes that correspond with the same Z .
Although this surface integral resembles a non-standard inner-product between vectors F and F̃,

it is not an inner product because it lacks positive-definiteness for 〈〈F,F 〉〉, mainly because of the PU
term. Therefore, we refer to it as a bilinear map, although occasionally, because it plays the same role of
an inner product as in the classical mode matching procedure, it may be referred to as an inner-product.

The above result is evidently not valid for k = k̃. In practice, when we deal with modal eigenfunc-
tions, all satisfying the same boundary condition, the limit of k = k̃ goes together with F = F̃ and we
will consider that situation here.

We start with the following associated inhomogeneous system of (24) with solution [P̂, Û , V̂ , Ŵ ],
with the same k as in the original system, and a solution vector [P,U, V,W ] satisfying (24).

−i�P̂ + iρ0c2
0kÛ + ρ0c2

0(V̂y + Ŵz) = i(u0 P + ρ0c2
0U ), (33a)

−i�ρ0Û + ρ0u0y V̂ + ρ0u0zŴ + ik P̂ = i(ρ0u0U + P), (33b)

−i�ρ0V̂ + P̂y = iρ0u0V, (33c)

−i�ρ0Ŵ + P̂z = iρ0u0W, (33d)

with boundary conditions such, that k is not an eigenvalue of the left hand side, in order to guarantee the
existence of a solution [P̂, Û , V̂ , Ŵ ].

4If a symmetric form is preferred, we can replace 〈〈F,F̃〉〉 by 1
2 〈〈F,F̃〉〉 + 1

2 〈〈F̃,F〉〉 and the RHS correspondingly.
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III.C. Exact Integrals of Radial Pridmore-Brown Modes 

We multiply left and right hand sides with P/ρ0c2
0, k P/ρ0�, −V and −W respectively, add, and do

exactly the same manipulations as before. We find that the factor k − k̃ vanishes, and obtain the final
result

〈〈F,F 〉〉 =
∫∫

A

1
�

[(
u0

ρ0c2
0
+ k
ρ0�

)
P2 + ω

�
U P − ρ0u0(V 2 +W 2)

]
dS

= i
∫

0

P̂(V ny +W nz)− (V̂ ny + Ŵ nz)P
�

d`. (34)

If u0 ≡ 0 we obtain

〈〈F,F 〉〉 = 2k
ω2

∫∫

A

P2

ρ0
dS = 1

ω2

∫

0

P̂(Pyny + Pznz)− (P̂yny + P̂znz)P
ρ0

d`. (35)

III.C. Exact Integrals of Radial Pridmore-Brown Modes

A special application of the above results will be for a circularly symmetric mean flow u0(r), c0(r), ρ0(r)
in a circular duct of radius d and cross section A (an annular duct would require only little changes) with
polar coordinate system (x, r, θ) and v1 = uex + ver + weθ . In this case the solution can be written
as a sum over circumferential Fourier modes, and we can assume modal shape solutions of the form
F(r) eimθ = [P(r),U (r), V (r),W (r)] eimθ , satisfying

−i�P + iρ0c2
0kU + ρ0c2

0

(
V ′ + 1

r
V + im

r
W
)
= 0, (36a)

−iρ0�U + ρ0u′0V + ik P = 0, (36b)

−iρ0�V + P ′ = 0, (36c)

−iρ0�W + im
r

P = 0, (36d)

where � = ω− ku0 and the ′ denotes an r -derivative. As before, we will assume k to be just a constant,
but with suitable boundary conditions this system is an eigenvalue problem with eigenvalue k.

Due to the symmetry, it is no restriction to assume another solution of (36) with k̃ 6= k, of the form
F̃(r) e−imθ = [P̃(r), Ũ (r), Ṽ (r),−W̃ (r)] e−imθ , such that the surface integral in (29) (divided by 2π )
simplifies to

〈F, F̃〉 =
d∫

0

r

�̃

[(
u0

ρ0c2
0
+ k̃

ρ0�̃

)
P P̃ + ω

�̃
U P̃ − ρ0u0(V Ṽ +W W̃ )

]
dr = id

k − k̃

[
P̃V − Ṽ P

�̃

]

r=d

,

(37)
where we assumed that the solutions are regular in r = 0.

If u0 ≡ 0 we obtain

〈F, F̃〉 = k + k̃
ω2

d∫

0

r
ρ0

P P̃ dr = d

(k − k̃)ω

[
P̃ P ′ − P̃ ′P

ρ0

]

r=d

, (38)

With slipping flow and impedance walls along r = d we apply Ingard-Myers boundary conditions
V = �P/ωZ and � = ω − ku0(d) for both solutions, and obtain

〈F, F̃〉 = id P̃ P

(k − k̃)�̃ω

(
�

Z
− �̃

Z̃

)
, (39)

which vanishes if Z = Z̃ = ∞. With no-slip flow and u0(d) = 0 this simplifies to

〈F, F̃〉 = id P̃ P

(k − k̃)ω

(
1
Z
− 1

Z̃

)
.
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IV. Mode-Matching 

IV.A. Construction of Matrix Equations (Classical Mode-Matching) 

If k and k̃ are different eigenvalues from the same impedance condition, so Z̃ = Z , then all integrals
vanish in this case.

To find the degenerate case of k̃ = k and F̃ = F, we consider with constant k the solution
F e−imθ = [P,U, V,−W ] e−imθ (equally given by (36)) and the associated solution
F̂ e−imθ = [P̂, Û , V̂ ,−Ŵ ] e−imθ of the inhomogeneous system (with the same k)

−i�P̂ + iρ0c2
0kÛ + ρ0c2

0

(
V̂ ′ + 1

r
V̂ + im

r
Ŵ
)
= i(u0 P + ρ0c2

0U ) (40a)

−i�ρ0Û + ρ0u′0V̂ + ik P̂ = i(ρ0u0U + P) (40b)

−i�ρ0V̂ + P̂ ′ = iρ0u0V (40c)

−i�ρ0Ŵ + im
r

P̂ = iρ0u0W (40d)

In actual practice, the system (40) will be reduced to the following inhomogeneous Pridmore-Brown
equation in P̂ , which may be solved by almost the same routine as is used for the Pridmore-Brown
equation itself.

�2

rc2
0

(rc2
0

�2
P̂ ′
)′ +

(
�2

c2
0
− k2 − m2

r2

)
P̂ = 2

ωu′0
�2

P ′ − 2
(

u0�

c2
0
+ k

)
P (41)

The surface integral (divided by 2π ) of (34) now simplifies to

〈F, F〉 =
d∫

0

r
�

[(
u0

ρ0c2
0
+ k
ρ0�

)
P2 + ω

�
U P − ρ0u0(V 2 +W 2)

]
dr = id

[
P̂V − V̂ P

�

]

r=d

(42)

where we assumed that the solutions are regular in r = 0. As before, it should be noted that the
inhomogeneous equation (41) has no solutions if the problem for P is an eigenvalue problem with
homogeneous boundary conditions, and the same conditions are applied to P̂ .

If u0 ≡ 0 we obtain

〈F, F〉 = 2k
ω2

d∫

0

r
ρ0

P2 dr = d
ω2

[
P̂ P ′ − P̂ ′P

ρ0

]

r=d

. (43)

IV. Mode-Matching

IV.A. Construction of Matrix Equations (Classical Mode-Matching)

We consider a duct that is divided in N axial segments, and assume that the wall properties are constant
within each segment.

We assume that the perturbation field for each segment can be expressed as a summation of eigen-
modes of the Pridmore-Brown equation, as discussed previously. This is not obvious and in fact gen-
erally not true. Our representation with modes proportional to eikx can be justified [5] by considering
it as a Fourier transform in x . The obtained solution in k can be transformed back to x-domain by in-
verse Fourier transformation. The residues of the poles in the complex k plane then become the modes
that were anticipated. In shear flow, however, there are more singularities in k than just the modal poles.
There is also a branch cut, also known as “the continuous spectrum” of values of k with� = ω−ku0 = 0
at (so-called) critical layers, which cannot be evaluated as modes. This contribution is in the present
model ignored as it can be shown, as has been reported in [5], that in general it is small.

To compute the field inside the entire duct we set up a system of equations which relates the modal
amplitudes in adjacent segments by applying suitable continuity conditions at the interface between
them. This is the mode-matching method. Subsequently, we compute the amplitudes in all segments
with the aid of the numerically stable S-matrix formalism, as described in the next section.
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a+
l

a−
l

b+
l

a−
l+1b−

l+1

a+
l+1

a−
l−1

a+
l−1

a−
l+2

a+
l+2

xl xl+1xl−1

Figure 2. Mode-matching at several interfaces.

In this section we describe the classical mode-matching (CMM) approach based on continuity of
pressure and axial velocity. The total field for a given circumferential wavenumber m in each segment
is a superposition of all right and left-running modes:

pl(x, r) =
∞∑

µ=1

(
a+l,µP+l,µ(r) eik+l,µ(x−xl−1)+a−l,µP−l,µ(r) eik−l,µ(x−xl )

)
, xl−1 6 x 6 xl . (44)

In a numerical implementation this infinite series has to be truncated; the finite number of modes µl to
represent the field of the l-th segment depends in general on the type of liner (bulk or locally reacting).
At the interface at x = xl (see Figure 2) we have for the pressure in segment l:

pl(r) =
µl∑

µ=1

(
b+l,µP+l,µ(r)+ a−l,µP−l,µ(r)

)
. (45)

Consider the hard-wall uniform flow eigenfunctions by 9ν(r) = Jm(ανr) where αν are the hard-wall
radial wavenumbers, which satisfy 9 ′ν(d) = 0. These functions form a complete L2-basis, are at least
locally, for high orders, similar in behavior as the Pridmore-Brown modes, and are therefore suitable to
serve as test functions when we set up the matrix system for the modal vectors.

Imposing continuity of pressure (approximated due to the truncation) at an interface at xl and subse-
quent projection onto the set of test functions 9ν , ν = 1, . . . , νmax, yields

µl∑

µ=1

b+l,µ(P
+
l,µ, 9ν)+ a−l,µ(P

−
l,µ, 9ν) =

µl+1∑

µ=1

a+l+1,µ(P
+
l+1,µ, 9ν)+ b−l+1,µ(P

−
l+1,µ, 9ν), (46)

where we use the standard inner-product

( f, g) =
d∫

0

f (r)g(r)r dr.

The set of equations for the continuity of axial velocity is found analogously by using the relation

U = k
ρ0�

P − u′0
ρ0�2

P ′, (47)

which follows from (9c) and (9b). All matching conditions together yield the following system of
equations: [

A+ A−

C+ C−

][
b+l
a−l

]
=
[

B+ B−

D+ D−

][
a+l+1

b−l+1

]
. (48)

The matrix entries are inner-products of Pridmore-Brown eigenfunctions and Bessel functions; for the
matrices that correspond to the pressure equations we have

A±νµ = (P±l,µ, 9ν) =
d∫

0

P±l,µ(r)9ν(r)r dr, B±νµ = (P±l+1,µ, 9ν) =
d∫

0

P±l+1,µ(r)9ν(r)r dr. (49)
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IV.B. Scattering Matrix Formalism 

The matrix entries of C± and D± corresponding to the axial velocity equations are computed analo-
gously.

We consider the amplitudes of the waves propagating towards the interface as the unknowns. Rear-
ranging leads to

[ µl+1 µl

νmax B+ −A−
νmax D+ −C−

] [
a+l+1
a−l

]
=

[ µl µl+1

νmax A+ −B−
νmax C+ −D−

] [
b+l

b−l+1

]
. (50)

where the dimensions of the sub-matrices have been included. In this paper we restrict ourselves to
locally reacting liners, so we choose µl = µmax, and choose νmax = µmax. Thus, we have 2µmax

equations and µl + µl+1 = 2µmax unknowns. We remark that this approach can be extended to bulk
absorbing liners, in which case the number of modes µl > µmax (i.e. the number of degrees of freedom)
depends on the depth of the liner, and consequently the system of equations needs to be extended with
extra conditions [1, 9].

IV.B. Scattering Matrix Formalism

A naive coupling of the duct sections via the transmission and reflection matrices is possible, but this
process is unstable in case of a large numbers of sections due to the exponentially decaying and in-
creasing cut-off modes that are involved. An alternative approach would be an iterative one, where the
propagation of a wave is only considered in the direction in which it decays. With this approach, the
amplitudes are updated as more and more reflections and transmissions at different interfaces are taken
into account at each new iteration, until the change in the amplitudes is below a certain threshold. How-
ever, this procedure may not converge for geometries with a large number of segments. We therefore
follow the so-called “scattering matrix formalism” (see for example [14]), which has no convergence
issues and is numerically stable.

We want to express the modal amplitude vectors of the outgoing waves in terms of the amplitude
vectors of the incident waves. Thus, we write

[
a+l+1

a−l

]
=
[

B+ −A−

D+ −C−

]−1 [
A+ −B−

C+ −D−

][
b+l

b−l+1

]
=

[ µl µl+1

µl+1 Ŝ11 Ŝ12

µl Ŝ21 Ŝ22

][
b+l

b−l+1

]
, (51)

where we introduced the interface scattering matrix Ŝ, including the sizes of the submatrices. Next, we
want to combine the effect of scattering at the interface and propagation through the segment.

a+
l

a−
l

a+
l+1

a−
l+1

a+
l−1

a−
l−1

segment
l − 1

segment
l

segment
l + 1

interface
l

interface
l − 1

xl−1
Sl−1

xl
Sl

xl+1
Sl+1

xN = Lxl−2
Sl−2

x0 = 0

a+
1

a−
1

a+
2

a−
2

x1
S1

x2
S2

︸ ︷︷ ︸
S̄1 = S1

︸ ︷︷ ︸
S̄2 = S̄1 ∗ S2 = S1 ∗ S2

︸ ︷︷ ︸
S̄3 = S̄2 ∗ S3 = S1 ∗ S2 ∗ S3

a+
3

a−
3

x3
S3

︸ ︷︷ ︸
S̄l = S̄l−1 ∗ Sl

Figure 3. Schematic representation of the S-matrix algorithm.

Therefore, we introduce the segment scattering matrix Sl as follows:
[

a+l+1

a−l

]
=
[

Ŝ11
l Ŝ12

l

Ŝ21
l Ŝ22

l

][
X+l 0
0 X−l+1

][
a+l

a−l+1

]
=
[

S11
l S12

l

S21
l S22

l

][
a+l

a−l+1

]
. (52)
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where the propagation is accounted for by the diagonal matrices

(X+l )µµ = eik+l,µhl , (X−l+1)µµ = e−ik−l+1,µhl+1, hl = xl − xl−1. (53)

Note that the exponentials are always decaying.
The effect of all layers up to layer l can be combined in the cumulative scattering matrix S̄l (see also

Figure 3): [
a+l+1

a−1

]
=
[

S̄11
l S̄12

l

S̄21
l S̄22

l

][
a+1

a−l+1

]
. (54)

The cumulative scattering matrix of a certain set of segments can be computed by using the Redheffer
star product, which is defined as

[
A11 A12

A21 A22

]
∗
[

B11 B12

B21 B22

]

=
[

B11(I− A12B21)−1A11 B12 + B11A12(I− B21A12)−1B22

A21 + A22B21(I− A12B21)−1A11 A22(I− B21A12)−1B22

]
. (55)

By using this definition S̄l can be computed as

S̄l = S̄l−1 ∗ Sl = S1 ∗ · · · ∗ Sl . (56)

The Redheffer star product can be constructed as as follows. We would like to construct the cumulative
scattering matrix S̄l in order to compute the effect of segment l. Let us assume that we can describe the
effect of all segments up to segment l − 1 via

[
a+l
a−1

]
=
[

S̄11
l−1 S̄12

l−1

S̄21
l−1 S̄22

l−1

][
a+1
a−l

]
. (57)

Furthermore, we have at interface l:
[

a+l+1

a−l

]
=
[

S11
l S12

l

S21
l S22

l

][
a+l

a−l+1

]
. (58)

Substitute the second row of (58) into the first row of (57) to obtain

a+l = S̄11
l−1a+1 + S̄12

l−1a−l = S̄11
l−1a+1 + S̄12

l−1

[
S21

l a+l + S22
l a−l+1

]
. (59)

Collecting the terms gives
[
I− S̄12

l−1S21
l

]
a+l = S̄11

l−1a+1 + S̄12
l−1S22

l a−l+1, (60)

so
a+l =

[
I− S̄12

l−1S21
l

]−1 S̄11
l−1a+1 +

[
I− S̄12

l−1S21
l

]−1 S̄12
l−1S22

l a−l+1. (61)

Substituting this into the first row of (58) yields

a+l+1 =
S̄11

l︷ ︸︸ ︷
S11

l

[
I− S̄12

l−1S21
l

]−1 S̄11
l−1 a+1 +

{
S11

l

[
I− S̄12

l−1S21
l

]−1 S̄12
l−1S22

l + S12
l

}

︸ ︷︷ ︸
S̄12

l

a−l+1. (62)

Analogously, we can substitute the first row of (57) into the second row of (58) to obtain
[
I− S21

l S̄12
l−1

]
a−l = S21

l S̄11
l−1a+1 + S22

l a−l+1, (63)
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IV.C. Matching Conditions Based on the Bilinear Map 

from which follows

a−l =
[
I− S21

l S̄12
l−1

]−1 S21
l S̄11

l−1a+1 +
[
I− S21

l S̄12
l−1

]−1 S22
l a−l+1. (64)

Substituting this into the second row of (57) yields

a−1 =
S̄1

l︷ ︸︸ ︷{
S̄21

l−1 + S̄22
l−1

[
I− S21

l S̄12
l−1

]−1 S21
l S̄11

l−1

}
a+1 + S̄22

l−1

[
I− S21

l S̄12
l−1

]−1 S22
l︸ ︷︷ ︸

S̄12
l

a−l+1. (65)

These equations can still be used when the number of modes is different for each segment (i.e. when
the four blocks of the scattering matrices are not square). To see this, consider the total number of
amplitudes for the three segments numbered 1, l and l + 1, which is 2µ1 + 2µl + 2µl+1. Of these
amplitudes the µ1 + µl+1 amplitudes of the incident waves in segments 1 and l + 1 are known. Hence,
the other amplitudes can be determined by using the µ1 + 2µl + µl+1 equations of (57) and (58). Also
note that the dimensions of the terms between square brackets in (62) and (65) are µl × µl , so only the
solution of square systems is required.

Consequently, if all of the segment scattering matrices and the incoming amplitudes a+1 and a−N of the
outer segments are known, then the outgoing amplitudes and hence the total field in the outer segments
can be computed. To compute the field inside the entire duct the amplitudes in intermediate segments
are required as well. We compute these by using (59) and the second row of (58). Note that we did
not invert the propagation matrices Xl , which would have caused growing exponentials (which might
provoke numerical problems).

IV.C. Matching Conditions Based on the Bilinear Map

In this section we set up a system of equations which has the same structure as (48) for the classical
mode-matching approach.

Let us define the vector f̂ whose components are the acoustic pressure and the velocity components:

f̂ l(x, r) =
[

pl(x, r), ûl(x, r), v̂l(x, r), ŵl(x, r)
]
. (66)

The total field for a given circumferential wavenumber m in each segment is a superposition of all
modes:

f̂ l(x, r) =
∞∑

µ=1

(
a+l,µF+l,µ(r) eik+l,µ(x−xl−1)+a−l,µF−l,µ(r) eik−l,µ(x−xl )

)
, xl−1 6 x 6 xl, (67)

where F again denotes the vector of perturbation amplitudes. At the interface at x = xl we have

f̂ l(r) =
µl∑

µ=1

(
b+l,µF+l,µ(r)+ a−l,µF−l,µ(r)

)
, (68)

f̂ l+1(r) =
µl+1∑

µ=1

(
a+l+1,µF+l+1,µ(r)+ b−l+1,µF−l+1,µ(r)

)
. (69)

Inside the duct we impose continuity of p(x, r), u(x, r), v(x, r) and w(x, r) by applying the bilinear
form to f̂ l = f̂ l+1 with the solution of the associated problem Ψ ν , which results in

µl∑

µ=1

b+l,µ〈F+l,µ,Ψ ν〉 + a−l,µ〈F−l,µ,Ψ ν〉 =
µl+1∑

µ=1

a+l+1,µ〈F+l+1,µ,Ψ ν〉 + b−l+1,µ〈F−l+1,µ,Ψ ν〉, (70)

for ν = −νmax, . . . ,−1, 1, . . . , νmax. When we split the range of ν into left (ν < 0) and right (ν > 0)
running parts, we again obtain in matrix format

[
A+ A−

C+ C−

][
b+l
a−l

]
=
[

B+ B−

D+ D−

][
a+l+1

b−l+1

]
. (71)
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V. Numerical Results 

In order to prevent unnecessary computation of an extra set of eigenfunctions, we can choose as test
function Ψ ν the eigensolutions of, say, segment l. In that case the matrix entries can be computed as

{A,C}±νµ = 〈Flµ, Flν〉, (72a)

{B, D}±νµ = 〈Fl+1,µ, Flν〉, (72b)

where

{A, B}+ : µ > 0, ν > 0, {C, D}+ : µ > 0, ν < 0,

{A, B}− : µ < 0, ν > 0, {C, D}− : µ < 0, ν < 0.

The values of the bilinear forms in (72) can be computed as follows. Suppose that we know the set
of eigensolutions for two segments l and n, with possibly different liner properties. When Zl 6= Zn then
the sets of axial wavenumbers have in general (except for a rare coincidence) no values in common, so
it holds that klµ 6= knν . Consequently we can use (39) to compute

〈Flµ, Fnν〉 = id PlµPnν

�nνω(klµ − knν)

[
�lµ

Zlµ
− �nν

Znν

]∣∣∣∣
r=d

, for Zl 6= Zn. (73)

For the case when Zl = Zn := Z we can have µ 6= ν, which means that klµ 6= knν , so we can compute

〈Flµ, Fnν〉 = − id PlµPnνu0

�nνωZ

∣∣∣∣
r=d

, for Zl = Zn, µ 6= ν, (74)

which is identically zero for non-slipping flow (u0(d) = 0) or a hard wall (Z → ∞). When µ = ν

we have klµ = knν := kµ and Plµ = Pnν := Pµ. We require the solution P̂µ of the inhomogeneous
Pridmore-Brown equation (41) to compute

〈Flµ, Fnν〉 = d
ρ0�2

µ

[
P̂µP ′µ −

u0

�µ
P ′µPµ − P̂ ′µPµ

]

r=d
, for Zl = Zn, µ = ν. (75)

Note that this implies that A+ and C− are diagonal matrices, and A− and C+ zero matrices for non-
slipping flow or hard wall.

V. Numerical Results

In order to compare the results of the classical (CMM) and the bilinear-map-based (BLM) mode-
matching approaches, we consider the test cases which are listed in Table 1. The 1m long duct with
radius 0.15m is split into two segments at x = 0.5m (except for configuration IV); the left segment
has a hard wall, and the right hand side segment has a locally reacting impedance wall. The incident
field consists of one right-running mode, either µ = 1 or 2 for the pertinent configurations5. For the
BLM-based results the modes of the left (hard-wall) segment are used as test functions.

The results in this section are made dimensionless by scaling on the duct radius d , a reference density
ρ∞ and a reference temperature T∞. This implies that velocities are scaled on reference sound speed
c∞ = √γRT∞ and time on d/c∞. The non-dimensional mean flow axial velocity is denoted by M (the
Mach number), i.e. u0 = c∞M .

Configuration II has a slipping flow, hence it is necessary to use the Ingard-Myers boundary con-
dition here, this in contrast to configurations I and III which have non-slipping flow. The mean flow
profile for configuration II has the equivalent mass flow as a uniform flow with Mach number 0.3. The
non-uniform temperature profile of configuration III has the equivalent mass flow of a constant mean
temperature of T = 1. The flow profile of configuration III is more representative of a uniform flow
with a thin boundary layer. Configuration IV is a duct with N = 20 segments, where the impedances of
the segments have an imaginary part that varies linearly between -3 and 3. For all configurations we use
µmax = 50 modes to represent the field.
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Configuration I II III IV

Helmholtz & azi. ω = 13.86, m = 5 ω = 8.86, m = 5 ω = 15, m = 5 ω = 15, m = 5

Temperature T = 1 T = 1 T = 2 log(2)(1− r2

2 ) T = 1

Mean flow M = 0.5(1− r2) M = 0.3 · 4
3 (1− r2

2 ) M = 0.3 · tanh(10(1− r)) M = 0.3 · tanh(10(1− r))
Soft-wall impedance Z = 1− 1i Z = 1+ 1i Z = 1− 1i Z = 1− 3i, . . . , 1+ 3i,

N = 20
Incident rad. mode nr. µ = 1 µ = 1 µ = 2 µ = 1

Table 1. Test configurations. µmax = 50 for all configurations.

To compute the solutions of the boundary value problems we use a path-following approach as de-
scribed in [15]. Both for locally and non-locally reacting liners we start the path-following process from
the solutions for a uniform flow and constant temperature. Subsequently the liner and flow properties
are gradually changed to the target configuration.

Finding the uniform-flow constant-temperature solutions amounts to finding the complex-valued
roots of an analytic function. To compute these roots we employ the method of Delves and Lyness [16].
This method first constructs a polynomial that has the same roots as the analytic function of interest by
using contour integration (i.e. numerical quadrature). Subsequently the roots of the polynomial can be
computed in a standard manner. The advantage of this method lies in the fact that it is guaranteed that
all roots inside a given area are found (apart from finite numerical accuracy issues), whereas a Newton
method only converges to all of the roots if it is started from sufficiently close initial guesses. The
location of these initial guesses for the Newton method is not always self-evident, as for example in case
of surface waves [17]. Figure 4 shows an example of the paths of the axial wavenumbers for the first
configuration.

−50 −40 −30 −20 −10 0 10 20 30 40

−30

−20

−10

0

10

20

30

Re(k)

Im
(k

)

Figure 4. Axial wavenumber paths for configuration I, first 10 modes in both directions, moving from blue to red, ‘x’ is the final
wavenumber belonging to the right-hand side (soft-wall) segment.

It is, moreover, important to note that it is not necessary to use path-following for the inhomogeneous
problem, since the axial wave number kµ is given and not part of the solution, and the inhomogeneous
problem (with inhomogeneous boundary condition at r = d) has a unique solution. Consequently, it is

5For non-uniform flow and/or temperature the numbering of the modes is not unambiguous; we number them according
their similarity in eigenfunction shape and axial wavenumber value to the uniform flow modes.
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Figure 5. Real part of pressure field for configuration IV.

much cheaper to solve the inhomogeneous problem than the original eigenvalue problem.
To illustrate that a high number of segments poses no problem for mode-matching with the scattering

matrix formalism we included Figure 5, which depicts the pressure field for a configuration with N =
20 segments. From our experience, an iterative procedure often does not converge for more than 10
segments. The artifacts near r = 0 are due to the fact that the field there is almost zero, very close to the
level curve at zero.

Figure 6 shows the acoustic pressure field for both the classical (CMM) and the bilinear form (BLM)
based mode-matching approaches for configuration I. Figures 7, 8 and 9 compare the pressure, axial and
radial velocity for both mode-matching methods at several radial locations. As can be seen, the results
of the two approaches are in very good agreement for all configuration I-III.
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(a) Classical mode-matching.
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(b) Bilinear map-based mode-matching.

Figure 6. Real part of pressure field for configuration I.

The validity of the numerical results can be assessed by checking whether they satisfy the balance
of energy. For that purpose we use the exact Myers’ Energy Corollary (see Appendix A). Figure 10
shows the sum of the acoustic fluxes through the wall, the inlet and the outlet plane, and the volume
integral over the source term. We use a relative numerical accuracy of 10−6 for the boundary value
problem solver, and use Simpson’s rule for the numerical quadrature on a grid of 151 by 1001 grid
points. Thus, this sum (which is normalized on the flux through the inlet plane), which ideally should be
zero, is not expected to be bigger than 10−6. Figure 10 shows that the energy balance is satisfied better
as the number of modes µmax increases, which is to be expected. Furthermore, the bilinear-form based
mode-matching method performs even better than the classical one for this configuration I. Incidentally,
the energy integral being so accurately satisfied confirms the assumption of a negligible continuous
spectrum contribution.

In order to verify the regular behavior of the solution at the hard-soft singularities along the wall
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VI. Conclusion 
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Figure 7. Comparison of classical (CMM) and bilinear-map-based (BLM) mode-matching approaches for configuration I. Pressure,
axial and radial velocity at radial locations: r = {0.035, 0.075, 0.15}m.

(where a so-called edge condition [18, 19] has to be satisfied, which is that any volume surrounding the
edge carries finite energy) we check the uniform convergence of the modal series via the convergence
rate of the found amplitudes An .

If we assume that An = O(n p) for n→∞ such that log |An| = p log n+ O(1), then for pn defined
by

pn = log |An|
log n

(76)

pn is expected to approach p with pn = p + O(1/ log(n)).
Anticipating a local behavior of the modal functions that is asymptotically similar to a Fourier series,

a convergence rate p < −1 will be sufficient for uniform convergence. For the configurations consid-
ered, with p ' −2, we see that this is indeed the case, in particular for both mode matching methods in
the same way, see Figure 11.

Moreover, there is another interesting observation possible from these plots. The behavior of pn

from the classical matching method is not as smooth as from the bilinear-map-based matching as n
becomes larger. Apparently, the amplitudes from the classical method are more inaccurate for large n.
This is an interesting confirmation of the fact that the inner-products based on exact relations are not
prone to the oscillation quadrature errors for large n.

VI. Conclusion

Mode matching is a particularly successful method for problems of time harmonic wave propagation
in ducts of circular or rectangular cross section, with a uniform medium. The simple geometry and the
simple medium properties result in just Besselfunctions, or cosine and sine functions, respectively, for
the modal shape functions. For these functions the standard L2 integral inner-products can be expressed
in closed form, and the elements of the mode matching matrices can be determined analytically exactly,
leaving the mode matching problem as a relatively easy linear algebra problem, that can be solved fast
and accurately.

All these advantages disappear for ducts with a (cross-wise) non-uniform medium. Modes, i.e.
solutions of the form∼ f (y, z) eikx , still exist, but their mode shape is not simple anymore, and certainly
integrals of their products are not available in closed form. As a result, the method of mode matching will
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Figure 8. Comparison of classical (CMM) and bilinear-map-based (BLM) mode-matching approaches for configuration II. Pressure,
axial and radial velocity at radial locations: r = {0.035, 0.075, 0.15}m.

require a large amount of numerical quadrature, on top of the numerical exercise necessary to determine
the mode shape functions. Since the modal shape functions will show increasingly oscillatory behaviour
with increasing modal order, the integrals for the highest orders will inherently be prone to numerical
error and difficult, or at least expensive, to determine.

The method, presented in this paper, avoids these problems by constructing an alternative “inner-
product”, such that, when applied to modal shape functions, they are explicitly available in closed form
(for the radially symmetric problem) or simplify to a line integral along the boundary (in the general 2D
problem). Although the proposed “inner-product” is not a real inner-product, which is why we call it
here a bilinear form, the behaviour in the mode matching method is entirely the same as for the inner-
product in the classical approach. By their construction, the present integrals can be considered as the
natural generalisations of the Besselfunction product integrals.

In order to make a start with establishing a firm mathematical basis for the method, we compared
the new method with an implementation of the classical method with hard-wall radial modes (Bessel-
functions) as test functions, known to form a complete basis. The results are in full agreement with each
other, while the anticipated efficiency and accuracy is indeed realised.

Although the elegance is very appealing, a lot of research is to be done, both numerically and func-
tional analytically, as we have explored only a fraction of the mathematical ramifications yet.
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A. Myers’ Energy Corollary

When the equations for conservation of mass and momentum and the general energy conservation
law for fluid motion are expanded to quadratic order, this 2nd order energy term may be reduced to the
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Figure 9. Comparison of classical (CMM) and bilinear-map-based (BLM) mode-matching approaches for configuration III. Pressure,
axial and radial velocity at radial locations: r = {0.035, 0.075, 0.15}m.

following conservation law for perturbation energy density E , energy flux I , and dissipation D

∂E
∂t
+∇ · I = −D (77)

with

E = p2
1

2ρ0c2
0
+ 1

2
ρ0|v1|2 + ρ1v0·v1 + ρ0T0s2

1

2C p
, (78a)

I = (ρ0v1 + ρ1v0)

(
p1

ρ0
+ v0·v1

)
+ ρ0v0T1s1, (78b)

D = −ρ0v0·(ω1 × v1)− ρ1v1·(ω0 × v0)+ s1(ρ0v1 + ρ1v0)·∇T0 − s1ρ0v0·∇T1, (78c)
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Figure 10. Comparison of classical (CMM) and bilinear-map-based (BLM) mode-matching approaches for configuration I. Energy
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as shown by Myers [20]. The vorticity here is denoted by ω = ∇ × v. Note that these equations
only contain zeroth and first order terms. Consequently, this conservation law is exactly valid for small
linear disturbances (p1, v1, etc.) of a mean flow (p0, v0, etc.) which can have non-uniform velocity and
temperature. Taking the time average of (77) for time harmonic perturbations yields

∇ ·SI = −SD . (79)

By taking the volume integral of (79) over a volume V with boundary ∂V and applying the divergence
theorem, we find ∫

∂V

SI ·n dA +
∫

V

SD dV = 0. (80)
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