
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laborator y NLR

NLR TP 96575

Experiences with advanced CFD algorithms on
NEC SX-4

H. van der Ven and J.J.W. van der Vegt

217-02

DOCUMENT CONTROL SHEET

ORIGINATOR'S REF. SECURITY CLASS.

 NLR TP 96575 U Unclassified

ORIGINATOR
National Aerospace Laboratory NLR, Amsterdam, The Netherlands

TITLE
Experiences with advanced CFD algorithms on NEC SX-4

PRESENTED AT
The 2nd International Meeting on Vector and Parallel Processing, Porto, Portugal, September 25-27, 1996.

AUTHORS DATE pp ref
H. van der Ven and J.J.W. van der Vegt

960919 17 5

DESCRIPTORS
Algorithms Numerical integration
Computational fluid dynamics Parallel programming
Computer systems performance Programming environments
Eyler equations of motion Run time (computers)
Finite volume method Software development tools
Galerkin method Supercomputers

ABSTRACT
In this paper topics related to parallel CFD simulations are discussed. The first topic is the shared memory
parallelization of the unstructured adaptive flow solver Hexadap. The second topic discusses the
performance results of this parallelization on a 16 processor NEC SX-4. The third topic combines the first
two and concerns the CFD working environment ISNaS as developed by the National Aerospace
Laboratory NLR.

- 3 -
TP 96575

Summary

In this paper three topics related to parallel CFD simulations are discussed. The first topic is

the shared memory parallelization of the unstructured adaptive flow solver Hexadap. The second

topic discusses the performance results of this parallelization on a 16 processor NEC SX-4. The

third topic combines the first two and concerns the CFD working environment ISNaS as developed

by the National Aerospace Laboratory NLR.

- 4 -
TP 96575

Contents

1 Introduction 5

2 Algorithm 6

3 Parallelization strategy 7

4 Parallelization results and discussion 10

4.1 NEC SX-4 architecture 10

4.2 Metrics 10

4.3 Results 10

4.4 Discussion 14

5 CFD working environment 15

6 Conclusions 16

7 References 17

4 Tables

3 Figures

(17 pages in total)

- 5 -
TP 96575

1 Introduction

The National Aerospace Laboratory NLR has a long-standing tradition in the development and

use of CFD software. The CFD software includes production solvers using proven technologies,

research codes for developing and testing new algorithms and the support of both production and

development of CFD software. This paper considers the latter two subjects.

NLR is developing a flow solver based on a discontinuous Galerkin discretization of the Euler

or Navier-Stokes equations. The solver uses structured hexahedrons as initial mesh, which is

followed by solution adaptive unstructured refinement on a hexahedron by hexahedron basis.

Main incentive for the development of this solver is time-accurate flow simulation which will

require the utmost of present and future computer hardware. Because of the computational

complexity of large scale applications parallelization of the underlying algorithm is required.

In June 1996 the NEC SX-3 at NLR has been replaced by a 16 processor NEC SX-4. A first

parallelization has been performed on the NEC SX-4/16. This parallelization assesses the SX-4

capabilities and the parallelism of the flux integration scheme, which is the most computational

intensive part of the algorithm. The parallelization is based on the shared memory paradigm.

To support the development and use of CFD software NLR has developed a working environment

for CFD applications. This working environment appears to the user as a single, virtual computer,

even though programs and data are located on different computers in a network. In addition

to network transparency, the working environment provides facilities for the management of

software, data, and documents.

The contents of this paper is as follows. In Chapter 2 the underlying algorithm of the adaptive,

unstructured flow solver will be briefly described. In Chapter 3 the chosen parallelization strategy

will be described. In Chapter 4 the results of the parallelization will be described and discussed.

In Chapter 5 the working environment will be described. In Chapter 6 conclusions will be drawn.

- 6 -
TP 96575

2 Algorithm

Computational Fluid Dynamics is used for increasingly complicated problems. Many advanced

applications of CFD can only be done with sophisticated grid adaptation algorithms and require

significant computer resources. Capturing of shocks, vortical structures, and time-dependent

changes in the flow pattern is still one of the key elements preventing efficient time-accurate sim-

ulation of problems in aerospace. Applications requiring time-accurate simulation are structural

dynamics, aircraft maneuver, aircraft under large angle of attack, propeller-wing interaction and

noise prediction. These applications can only be simulated efficiently with sophisticated grid

adaptation techniques and require a numerical scheme which is accurate on highly irregular grids.

This was the main motivation to develop a new, discontinuous Galerkin finite element algorithm

for the Euler/Navier-Stokes equations. The discontinuousGalerkin method (DG) uses a local poly-

nomial expansion in each cell which results in a discontinuity at each cell face. This discontinuity

can be represented as a Riemann problem which provides a natural way to introduce upwinding

into a finite element method. The DG method can therefore be considered as a mixture of an

upwind finite volume method and a finite element method. A unique feature of the DG method is

that seperate equations for the flow gradients are used, which do not have to be determined from

neighbouring cells.

A combination of local grid refinement and the discontinuous Galerkin finite element method is

applied in the flow solver Hexadap (Ref. 3). This combination is capable of efficiently resolving

local phenomena such as shear layers and shocks. This paper will be limited to inviscid flow in

order to demonstrate the parallelism in the basic algorithm.

The DG method, combined with a face based data structure, is extremely local in nature and makes

it a good candidate for parallel computing.

- 7 -
TP 96575

3 Parallelization strategy

The above described algorithm consists of two parts, namely grid adaptation and flow computation.

The grid adaptation part, which consists predominantly of scalar operations, requires a domain

decomposition for parallelization and is not considered in this paper. The flow computation has

two main components: the calculation of cell face fluxes and a slope limiter.

The flow computation part of the solver consists of three kinds of loops:

face-face loops over faces, updating face values,

cell-cell loops over cells, updating cell values,

face-cell loops over faces, updating cell values.

An example of a face-face loop is the evaluation of the fluxes through cell faces. Examples of

cell-cell loops are the loops in the Runge-Kutta scheme where the residuals are added to the flow

states. An example of a face-cell loop is the update of the residual of a cell by the flux through

one of its faces.

The loops over the faces, both face-face and face-cell, are split over different colours. This is

done to be able to vectorize the face-cell loop. Within one colour all faces connect to cells with

different cell addresses, hence within one colour there is no data dependency when updating cell

values.

The parallelization of the face-cell loops is the most challenging. In general, the loop length of

the face-face and face-cell loops is not sufficient for both vectorization and parallelization. The

face-face loops can be parallelized over the colours, but this is prohibited for face-cell loops since

data dependencies may occur.

The face-cell loops in the routine that calculates the residuals can, however, be parallelized by

considering the number of variables for which a residual update is needed. For all independent

variables, density, momentum components, and total energy, the residual has to be updated, and

these updates are independent. For the second order space discretization also the three moment

residuals need to be updated. Together with the time step update we thus have 5+ 3� 5+ 1 = 21

independent updates. Since these updates have to be performed for both cells bounding the face,

we have 42 independent updates within one colour. For a 16 processor machine this is sufficient

parallelism. In Fig. 1 the structure of the flux integration is presented in pseudo-code.

In order to achieve load balance in the parallel loops over the colours, the number of colours is

- 8 -
TP 96575

face-face

pardo for all colours

do for all faces of a colour

calculate flux through face

enddo

enddo

face-cell

do for all colours

pardo for all 42 variables

do for all faces of a colour

add fluxes to residuals of cell based variables

enddo

enddo

enddo

Fig. 1 Pseudo-code representation of the flux integration. Parallelized do-loops are written as

pardo. Also shown are the kinds of the loops.

adjusted to be a multiple of the number of processors, and the vector lengths of all colours are

nearly equal.

The above treats the parallelization of the flux integration, the parallelization of the slope limiter is

described below. The computation of the slope limiter consists of a number of min-max operations

for each cell. The limiter is computed for each cell and for just the five independent variables, and

hence the parallelization strategy for the residual updates cannot be followed. For the limiter the

loops over the faces within one colour and the five independent variables are collapsed and both

vectorized and parallelized. In Fig. 2 the structure of the slope limiter computation is presented in

pseudo-code.

The remaining loops in the integration part of the solver are cell-cell loops, which are easily both

parallelized and vectorized, sometimes collapsing them with the loop over the five independent

variables. Eventually, the routines accounting for 99.5% of the integration time are parallelized.

The above parallelization strategy is different from the one proposed in Van der Vegt et al.(Ref. 3).

The reason for the change is twofold. On the one hand, it was based on the assumption that a

critical section was needed for the face-wise update of the cell-based residuals, which restricted

the optimal speedup to 5. Using the strategy described above no critical section is needed. On the

other hand, the flow solver has been improved and is now better suited for the above parallelization

- 9 -
TP 96575

face-cell

do for all colours

pardo for all faces and five independent variables

compute mean, minimum, maximum

of flow states over neighbouring cells

enddo

enddo

face-face

pardo for all colours

do for all faces

calculate limiter through cell face

enddo

enddo

face-cell

do for all colours

pardo for all faces and five independent variables

calculate minimum of slope limiter over all faces of a cell

enddo

enddo

cell-cell

pardo for all cells

correct flow status using slope limiter

enddo

Fig. 2 Representation of slope limiter in pseudo-code. Parallelized do-loops are written as

pardo. Also shown are the kinds of the loops.

strategy.

Because of memory restrictions on the NEC SX-3 the previous version of the flow solver made

extensive use of the extended memory unit (XMU). The XMU is not part of the shared memory,

and has to be addressed by explicit I/O. Due to hardware restrictions, this I/O is not parallelizable

and the subsequent large serial sections in the code prohibit parallel efficiency. In the present

version of the flow solver use of XMU is an option to the user, and for problems that fit in main

memory no serial sections in the code occur.

- 10 -
TP 96575

4 Parallelization results and discussion

4.1 NEC SX-4 architecture

The code has been ported to the NLR NEC SX-4, using the above parallelization strategy and

compiler directives. The processors in the SX-4 combine a powerful, balanced 2 Gflop/s vector unit

with a state-of-the-art superscalar unit. Special synchronization, interprocessor communications

and control hardware is implemented to maximize parallel processing efficiency.

The NEC SX-4 installed at NLR has 16 processors, 4 GB main memory and an extended memory

unit of 8 GB. Each processor has eight vector pipes of length 256. The main memory consists of 16

modules, each having a bandwidth of 16 GB/s to the processors. Hence the bandwidth scales with

the number of processors (with a peak of 256 GB/s), and a better parallel efficieny is expected than

on the NEC SX-3. In the acceptance benchmark investigation (reported by Potma et al.,Ref. 1) the

single processor NEC SX-4 reached a flop rate of 0.618 Gflop/s on the complete program Hexadap,

which is an increase of 1.7 with respect to the performance of the NEC SX-3. On the SX-4 a

speedup of 9.5 was obtained on 16 processors. These benchmark results were obtained using a

previous version of the flow solver Hexadap, the present version has been developed further and

is in principle more suited for parallel processing. Moreover, the reported speedups concern only

the parallelized routines, where the results in this paper are for the complete flow solver.

4.2 Metrics

The prime metric for parallel processing is elapsed time. Therefore, in the discussion of the results

the emphasis will lay on elapsed timings. Other relevant metrics are speedup and scalability.

Speedup is defined as the single processor execution time divided by the multi processor execution

time. Here the single processor execution time is measured by running the parallel algorithm on

one processor. To be able to measure the performance of parallel algorithms on large problems

which do not fit in single processor memory generalized speedup (Ref. 2) has been introduced.

This is defined as the quotient of sequential speed over parallel speed, where the two speeds may

be obtained on different problem sizes.

Of interest to the industry is also the parallelization effort. To measure the effort the required man

power is measured and the number of changed lines is counted.

4.3 Results

The parallelization effort has taken 3 manweeks extra in the CFD development effort. A total of

4500 lines has been changed (of the total of 50,000 lines) and 70 compiler directives have been

- 11 -
TP 96575

Table 1 Mesh characteristics for the four test cases. The work, measured in floating point

operations, is defined as the number of floating point operations in the integration part

of the solver. Memory is for single processor execution.

case # cells # faces work [Gflop] memory [GB]

M6/1 131,072 386,176 492.676 0.398

M6/2 262,190 778,257 1,000.951 0.904

M6/3 517,021 1,554,600 2,000.709 2.029

M6/4 865,623 2,613,670 3,355.267 2.586

added.

The tests used to assess the parallel performance are constructed from an initial structured mesh

around the ONERA M6 wing. Subsequently the mesh has been adapted three times to obtain a

series of meshes where each mesh is roughly twice the size of the previous mesh. See Table 1 for

a characterization of the meshes. In this table, the work is defined as the number of floating point

operations required in the integration part of the solver to advance the flow 100 time steps. The

size of the last test case, M6/4, is restricted by memory requirements.

In Table 2 the elapsed timings of the flow integration part of the solver are presented for the four

case and different number of processors. executed on a few processors since the timings are not

relevant for the discussion. The NEC SX-4 at NLR is part of a multi-user environment and it is not

possible to use the NEC SX-4 as a dedicated machine. Even though one can use all 16 processors,

other users may use the computer interactively and system processes may run in the background.

The performance of the flow solver does not increase on 16 processors, because other processors

have to wait for results of the one processor which is (also) used for other processes. Therefore

timings are only presented for up to 14 processors.

The (traditional) speedups for caseM6/1 and M6/2 are tabulated in Table 3. Using Amdahl’s Law

Table 2 Elapsed timings for the flow integration part of the flow solver.

case 1 2 4 8 12 14

M6/1 663 341 177 93 67 58

M6/2 1441 726 377 200 146 125

M6/3 - - 720 375 268 230

M6/4 - - - 652 462 397

- 12 -
TP 96575

Table 3 Speedups based on the elapsed timings for the flow integration part of the flow solver.

case 1 2 4 8 12 14

M6/1 1.0 1.94 3.75 7.13 9.89 11.43

M6/2 1.0 1.98 3.82 7.20 9.87 11.53

and given a parallelization ratio of 99.5% one would predict a speedup of 13.1 on 14 processors.

Hence, the experimental speedups are close to the theoretical speedup. Differences most likely

are caused by parallel overhead and small not parallelized sections in the parallelized routines.

On 14 processors the performance of the flow solver reaches 8.5, 8.0, 8.7 resp. 8.5 Gflop/s for the

respective four cases. Surprising in the timing results is that a n-fold increase in the work, results

in a roughly an n-fold increase in the elapsed time, even when running on several processors. This

implies that for the given algorithm and given architecture traditional and generalized speedup

coincide.

In Fig. 3 the reached speeds for the different cases and number of processors are shown. Here,

speed is defined as the quotient of work (see Table 1) over elapsed time (see Table 2). It can be

clearly seen that attained speed is nearly independent of the problem size.

The elapsed timings also show that the machine-algorithm combination scales well. An increase

in the work and a likewise increase in the number of processors result in comparable elapsed

timings.

A parameter in the algorithm determines the number of faces per colour, and hence the vector

length in the flux integration and slope limiter routines. This parameter also determines the size of

the scratch arrays in these routines, and therefore the size of scratch memory. In all the above tests

the parameter is equal to 12,800. To assess the dependence of the performance on this parameter,

test case M6/2 on 8 processors is repeated with two different values of the parameter. Results

are tabulated in Table 4. For small values of the parameter the performance degrades, because of

decreased vector length. For memory critical runs the parameter may be reduced to limit memory

requirements.

As mentioned in Chapter 3 it is possible to store and retrieve some scratch arrays on the extended

memory unit (XMU). Since these stores and retrieves are essentially sequential, the use of XMU

will degrade parallel performance. Test case M6/2 is run on 8 processors using XMU. As can

be seen in Table 4 execution time is almost doubled. The parameter determining the number of

- 13 -
TP 96575

faces per colour is equal to 12,800. Memory use is reduced using XMU, but the memory use is

the same as the run with the parameter equal to 4096 not using XMU.

Table 4 Timings and memory use for different values of the parameter determining the number

of faces per colour; and comparison with a run using the extended memory unit (with

parameter equal to 12800). All runs for case M6/2 on 8 processors.

parameter value 4096 12800 25600 using XMU

elapsed time 210 200 200 343

memory use 818 1058 1236 809

Fig. 3 Attained speeds (in Gflops/s) for the different cases and different number of processors.

— M6/1, � � � M6/2, - - - M6/3, – � – M6/4

- 14 -
TP 96575

4.4 Discussion

The present parallelization efforts have taken a limited time of three manweeks and produced a

parallel code which has excellent parallel performance and good scalability. On the 16 processor

NEC SX-4 a speedup of 11.5 and a speed of 8.5 Gflop/s is obtained by using 14 processors.

The attained speed is independent of the problem size.

The code has been restructured slightly, and the parallel version is part of version pipeline ensuring

that future extensions of the functionality will use the parallel structure, which is achieved using

the software repository in the CFD working environment.

- 15 -
TP 96575

5 CFD working environment

The parallelization and development of the above algorithm is supported by (tools in) the working

environment ISNaS (Ref. 5) for CFD applications. Within the NICE project this working environ-

ment serves as a prototype for the Dutch HPCN Center for Flow Simulation, HFS. HFS supports

cooperative work across the network consisting of the combined networks of the partners with the

NLR NEC SX-4 in its center.

CFD development and use takes place on such diverse systems as mainframes, parallel and/or

vector computers and graphical work stations. ISNaS is designed to make the network transparent

to the user. Together with the management of data and documentation, processing of CFD codes

in a production environment is greatly facilitated by ISNaS.

ISNaS also supports the developers of CFD software during the development phase. In large

projects where several disciplines cooperate, software configuration management and information

exchange support the software engineers. The use of the working environment enforces quality

control. The Informatics division of NLR is certified for ISO-9001.

To support the development of parallel codes the parallelization tools of the NEC SX-4 are

integrated in ISNaS. Two main support tools for parallelization are the parallelizer and analyzer

tool. The integrated tools allow users easy access to this tools without the need to read all details in

the manuals. Options of the tools which are considered to be generic to all problems are presented

to the user as clear text. For the analyzer tool, for example, the user can choose between static

analysis, execution time analysis of the entire program and do-loop analysis of specified loops. In

this way, the tools are made accessible in a user-friendly way and it is expected that the parallel use

of the NEC SX-4 will increase. Moreover, job control and assignment of processors are handled

by the working environment.

ISNaS is a so-called instantiation of SPINE, the general tool developed at NLR to create application

area specific working environments. ISNaS or related products can be installed on any UNIX

network.

- 16 -
TP 96575

6 Conclusions

In this paper the use of the NEC SX-4 for advanced CFD processing is described.

First, a hexahedron based, flow solver with unstructured grid adaptation is parallelized on the 16

processor NEC SX-4 using the shared memory paradigm. Roughly 10% of the code is restructured

to achieve an efficient algorithm which reaches 8.5 Gflop/s on 14 processors. The obtained speed

is independent of the problem size. This proves the capabilities of the NEX SX-4 as a high

performance computing platform. The present parallelization only concerns the flow solver part

of the algorithm, for the parallelization of the adaptation part a grid partitioning is required. This

constitutes future work.

Second, the efficient use of the NEC SX-4 is supported by the working environment ISNaS for

CFD applications. Support tools for the analysis and shared memory parallelization of algorithms

have been integrated in the working environment. This integration supplies easy access to the

tools for first-time users. In the production phase, ISNaS supports users of the CFD software in

job control, version consistency and assignment of processors.

Summarizing, the NEC SX-4 allows for good parallel efficiency using the easy-to-use shared

memory paradigm. Application to production codes will reduce computing time and costs.

Acknowledgment The authors want to thank both G.A. van der Velde (NEC), for his idea of

independent residual updates, and K. Potma and M.C.Z. Schoemaker (NLR) for their support in

the use of the NEC SX-4.

- 17 -
TP 96575

7 References

1. K. Potma, G.J. Hameetman, W. Loeve and G. Poppinga, Early benchmark results on the NEC

SX-4, NLR Technical Publication TP96464L, 1996, presented at Parallel CFD’96, Capri.

2. Xian-He Sun and J. Gustafson, Toward a better parallel performance metric, Parallel Comput-

ing 17 (1991) 1093-1109.

3. J.J.W. van der Vegt, Anisotropic grid refinement using an unstructured discontinuous Galerkin

method for the three dimensional Euler equations of gas dynamics, AIAA Paper 95-1657, 1995.

4. J.J.W. van der Vegt and H. van der Ven, Hexahedron based grid adaptation for future Large Eddy

Simulation, AGARD symposium ‘Progress and challenges in CFD methods and algorithms’,

Seville, October 1995.

5. M.E.S. Vogels and W. Loeve, Development of ISNaS: an information system for flow simulation

in design, NLR TP89025, 1989. Also see http://www.nlr.nl/public/fac/fac-isna/isnas.html

