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Summary

The numerical simulation of complicated dynamical systems is often realized by the coupling of

existing subsystem models. In this partitioned treatment the interaction between the subsystems

is effectuated through an algorithm for transmission and synchronization of coupled system vari-

ables. This coupling algorithm should be chosen carefully, as it affects the numerical stability and

accuracy of the simulation results.

This report demonstrates how simplified models can be used to analyse the time stepping stability

and accuracy of two common coupling algorithms: the staggered scheme, and the Jacobi scheme.

This so-called a priori analysis is particularly useful when direct analysis of the coupled simulation

models is prohibited by the complexity of (one of) these models, or in cases where only executable

code is available. One of the primary ingredients of a priori analysis is the search for mathematical

models that are simple, on the one hand, while still representing the basic physics, on the other

hand.

A priori analysis has been applied to a partitioned simulation model named HEATPI. This simula-

tion model is composed of a computational fluid dynamics tool that computes the time-dependent

temperature at the location of a sensor in an aircraft cabin, and a simple temperature controller

modelled in MATLAB Simulink. On basis of the sensor temperature the controller model com-

putes the temperature at the air inlet of the aircraft cabin. By considering the conservation of heat

a simple analytical model has been derived to determine the average cabin temperature as a func-

tion of time, for a given time dependent inlet temperature. This analytical model is called Thermal

Cabin Model (TCM). The staggered scheme and the Jacobi scheme have been analysed for the

coupling of the TCM and the controller model. This analysis is shown to be suitable to predict the

time step sizes that are required for accuracy and stability of HEATPI.

In particular it is found that the two coupling algorithms have similar accuracies when the time

steps are chosen sufficiently small. The Jacobi scheme yields the possibility to run both software

models on different processors in a parallel fashion. This property can be exploited to increase the

computational efficiency in cases where the models have similar computation times.
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List of abbreviations

ACS Air-conditioning system

CFD Computational fluid dynamics

ETCM Discrete thermal cabin model defined by Eq. (23)

HEAT CFD program as used in this work to compute the time-dependent temperature field

in the passenger cabin of a small commuter aircraft

HEATPI Coupled simulation tool consisting of HEAT and the temperature controller which

is modelled in MATLAB Simulink

JOR Iterative scheme using the Jacobi method and relaxation (cf. Ref. 6)

SOR Iterative scheme using the Gauss-Seidel method and relaxation (cf. Ref. 6)

TCM Thermal cabin model defined by Eq. (12)
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List of symbols

Symbol Description Unit

AS , AJ Iteration matrices for staggered scheme and Jacobi scheme

ASE , AJE Iteration matrices defined by Eqs. (24) and (25)

b Constant vector

B Iteration matrix

c Constant vector

c1, c2 Coefficients defined by Eq. (27) ◦C

D Subset of integers; D = {0, 1, 2, ..., T/∆t}
f, g, h Functions

I Integration part of controller model, as defined by Eq. (16) ◦C

Ki Integral action coefficient in controller model defined by Eqs. (15) and (16) s−1

Kp Proportional action coefficient in controller model Eq. (15)

ma Mass of air contained in the aircraft cabin kg

p Integer denoting the order of convergence

r Global discretization error of cabin temperature as defined by Eq. (35) ◦C

t Time s

δt Time step size in subsystem model s

∆t Time step size used in coupling scheme s

T Upper limit of simulation time interval; T/∆t is a positive integer s

Tc Cabin temperature at sensor location, or average cabin temperature ◦C

Tin Temperature at air-conditioning inlet ◦C

Tout Temperature at air-conditioning outlet ◦C

T0 Inlet temperature at t = 0 ◦C

Te Inlet temperature at t = ∞ ◦C

Tr Reference temperature in the controller model (15) ◦C

u Generic input variable

x Generic state variable

y Generic output variable

z Vector of certain system variables

ε ε = ∆t/τ

φm Mass flow rate of the air entering the aircraft cabin through the inlet opening kg/s

λ+, λ− Parameters defined by Eq. (27) s−1

ρ Spectral radius of iteration matrix

τ Characteristic time of thermal cabin model; τ = ma/φm s
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Subscript/superscript Description

co Controller

cr Upper limit of stability domain

f Flow solver

i Index designating a particular subsystem

m, n Non-negative integers denoting discrete time stations

P Predicted value

0 Initial value

The exact solution of non-discrete equations is designated by ȳ if y

denotes the solution of the discretized equations.
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1 Introduction

Analysis of dynamical systems and multiphysics problems will often require the use of computer

simulation models and numerical integration techniques. In many applications, computational

feasibility and affordability is reached by breaking down the model of the entire physical system

into models for several subsystems. In this partitioned approach the behaviour of the entire phys-

ical system is solved by advancing the solution for the separate subsystems in time. Interaction

between the subsystems is effectuated through a numerical algorithm for transmission and syn-

chronisation of coupled system variables. In the present report this algorithm will be referred to

as the coupling algorithm.

The use of partitioned system models may have several advantages. For instance, individual soft-

ware models can be easily exchanged and maintained. However, due to certain limitations, parti-

tioning is not always preferable. For example, it is often found computationally inefficient to use

partitioning for systems that involve interaction effects throughout a volume as is the case for elec-

tromagnetic fields. An overview of the use of partitioned analysis of coupled dynamical systems

has recently been given in a tutorial article by Felippa et al. (Ref. 2).

It is well known that the partitioned approach requires a careful formulation of the coupling algo-

rithm to avoid serious degradation in time stepping stability and accuracy (Refs. 2, 3, 4, 10). In

many applications these aspects cannot be assessed analytically, e.g. when the subsystem mod-

els are very complex, or in situations where only executable code is available. In such cases it

is worthwhile to search for analytical models that are simple, on the one hand, while still repre-

senting the basic physics, on the other hand. On basis of these analytical models the stability and

accuracy of various coupling algorithms can then be analysed. Thus, basic physical insight can

be used a priori to determine suitable coupling algorithms. This idea, that will be called a priori

analysis, has proven very successful in the computer simulation of viscous-inviscid interaction

(Ref. 9) and fluid-structure interaction (Refs. 3, 4).

A priori analysis can be applied in various other partitioned system applications, as will be demon-

strated in this report for the case of an aircraft cabin that is coupled to a temperature controller.

The aircraft cabin is modelled by a computational fluid dynamics (CFD) program, while the tem-

perature controller is modelled in MATLAB Simulink. The time steps used in these simulation

models are chosen to be very small with respect to the coupling time steps. The coupled simulation

model, named HEATPI, can be used in the design and validation of the air-conditioning system

(ACS) on board of aircraft. During the design process the time-dependent response of the cabin

temperature is studied for different controller parameters. In practice, the controller parameters are
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chosen so that the cabin temperature approaches a desired value while satisfying certain comfort

requirements concerning, e.g. the rate of temperature change. This problem has been treated in

a partitioned fashion in order to efficiently combine the expertise in CFD and control problems.

In this way simulations with HEATPI can be performed for various controller parameters without

having to be experienced with the use of the CFD program.

In this report two common coupling algorithms will be applied to HEATPI: the staggered scheme

and the Jacobi scheme. These algorithms are well known, e.g., in the realm of fluid-structure in-

teraction (Refs. 2, 12). The numerical stability and accuracy of these coupling algorithms will be

assessed, as applied to HEATPI. This assessment focuses in particular on the maximum size of

the coupling time step for which the system is solved in a stable and sufficiently accurate way. It

is interesting to note that the coupling time step is not only a parameter of the numerical simula-

tion model, but also a design parameter for modern ACS systems. These systems are frequently

equipped with digital temperature controllers using signals from temperature sensors that are sam-

pled at a finite rate. The transfer of sampled data between different subsystems is similar to a

particular coupling scheme as considered in this report. Therefore, the results in this report con-

cerning the accuracy and stability limitations to the coupling time step may also be relevant to the

design of ACS systems.

Concerning the time step sizes that can be used in HEATPI it has been observed that the restrictions

as imposed by accuracy are found to be far greater than the stability limitations. Other systems

exist for which the coupling schemes used in this report would only be absolutely stable for time

steps that are unacceptably small for computational efficiency reasons. This applies especially

for systems that are governed by stiff differential equations. In these cases it may be tried to

solve the problem by combining the models into one model for the whole dynamical system. This

method may call for intensive implementation effort. Moreover it is limited to situations where the

subsystem models are explicitly known and where reusability of subsystem models is not essential.

In cases where a partitioned procedure is preferred to solve the system dynamics it is worthwhile

to consider one of the following methods

• Application of higher order accurate coupling schemes in order to extend the stability do-

main. Higher order schemes may be attained by finding appropriate predictor methods (cf.

Ref. 2).

• Interfield iteration at each time station (cf. Section 2.3).

• Relaxation methods can be used to increase the stability domain. Examples are SOR and

JOR (cf. Ref. 6).

• Semi-inverse method (cf. Ref. 1).
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• Quasi-simultaneous treatment (cf. Ref. 8).

Each of these methods has its particular pros and cons which should be weighed against each other

for the specific application to the dynamical system under consideration. For instance, higher order

coupling schemes will generally require additional information on the subsystem models, e.g. the

time derivatives of coupled system variables. Such information may be derived from simple,

analytical models provided that these models are sufficiently accurate. Interfield iteration can be

used to remove stability constraints. However, in many cases it is found that the computational

cost can be reduced considerably by using predictor methods with smaller time steps.

The semi-inverse method is used for the coupling of two models that use the same input vari-

able and the same output variable. This is different from HEATPI, where the input variable of

the flow solver is an output variable of the controller model, and the other way round. Never-

theless, the semi-inverse method can be used in HEATPI, because the controller model can be

inverted easily. The quasi-simultaneous treatment has proven to be successful in solving certain

viscous-inviscid interaction problems. In this method two subsystem models are coupled through

a coupling algorithm that is based on a simple model for one of the subsystems. The simple model

should meet certain requirements that are given in Ref. 8. As in the semi-inverse method, the

quasi-simultaneous treatment requires that one of the models is given in the ‘inverse’ form. In

cases where simplified models can be derived for both subsystems, the above mentioned coupling

schemes can be compared quantitatively on basis of a priori analysis.

This report is organised as follows. In Section 2 the problem of partitioned simulation of dynam-

ical systems is explained by considering two generic dynamical models that have mutual interac-

tions. A few common algorithms are presented to couple these models. Section 2 ends with a brief

discussion on stability of the coupling algorithms. Simulation models used in HEATPI are shortly

described in Section 3. In addition, simplified models are presented to analyse the time stepping

stability of HEATPI for the two coupling algorithms mentioned above. As expounded in Section 4

this analysis leads to predictions of the time step sizes that are required for accuracy and stability.

These predictions are verified in Section 5 by analysing the results computed by HEATPI.
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2 The basic problem of model coupling

2.1 Coupling of subsystems

Consider a dynamical system that can be decomposed into two subsystems, F1 and F2. These

subsystems are described by the mathematical models M̄1 and M̄2, respectively, where each model

is defined by an operator that maps a given time-dependent input signal ūi(t) to an output signal,

ȳi(t) for i = 1, 2. Thus, the mathematical models can be denoted by

M̄i : ūi(t) → ȳi(t), for i = 1, 2. (1)

The models are coupled through the identities

ū1(t) = ȳ2(t),

ū2(t) = ȳ1(t).
(2)

The input and output signals are assumed to be scalar functions, for convenience. Vector signals

can be treated analogously.

Following the identities (2) there is a two-way interaction between the models, as depicted in

Figure 1. Two basic questions arise:

• Does the system described by Eqs. (1) and (2) have unique solutions for the input and output

signals, given the initial conditions ū1(0), ū2(0).

• If there exist unique solutions, how can these be determined.

One can try to answer the above questions on the basis of specific information concerning both

models, for instance the analytical prescriptions of the operators M̄1 and M̄2.

Fig. 1 Two-way interaction between M̄1 and M̄2.
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If these descriptions are available it is recognized that the input and output signals satisfy implicit

equations due to the mutual interactions between the models. In practice the operators’ prescrip-

tions are often too complicated to solve the implicit equations analytically, for instance if the

operators are differential operators.

2.2 Simulation models

The present paper focuses on the computer simulation of two coupled subsystems as shown in

Figure 1. It is assumed that software models M1 and M2 are available that represent numerical

approximations of the mathematical models given by (1).

The numerical model Mi has a discrete input signal denoted by un
i , for i = 1, 2. Here n =

0, 1, 2, ... is the discrete index of time tn = n∆t, with constant time step ∆t. Using this input

signal the numerical model Mi computes its discrete output signal yn
i which is a numerical ap-

proximation of the output signal ȳi(tn). The numerical models considered in this article use the

following stationary one-step scheme:

xn+1
i = fi(xn

i , u
n+1
i ),

yn+1
i = gi(xn+1

i , un+1
i ).

(3)

Here xn
i is the discrete state variable of the modelMi at time tn. Moreover, fi and gi are functions

of which the function prescriptions are not necessarily known. The expression in (3) is chosen be-

cause it covers a wide class of models. For instance, the modelMi can be a computer programme

to compute the temperature field xn+1
i , at time tn+1, in a certain three-dimensional geometry. This

computation will usually be initialized by prescribing the temperature field xn
i , at time tn. The in-

put un+1
i of the model may be the temperature prescribed at a part of the boundary of the geometry,

while the output yn+1
i can be the temperature evaluated at a specific location. In this example the

function gi in (3) is just a simple operation to extract the local temperature value from a given

temperature field. The function fi represents the part of the computer code that advances the tem-

perature field from tn to tn+1. In practice, it will be found impossible to determine the function

prescription of fi, even when the source code of the computer program would be available.

2.3 Coupling of simulation models

There are various ways to couple numerical models of the form (3). In the present article two

methods will be used. In order to explain these methods the state variables xn
i can be neglected,

so that the numerical models can be written as

Mi : yn+1
i = hi(un+1

i ), for i = 1, 2. (4)

Here the function prescriptions for h1 and h2 may be unknown.
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The models can be coupled by choosing the following discrete counterpart of Eq. (2):

un+1
1 = yn+1

2 ,

un+1
2 = yn+1

1 .
(5)

Using these identities the input variables un+1
i in Eq. (4) can be eliminated, which yields

yn+1
1 = h1(yn+1

2 ),

yn+1
2 = h2(yn+1

1 ).
(6)

It is assumed that Eqs. (5) and (6) have unique solutions for un+1
1 , un+1

2 , yn+1
1 and yn+1

2 , when

sufficient initial conditions are prescribed, e.g. u0
1, u0

2. Solving the equations can be problematic,

for two reasons. Firstly because the equations are implicit, and secondly because the function

prescriptions of h1 and h2 can be too complicated or even unknown. This problem may be tackled

by solving the equations in an iterative way, for instance by writing

yn+1,k+1
1 = h1(y

n+1,k
2 ),

yn+1,k+1
2 = h2(y

n+1,k
1 ).

(7)

In the above equations the integer k = 0, 1, 2, ... is increased until the variables yn+1,k+1
1 and

yn+1,k+1
2 have converged within a certain tolerance, that is, if the process converges. Because

the iterations in (7) should be performed for all time stations tn this method is often found to be

inefficient in most applications of (6). Alternatively, the index n can be used as an iteration index

so that the processes of time-stepping and iteration are intertwined:

yn+1
1 = h1(y

n+1,P
2 ),

yn+1
2 = h2(yn+1

1 ),
(8)

where yn+1,P
2 is a predictor for yn+1

2 . A few common choices for the predictor are yn+1,P
2 = yn

2

and yn+1,P
2 = yn

2 + ∆t ẏn
2 . The latter choice requires the derivative ẏn

2 and there are several ways

of finding an estimate value for it based on finite differences, cf. Ref. 6.

In this report two simple predictor methods will be considered. The first one uses the predictor

yn+1,P
2 = yn

2 . This method will be referred to as the staggered scheme. The second one, referred

to as the Jacobi scheme, uses predictors for both variables, namely yn+1,P
1 = yn

1 and yn+1,P
2 = yn

2 .

The Jacobi scheme is given by

yn+1
1 = h1(yn

2 ),

yn+1
2 = h2(yn

1 ),
(9)
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By considering the staggered method (8), for fixed n, it is noticed that yn+1
1 is first computed by

M1 and this result is then substituted as an input value for M2. Next, M2 calculates the output

value yn+1
2 . Thus, the modelsM1 andM2 are operated in a certain order. It is interesting to notice

that computations have no specific order when using the Jacobi scheme (9). This property of the

Jacobi scheme can be useful if two coupled solvers are required to compute in a parallel fashion

for efficiency reasons.

2.4 Stability notions

Accuracy and well-posedness are important criteria for choosing a certain coupling method. In

many applications the numerical results will be sufficiently accurate for sufficiently small time

steps. Well-posedness, i.e. stability, may also impose a restriction to the size of the time step.

When the maximum time step for stability is smaller than the time step that is required on basis of

accuracy, the numerical method is found to be less efficient.

It is often difficult to analyse stability and accuracy for coupled systems of complicated simulation

models. Therefore it is worthwhile to perform the analysis on basis of simplified models that

represent the basic physics. These simplified models may be ordinary differential equations, which

are then discretized and linearized. Application of the same coupling method as used to couple

the original complicated simulation models yields a set of linear equations for the coupled system

of simplified models. For stationary one-step schemes these linear equations can be compactly

written as

zn+1 = Azn + b. (10)

In this equation zn, for n = 0, 1, 2, ..., is the vector of variables that are stepped in time. For

instance, zn = (yn
1 , y

n
2 )T for the Jacobi scheme given by (9). The matrix A is called the iteration

matrix. It will be assumed that A is non-deficient. In physics and (numerical) mathematics the

concept of stability strongly depends on the specific context. Generally speaking, the notion of

numerical stability indicates the well-posedness of the time integration scheme with respect to the

disturbances, as monitored by the chosen variable. The time integration scheme considered in this

report is the coupling algorithm that is used to couple models of the form (3). The disturbances are

variations in initial conditions, and the chosen variable is the numerical solution of the coupling

algorithm in a conveniently chosen norm. In this report two stability concepts will be used, as

defined below.

Zero-stability is considered when the numerical solution of the time integration scheme should

approach the exact solution of the mathematical model(s) on a finite interval in time [0, T ] by

choosing ∆t = T/n and taking the limit n→ ∞.
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The process given by (10) is zero-stable if the spectral radius ρ of the iteration matrix satisfies

ρ ≤ 1 +O(∆t).

Following the theorem of Lax zero stability of a time-integration scheme is equivalent with con-

vergence if the discretization is consistent (cf. Ref. 5).

Absolute stability is relevant to solving the stationary problem by letting tn = n∆t → ∞. In

this case the time step ∆t is fixed while n→ ∞. Iterative methods of the form (10) are absolutely

stable if the spectral radius ρ of the iteration matrix A satisfies ρ < 1.

Zero-stability and absolute stability will generally yield a restriction on the choice of the time step

∆t. From the above stability definitions it follows that absolute stability is a stronger requirement

than zero-stability, so that a coupling algorithm that is absolutely stable for a certain value of the

time step, is also zero-stable.
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3 Simulation models for temperature control of aircraft cabins

The two coupling algorithms introduced in the previous section have been applied to the parti-

tioned simulation model HEATPI. The subsystems that are coupled in HEATPI will be shortly

described in this section. Moreover, simplified models will be presented in order to analyse the

numerical stability and accuracy of HEATPI.

3.1 Simulation system HEATPI

HEATPI is a numerical simulation system to study the temperature control of aircraft cabins. This

system integrates a MATLAB Simulink model of the temperature controller and a CFD program

to compute the fields of velocity and temperature of the air in an aircraft cabin configuration. The

CFD program solves the time-dependent incompressible Navier-Stokes equations, including heat

transfer using the Boussinesq approximation (cf. Ref. 11). For reasons of computational efficiency

it is assumed that the velocities in the direction of the length of the cabin can be neglected, so that

the cabin configuration can be modelled in two dimensions. Simulations using a three-dimensional

cabin model indicate that this assumption is reasonable. Moreover, it is assumed that the air flow

in the cabin is symmetric about the vertical plane that bisects the cabin geometry in the length

direction.

On basis of the above assumptions a two-dimensional model has been developed for the right

half of a small commuter aircraft cabin, as depicted in Figure 2. This model includes an inlet

opening above the stowage bins where the velocity and the temperature of the incoming air is

prescribed, and an outlet opening with a boundary condition for the pressure. Two seats including

seated passengers have been modelled in two dimensions by considering conservation of volume

and conservation of surface in different planes of cross-section. The resulting model is shown in

Figure 2. The cabin geometry and the fluid region are supplied with a computational grid that has

a carefully chosen refinement near the inlet opening (the grid for the fluid region is not shown in

Figure 2). One of the grid cells serves as a sensor that measures the local air temperature (see

Figure 2). This sensor temperature is used as a time-dependent input signal for the temperature

controller model. The controller model will be described in Section 3.3.

3.2 Thermal cabin model

A simple dynamical model for the average temperature in the aircraft cabin can be obtained by

using the conservation of heat energy. This yields

ma
dTc(t)
dt

= φmTin(t) − φmTout(t), (11)
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Fig. 2 Two-dimensional cabin geometry used in HEATPI, including two occupied seats, air-

conditioning inlet and outlet openings, and stowage bins. The cabin temperature is measured

at the indicated sensor location.

wherema and Tc are the mass and the average temperature of the air inside the cabin, respectively.

Moreover φm is the mass flux; Tin and Tout are the temperature of the air at the inlet and outlet,

respectively. The above equation expresses that the rate of change of the heat stored in the cabin

air is given by the difference between the heat flux coming in and the heat flux going out.

In order to be able to compute Tc(t) for given Tin(t) it is assumed that Tout(t) = Tc(t). This

assumption yields a good approximation when the rate of change of the inlet temperature is rel-

atively small, so that temperature differences throughout the cabin volume remain small. Using

this assumption Eq. (11) can be rewritten as

τ
dTc(t)
dt

+ Tc(t) − Tin(t) = 0, (12)

where τ = ma/φm. The simple model given by (12) will be referred to as the TCM (Thermal

Cabin Model).

In order to judge the validity of the TCM as a substitute model for the flow solver, both models

have been used to compute the temperature Tc(t) for a time-dependent inlet temperature given by

Tin(t) =



T0, for t < 0;

Te, for t ≥ 0.
(13)

The initial cabin temperature is set to 18 ◦C, independent of the position in the cabin geome-

try. Moreover, T0 = 18 ◦C, Te = 23 ◦C, ma = 56 kg and φm = 0.79 kg/s. In Figure 3 the

time-dependent sensor temperature computed by the CFD program (solid line) is compared to the

average cabin temperature as determined by the TCM (dashed line). The TCM yields an exponen-
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Fig. 3 Tc versus time as computed by the CFD program (solid line) and the TCM (dashed line).

tial solution for Tc(t) with a time constant given by τ = 71 s. Obviously, the TCM does not take

into account that the temperature depends on the position in the cabin. This position dependence

produces fluctuations of the sensor temperature computed by the CFD program, as can be seen in

Figure 3. However, considering the behaviour of the cabin temperature on time scales of the order

of τ , the results computed by the TCM agree reasonably with those found by the CFD program.

In order to couple the TCM with the controller model, the TCM introduced in the previous section

will be discretized. Discretization of the TCM can be done in several ways, for instance by as-

suming that its input signal Tin(t) = Tn+1
in , for tn < t ≤ tn+1 and constant value Tn+1

in . Defining

Tn
c = Tc(tn) it follows from Eq. (12) that

Tn+1
c = (Tn

c − Tn+1
in )e−∆t/τ + Tn+1

in . (14)

Using this expression, which will be referred to as the discrete TCM, the ‘new’ value of the output

variable, Tn+1
c , can be determined from the old value, Tn

c , and the new input value, Tn+1
in . It is

noticed that the discrete TCM is an instance of the discrete model expression (3) for the special

case of xn
i = yn

i .

3.3 Controller model

The controller is used to control the cabin inlet temperature Tin(t), using the cabin temperature

Tc(t) as an input signal. The time-continuous controller model is given by

Tin(t) = Kp(Tr − Tc(t)) + I(t), (15)

with the shorthand notation

I(t) = Ki

∫ t

0
(Tr − Tc(t′))dt′. (16)
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A discrete model for the controller can be easily derived from (15) by assuming that Tc(t) = Tn+1
c ,

for tn < t ≤ tn+1 and constant value Tn+1
c . Defining In = I(tn) the following discrete controller

model is obtained:

In+1 = In +Ki∆t(Tr − Tn+1
c ),

Tn+1
in = In+1 +Kp(Tr − Tn+1

c ).
(17)

It is seen that this model is an instance of (3) where xn
i = In, un

i = Tn
c , and yn

i = Tn
in . In the

previous section two coupling schemes have been introduced. These schemes will be applied to

the coupling of the discrete models for the controller and the TCM.
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4 Analysis of coupling methods using simple models

4.1 Staggered scheme

The staggered method is given by Eq. (8), using the predictor yn+1,P
2 = yn

2 . This method can

be applied to the controller and the TCM, by replacing the ‘new’ input value Tn+1
c in (17) by the

‘old’ value Tn
c . Then, the time-evolution of Tn

in and Tn
c , for n = 0, 1, 2, ..., can be obtained by the

linear equations (14) and (17), for given initial conditions T 0
in and T 0

c . After some manipulations

the time-evolution of the vector zn = (In, Tn
c )T can be written as

zn+1 = ASzn + b, (18)

where the iteration matrix is

AS =

(
1 −Ki∆t[

1 − e−∆t/τ
] [

e−∆t/τ + (Kp +Ki∆t)
(
e−∆t/τ − 1

)]
)
. (19)

The constant terms in the set of linear equations are contained in the vector b =
(
TrKi∆t, Tr(1−

e−∆t/τ )(Kp +Ki∆t)
)T

. The time-evolution of Tn
in is computed afterwards by

Tn+1
in = In + (Ki∆t+Kp)(Tr − Tn

c ). (20)

Another staggered scheme can be obtained by using the predicted value Tn
in in (14) while retaining

Tn+1
c in (17). In that case the TCM and the PI controller exchange their input-output information

in the reverse order, as compared to the previous staggered scheme. This order will generally

affect the stability and the accuracy of the staggered scheme. However, for the models considered

here it can be shown that the two staggered schemes are absolutely stable for the same values of

the time-step ∆t. Moreover, for a given time step size, the time-accuracies of the two staggered

schemes are similar. Stability and accuracy of the staggered scheme given by Eqs. (18) and (19)

will be discussed in Sections 4.3 and 4.4, respectively. For the other staggered scheme stability

and accuracy can be assessed analogously.

4.2 Jacobi scheme

The Jacobi scheme is defined by Eq. (9). As in the staggered scheme above, the Jacobi scheme

can be applied to the controller and the TCM, by replacing Tn+1
c in (17) by Tn

c . In addition Tn+1
in

in (14) is replaced by the predicted value Tn
in . Thus, predictors are being used both for the input of

the controller and the input of the TCM. Defining zn = (In, Tn
in , T

n
c )T the time-evolution of the

coupled system is given by

zn+1 = AJzn + c, (21)
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where

AJ =




1 0 −Ki∆t

1 0 −(Kp +Ki∆t)

0
(
1 − e−∆t/τ

)
e−∆t/τ


 (22)

and c =
(
TrKi∆t, TrKp, Tr(Kp +Ki∆t)

)T
.

The iteration matrices in (19) and (22) have been determined on basis of the discrete TCM model

given by (14). This model has been derived from the exact solution of the differential equation

(12). Finding the exact solution would have been difficult in cases where the system equations

have more complexity. In such cases it is convenient to discretize the system equations directly.

This is illustrated by discretization of the differential equation for the TCM as given in (12). For

instance, backward Euler discretization may yield the expression

Tn+1
c = 1

1+εT
n
c + ε

1+εT
n+1
in . (23)

where ε = ∆t/τ . The discrete TCM model (23) will be called ETCM. This model can be coupled

with the discrete controller model (17), for instance by using the staggered method described in

the previous section. In that case the time-evolution of zn = (In, Tn
c )T is as in (18), but with a

different iteration matrix given by

ASE =

(
1 −Kiτε
ε

1+ε
1−ε(Kp+Kiτε)

1+ε

)
. (24)

Euler’s method has an accuracy of O(∆t), so that ASE = AS + O(∆t/τ). Thus, if the discrete

TCM model is replaced by the ETCM model it is expected that the behaviour of the coupled

system of discrete models is almost unchanged, at least for sufficiently small time steps.

If the discrete model ETCM is coupled with the controller according to Jacobi’s method, the

following iteration matrix is found:

AJE =




1 0 −Kiτε

1 0 −(Kp +Kiτε)

0 ε
1+ε

1
1+ε


 . (25)

It can be straightforwardly verified that AJE = AJ +O(∆t/τ) where AJ is given by (22).
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4.3 Stability of the coupling schemes

Discrete models for the controller and the TCM have been introduced in the previous sections.

Two methods have been shown to couple these discrete models. In the present section the stability

of these methods will be examined. The following system parameters will be used:

ma = 56 kg,

φm = 0.79 kg/s,

Kp = 0.8,

Ki = 0.05 s−1,

Tr = 23 ◦C,

Tc(0) = 18 ◦C,

Tin(0) = Tr − (1 −Kp)[Tr − Tc(0)].

The stability of a particular coupling scheme is determined by its iteration matrix. It is seen from

Eqs. (19) and (22) that the iteration matrices for the staggered scheme and the Jacobi scheme can

be expressed solely in terms of three dimensionless quantities, namely Kp, Ki∆t and φm∆t/ma.

Before examining the stability of the coupling schemes it is important to know the behaviour of

the solution of the coupled models of the TCM and the controller, as given by Eqs. (12) and

(15). These equations have a unique solution for the cabin temperature that can be determined

analytically. This analytical solution, which will be denoted by T̄c(t), is given by

T̄c(t) = c1e
λ+t + c2eλ−t + Tr, (26)

where

λ± =
−(1 +Kp) ± i

√
4τKi − (1 +Kp)2

2τ
,

c1 =
(
λ− + 1/τ
λ+ − λ−

)(
Tr − Tc(0)

)
,

c2 = Tc(0) − Tr − c1.

(27)

Since Re(τλ±) < 0 the exponentials in (26) are decaying, so that the coupled system of the con-

troller and the TCM is physically stable. Therefore, it is reasonable to require that any numerical

method to solve the coupled system should be absolutely stable (cf. Ref. 10). When using the

staggered scheme given by (19) absolute stability is guaranteed when the spectral radius of the

matrix AS in (19) is smaller than unity. This condition is satisfied for time steps ∆t � 63 s as can

be seen in Figure 4, where the curve labelled by S gives the spectral radius of AS as a function of

∆t.

For Jacobi’s method absolute stability conditions follow by determining the spectral radius of the
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Fig. 4 Spectral radius ρ versus time step ∆t for the iteration matricesAS (S),AJ (J),ASE (SE),

and AJE (JE).

iteration matrix AJ in (22). The result is indicated by J in Figure 4. It is found that the Jacobi

scheme is absolutely stable for ∆t � 27 s.

The curves labelled by SE and JE give the spectral radius for the matrices ASE (staggered) and

AJE (Jacobi), respectively. As mentioned in the previous section ASE = AS + O(∆t/τ) and

AJE = AJ + O(∆t/τ). For the system parameters used here the time scale τ = 71 s, which is

of the same order of magnitude as the stability limit ∆t = 63 as found for AS . This explains the

significant difference in the stability domains determined for AS and ASE .

It is recalled that AS is derived from the exact solution of the differential equation given in (12).

This exact solution is discretized by setting Tin(t) = Tn+1
in , for tn < t ≤ tn+1 and a constant

value Tn+1
in . The same discretization will be used if the flow solver is coupled to the controller

model. Therefore, it is expected that the stability domain [0 s, 63 s] is a reasonable estimate for the

stability domain that would be found when the staggered scheme is used to couple the flow solver

and the controller model. This expectation will be verified in Section 5.

4.4 Accuracy of the coupling schemes

The staggered scheme (18) is used to determine a numerical approximation z of the exact solution

z̄ = (I, Tc)T of a set of ordinary differential equations (ODE). This ODE is given by

dz̄
dt

+Az̄ = 0, (28)
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where

A =

(
0 Ki

−1/τ (1 +Kp)/τ

)
. (29)

The equation (28) can be derived from Eqs. (12) and (15) by setting Tr = 0 ◦C. The latter choice

renders the ODE homogeneous. In the accuracy analysis considered here inhomogeneous terms

can be neglected, for convenience. In this case the staggered scheme is

zn+1 = ASzn, (30)

where the iteration matrix AS is defined by (19).

The accuracy of the staggered scheme can be assessed by using the so-called modified ODE which

is given by

dz
dt

+Bz = 0. (31)

The matrix B is chosen such that z(tn) = zn, where zn is computed by using the staggered

scheme (30). It follows from (31) that

z(tn) = e−Bn∆tz0, (32)

for a given initial value z0. Combination of (30) with (32) yields

B =
− log(AS)

∆t
. (33)

The staggered scheme (30) is globally p− order time-accurate if the difference between the mod-

ified ODE and the original ODE in (28) is of O(∆tp), cf. Ref. 7.

By expanding the matrix B as

B = A0 +A1∆t+O(∆t2), (34)

where A0 and A1 are independent of ∆t, it is straightforward to show that A0 = A. This means

that the staggered scheme is consistent. It follows by direct inference of Lax’s theorem that the

numerical solution zn as determined by the staggered scheme will converge to the exact solution

z̄(tn) of (28) if ∆t approaches zero. In addition it can be easily derived that A1 	= 0, for any

set of system parameters Kp, Ki and τ , except for the trivial case where Kp and Ki are both

zero. This observation implies that the staggered scheme (30) is globally first order time-accurate.

In a similar fashion it can be shown that the Jacobi scheme in Eq. (21) is globally first order

time-accurate also.
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The modified equation method is useful to determine the order of time-accuracy, as has been

shown above. In the present case the accuracy of the cabin temperature Tn
c can be assessed directly

by computing the global discretization error r for a given set of system parameters. The global

discretization error is defined by

r = max
n∈D

(
Tn

c − T̄c(tn)
)
, (35)

where T̄c(tn) is the exact solution given by (26), evaluated at time station tn = n∆t. Moreover

n ∈ D where D is a set of integers defined by D = {0, 1, 2, ..., T/∆t}. Here T is the maximum

time value, and T/∆t is a positive integer. In Figure 5 the global discretization error is plotted

versus the time step ∆t for the staggered scheme (squares) and the Jacobi scheme (circles). The

system parameters are as given in Section 4.3. For both numerical schemes the results in Figure

5 show that r = O(∆t), as expected. The maximum time is T = 1000 s. This particular choice

of T does not affect the global error r as it appears that the difference
(
Tn

c − T̄c(tn)
)

reaches a

maximum for a time value tn ≈ 100 s. It is interesting to note that the solutions Tn
c and T̄c(tn)

also have maximum values for approximately the same moment in time.

If the time step increases past the value where absolute stability is lost, the global error diverges.

As was found above this happens for ∆t > 63 s for the staggered scheme, and for ∆t > 27 s for

the Jacobi scheme. When a global error of r = 0.1 ◦C is tolerated, time steps of ∆t = 2 s are

found to be sufficiently small. For smaller time steps there is no significant difference between the

accuracies of the two numerical schemes.

When the numerical schemes are used in HEATPI to couple the flow solver with the controller

for time steps ∆t = 2 s, it is important to realize that the results can be less accurate then what

is indicated by the global error given in Figure 5. This is due to the different behaviour of the

TCM and the flow solver for time scales of the order of 1 s (see Figure 3). In order to compute

this behaviour sufficiently accurate it is relevant to consider the chosen predictor value which

introduces an error that is proportional to the magnitude of the derivative dTc/dt (cf. Section 2.3).

It can be derived from the results in Figure 3 that the data computed by the flow solver yield a

magnitude of dTc/dt that is about four times greater than the derivative determined by the TCM

at certain moments in time. Thus, for the system parameters used here, an accuracy of HEATPI

of ±0.1 ◦C requires a time step that is at least four times smaller than that for the coupled system

of the controller and the TCM. This yields a maximum time step ∆t ≈ 0.5 s for simulations with

HEATPI.



- 27 -
NLR-TP-2002-400

Fig. 5 Global error r plotted against time step size ∆t for the staggered scheme (squares) and

the Jacobi scheme (circles).
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5 Application of coupling methods to HEATPI

In the previous sections simple models have been used in order to determine whether certain nu-

merical schemes can be used in HEATPI to couple the CFD program with the controller. Important

criteria for the suitability of these schemes are stability and accuracy. In this section simulation

results found by HEATPI will be analysed in order to verify if the simple models are useful to

predict the accuracy and the maximal time step ∆t for which the coupling algorithm is absolutely

stable.

Absolute stability of HEATPI is assessed by simulation of the time-dependent behaviour of the

cabin temperature Tc as measured at the location of the sensor (Figure 2). During the simulation

the flow solver computes the values of Tc at discrete times tmf = mδtf, with a time step size δtf

and m = 0, 1, 2, .... This time step is chosen to be much smaller than the coupling time step:

δtf � ∆t. Analogously, the time step δtco as used by the controller model to compute the inlet

temperature Tin, satisfies δtco � ∆t. In HEATPI the flow solver is coupled to the controller model

by transfer of the values Tn
c and Tn

in , for n = 0, 1, 2, ... according to a certain coupling algorithm

as explained in Section 4. Here Tn
c and Tn

in are computed at the coupling times tn = n∆t.

The temperature Tc has been calculated for the same system parameters as used in the analysis

of the coupling of the TCM and the controller. These parameters are listed in Section 4.3. The

results computed for the staggered scheme are plotted in Figures 6 and 7, for coupling time steps

∆t ∈ {1 s, 50 s, 57 s, 60 s}. The lines give Tc as computed at time stations tmf , and the circles

indicate the values Tn
c . From the results in Figures 6 and 7 it is seen that the signal Tc starts to

oscillate severely as the time step ∆t increases past a certain critical value of the time step, denoted

by ∆tcr. For ∆t < ∆tcr the signal converges to the reference temperature Tr = 23 ◦C as the time

increases. This implies that the coupling algorithm is absolutely stable for these values of the time

step (cf. the definition of absolute stability in Section 2.4). The critical time step, defining the

upper limit of the stability domain, is ∆tcr = 58 s with an accuracy of ±2 s. This agrees very

well with the value that has been derived for the coupling of the TCM and the controller, namely

∆tcr = 63 s.

In a similar fashion the absolute stability has been assessed for the case where the Jacobi scheme

is used in HEATPI. In this case Figure 8 gives the results for Tc as a function of time, for time

steps ∆t = 1 s (solid line), ∆t = 15 s (dotted line) and ∆t = 20 s (dashed line). These results

show that the critical time step is ∆tcr = 15 ± 5 s. The critical time step as found by analysis of

the simplified models is ∆tcr = 27 s which appears to be reasonable prediction.
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Fig. 6 Time dependent behaviour of the temperature Tc as computed by HEATPI using the

staggered scheme for different time step sizes: ∆t = 1 s (solid line) and ∆t = 50 s (dashed

line). Circles indicate the discrete values Tn
c for ∆t = 50 s.

Fig. 7 Tc versus time as calculated by HEATPI using the staggered scheme for different time

step sizes: ∆t = 57 s (solid line) and ∆t = 60 s (dashed line). Circles indicate the discrete

values Tn
c .
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Fig. 8 Tc plotted against time, as computed by HEATPI using the Jacobi scheme for different

time step sizes: ∆t = 1 s (solid line), ∆t = 15 s (dotted line) and ∆t = 20 s (dashed line).

Circles indicate the discrete values Tn
c .

Besides the stability of HEATPI, the accuracy has been studied. It is evident that for sufficiently

accurate results the time step should be well below the critical value ∆tcr. For the example problem

considered here the values of ∆tcr as found for both coupling schemes are far greater than the

time steps that are required for accuracy. A simple comparison of the TCM and the flow solver

in Section 4 has indicated that HEATPI is able to compute Tc with an accuracy of ±0.1 ◦C for

time steps that satisfy ∆t � 0.5 s. This can be verified by examining the numerical results of

the cabin temperature, as computed by HEATPI for times t ∈ [0 s, 1000 s] and for time steps ∆t,

∆t/2, ∆t/4, etcetera. The accuracies found for the staggered scheme and the Jacobi scheme are

of O(∆t), as expected. For a value of the time step below ∆t = 0.2 s the result has converged

within a margin of ±0.1 ◦C, for both coupling schemes. On basis of this result the predicted value

of ∆t = 0.5 s appears to be remarkably good.



- 31 -
NLR-TP-2002-400

6 Concluding remarks

This report demonstrates how simplified models can be used to analyse the time stepping stability

and accuracy of two common algorithms for the coupling of two dynamical simulation models.

This ‘a priori analysis’ is particularly useful when direct analysis of the coupled simulation models

is prohibited by the complexity of (one of) these models, or in cases where only executable code

is available. One of the primary ingredients of a priori analysis is the search for mathematical

models that are simple, on the one hand, while still representing the basic physics, on the other

hand.

For the example system HEATPI considered in this report, a priori analysis shows to be useful to

predict the stability domain for both coupling algorithms. The accuracy of HEATPI could also be

predicted very well, on basis of two observations:

• The accuracy that has been determined analytically for the coupled system consisting of the

TCM and the controller model.

• A quantitative comparison of the time-dependent response of the flow solver and the TCM

for a sudden change in the input signal Tin(t). This comparison concerns in particular the

magnitude of the derivative dTc/dt.

Both observations have been made a priori, i.e. without the performance of computer simulations

with HEATPI.

For HEATPI it has been found that the staggered scheme and the Jacobi scheme have similar

accuracies for the same time step size, provided that the time step is chosen sufficiently small. For

both schemes the CFD program and the controller model may be executed on different computers

that are communicating through a network. The Jacobi scheme yields the possibility to run both

software models in parallel. This is particularly useful in cases where the models have similar

computation times.

It is finally noted that the analysis given in this report can be extended to systems of more than two

partitions, and for simulation models that have multiple input and output signals. In these cases

it is possible to use combinations of the coupling algorithms mentioned in this report. The effort

engaged with the stability analysis of various coupling schemes for multiple coupled systems can

be reduced by focusing on systems that have strong interactions.
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