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In this paper, a non-locally reacting liner is considered, consisting of helical wave-guides filled with porous
material, and covered with a perforated plate. This “spiralling” liner has more degrees of freedom than a
conventional locally reacting liner. Apart from the cavity depth of the liner and the impedance of the
perforated plate, also the properties of the porous material and the advance ratio of the helical wave-guides
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eigenvalue problem of a lined duct segment and the problem of matching with hard wall duct segments.
Further, a validation experiment is described, by which good agreement was found with computed results.
Finally, the results of a parametric study are summarised, showing the potential of this type of liner. For a
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MODELLING A SPIRALLING TYPE OF NON-LOCALLY REACTING LINER

Pieter Sijtsma* and Henk M.M. van der Wal†

National Aerospace Laboratory NLR, 8300 AD Emmeloord, The Netherlands

In this paper, a non-locally reacting liner is considered, consisting of helical wave-guides filled with
porous material, and covered with a perforated plate. This “spiralling” liner has more degrees of
freedom than a conventional locally reacting liner. Apart from the cavity depth of the liner and the
impedance of the perforated plate, also the properties of the porous material and the advance ratio
of the helical wave-guides can be varied.  The spiralling liner may be useful particularly for the
reduction of rotor alone noise. The advance ratio of the wave-guides can then be tuned to the
typical direction of noise propagation. The major part of this paper is about the mathematical
modelling of the spiralling liner, with emphasis on the eigenvalue problem of a lined duct segment
and the problem of matching with hard wall duct segments.  Further, a validation experiment is
described, by which good agreement was found with computed results. Finally, the results of a
parametric study are summarised, showing the potential of this type of liner. For a typical case, 3
dB more reduction of rotor alone noise is predicted than with a locally-reacting liner.

Nomenclature

mA µ = amplitude of right running mode
mB µ = amplitude of left running mode

d = liner thickness
f = frequency (Hz)
i = imaginary unit

mJ = mth order Bessel function of first kind
L = axial co-ordinate of duct inlet, Fig. 2
M = Mach number of duct flow
m = circumferential mode number
p = acoustic pressure in the duct
q = acoustic pressure in the liner
S = function describing helical fences, Eq. (6)

1 2,x x = axial co-ordinates of liner edge, Fig. 2
mU µ = radial eigenfuction in hard wall duct segment

mV µ = radial eigenfuction in lined duct segment
Wµ = radial eigenfuction in the liner

cZ = characteristic impedance of porous material
totalZ = total wall impedance, Eq. (13)

α = axial wave number
mµα = axial eigenvalue in lined duct segment

χ = spiral angle
ε = radial wave number in the duct, Eq. (19)

mµε = radial eigenvalue in hard wall duct segment

mµκ = axial eigenvalue in hard wall duct segment
µ = radial mode order

addµ = number of extra radial modes
maxµ = number of radial modes
pµ = propagation constant of porous material

ω = dimensionless frequency
ζ = radial wave number in the liner, Eq. (28)

helical wave guides

Perforated plate

Fig. 1 “Spiralling” liner (drawn without porous
material)

I. Introduction
In order to attenuate noise that is generated by an
aircraft turbofan engine, usually locally reacting liners
are applied. Such liners, which are applied at several
positions in the wall of the engine flow duct, often
consist of a single layer of honeycomb-arranged
cavities, covered with a perforated plate, usually in
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combination with a facing sheet. For specific flow
conditions, there are essentially two degrees of
freedom in the design of these locally reacting liners:
the liner thickness (cavity depth) and the resistance of
the perforated plate. If maximum attenuation is
required of a sound field of single frequency and
single circumferential mode, then these two degrees
of freedom are sufficient to construct the optimum
liner. Liner thickness and plate resistance can then be
chosen such that the optimum effective wall
impedance (ratio between acoustic wall pressure and
acoustic velocity normal to the wall) is obtained.

If a sound field has to be attenuated that consists of
several frequencies and/or modes, it may be
interesting to consider liners with more degrees of
freedom, for example locally reacting liners with
multiple honeycomb layers. Alternatively, non-locally
reacting liners may be considered, an example of
which is discussed in this paper. This non-locally
reacting liner consists of helical wave-guides,
optionally filled with porous material and covered
with a perforated plate (Fig. 1). This liner is called
hereafter the “spiralling” liner. An extra degree of
freedom compared to locally reacting liners, is the
advance ratio of the wave-guides. Also the properties
of the porous material can be varied. The effects of
open helical wave-guides (without perforated plate
and porous material) on sound attenuation have been
studied before by Lohmann1.

An interesting application for the spiralling liner
could be the so-called fan-face liner. This is a liner of
short length, just ahead of the main rotor of an aircraft
engine, which is supposed to attenuate the ‘rotor alone
noise’. This rotor alone noise, which consists of the
blade-passing frequency and higher harmonics,
propagates in a preferential direction. Therefore, it
can be expected that the liner performance is sensitive
to the advance ratio of the wave-guides, so that this
extra degree of freedom may lead to more sound
attenuation than the maximum reduction attainable
with locally reacting liners.

The porous material is applied to avoid resonance
inside the wave-guides. Moreover, with porous
materials less thickness is required than with an
empty liner, to realise the same characteristics. A
disadvantage of the use of porous materials is the
increase in weight. For a fan-face liner, of which the
dimensions are moderate, this disadvantage might not
be crucial.

The spiralling liner discussed here is related to the
“bulk-absorbing liner” consisting of a layer of porous
material, covered with a perforated plate. Bulk-
absorbing liners or briefly “bulk-absorbers” have a

reputation to be less mode and frequency dependent
than locally reacting liners2,3,4,5.

The mathematical modelling of a liner consists of two
parts. First, duct modes are constructed in a lined duct
segment, by solving the appropriate eigenvalue
problem. Then, these lined duct modes are matched
with hard wall modes in other parts of the duct. Both
parts of the modelling, each with its own difficulties,
are discussed in this paper. A number of
investigators5,6,7,8 has studied these issues for bulk-
absorbers in circular ducts. The eigenvalue problem
of spiralling liners has not been addressed before.

The duct modes for a spiralling liner are found by
solving a coupled eigenvalue problem for the
convective Helmholtz equation in the duct and an
ordinary Helmholtz equation inside the helical wave-
guides, that includes the effect of porous material. It is
assumed that the wave-guides are so narrow that there
is no sound propagation normal to the fences. Both
Helmholtz equations are coupled through the
impedance of the perforated plate. The duct mode
problem boils down to an eigenvalue equation for the
axial wave number, which can be solved numerically.

The porous material is assumed to be homogeneous
and isotropic. Furthermore, it is assumed to be rigid,
like glass fibre or metallic foam, so that the sound
propagation is mainly through the pores and not
through the material itself. As a result, we can
describe the propagation of sound inside the porous
material essentially by two complex quantities: the
characteristic impedance and the propagation
constant, both of which are frequency dependent3,4,9.

The other part of the modelling is the matching of
lined duct modes and hard wall modes. Basically, the
matching is realised by prescribing continuity of
pressure and axial velocity at the interface. In
addition, the axial velocity inside the liner has to be
set to zero at the edge. To set up (by Galerkin
projection) a set of equations to solve this matching
problem, the number of lined duct modes needs to be
larger than the number of hard wall modes. The
choice for the number of extra lined duct modes has
to be done with caution.

Apart from the mathematical modelling, this paper
also shows a comparison with Insertion Loss
measurements with a spiralling liner barrel connected
to a fan model in the NLR small anechoic wind tunnel
KAT. Spinning modes were generated by a
combination of rods and stator vanes. Finally, the
results are shown of a typical liner optimisation study.
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II. Theory

In this section all physical quantities have been made
dimensionless using the ambient speed of sound, the
ambient air density and the duct radius. A hub is not
included in the present study. In the duct, cylindrical
co-ordinates ( , , )x r θ  are defined. An acoustic field of
single (non-dimensional) frequency ω will be
considered and the factor exp( )i tω  is suppressed
throughout. The thickness of the perforated plate and
the helical fences is neglected.

Equations in the duct
The acoustic pressure p in the duct ( 1r ≤ ) is
governed by the convective wave equation:

2
2

2

D 0
D

pp
t

∇ − = , (1)

where the “convective derivative” D D t  is defined
by

D
D

M i M
t t x x

ω∂ ∂ ∂= + = +
∂ ∂ ∂

, (2)

in which M is the Mach number of the uniform steady
axial flow. The acoustic velocity v  is related to the
pressure via the momentum equation as follows:

D
D

p i M p
t x

ω ∂+∇ = + +∇ =
∂

v vv 0 . (3)

Equations in the liner
In the porous material inside the liner (1 1r d≤ ≤ + ; d
is the liner thickness), where there is no steady flow,
the Helmholtz equation and the momentum equation
for pressure q and velocity u  read3,4,9

2 2 0pq qµ∇ + = , (4)

p ci Z qµ +∇ =u 0 . (5)

Herein, pµ  and cZ  are complex, frequency

dependent numbers, describing the sound propagation
through a porous material. The parameter pµ  is the
so-called “propagation constant”, and cZ  is the
“characteristic impedance”. This description assumes
that the porous material is homogeneous, isotropic
and rigid3,4,9. If the liner is air-filled, we have pµ ω=
and 1cZ = .

An additional equation is needed to model the effect
of the helical fences inside the liner. These fences are
assumed to be aligned with helical planes:

( , ) cos( ) sin( ) ConstantS x xθ χ θ χ= + = . (6)

The angle χ will be called “spiral angle”. By this
definition, the fences have r-independent pitch
2 tan( )π χ . It is assumed that the wave-guides are so
narrow that there is no sound propagation normal to
the fences, which yields the following condition for q:

0q S∇ ⋅∇ = . (7)

Summarised, in the spiralling liner the acoustic
pressure q is governed by Eqs. (4) and (7).

Boundary conditions
The first boundary condition is the continuity of
normal velocity across the perforated plate (at 1r = ):

plate
r ru v= , (8)

where plate
rv  is the normal velocity in the duct, but at a

position attached to the perforated plate, where the
steady flow speed is zero. To obtain an expression in
terms of the pressure p, one can not directly apply (3)
for the right-hand side of (8), because the normal
velocity rv  is not continuous across the boundary
layer. To obtain the correct expression, a precise
analysis has to be carried out with a boundary layer of
vanishing thickness10,11.

The correct expression is obtained when continuity of
“particle displacement”, instead of the normal
velocity, is prescribed across the boundary layer12,13.
The displacement vector D  is implicitly defined by

plate plateD  and 
D t t

∂= =
∂

v D v D . (9)

Therefore, we have at 1r =

plateD D
D D

r r ru v v
t t t

∂= =
∂

, (10)

where 
1r rv

=
 has to be interpreted as the limit of rv

for 1r ↑ , not passing through the boundary layer.
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The second boundary condition at 1r =  is the relation
between the pressure jump across the perforated plate
and the normal velocity through it:

0 rp q Z u− = , (11)

where 0Z  is the impedance of the plate. Using (3) and
(10), the following expression is derived from (11):

2 2

2
total

D 0
D

p p
Z t rt

  ∂+ =  ∂ ∂ 
, (12)

with

total 0
1r r

qZ Z
u =

= + . (13)

The ratio 
1r rq u

=
 is obtained by solving the

governing equations inside the duct, including the
hard wall boundary condition at the liner bottom

1r d= + :

d 0
d

q
r

= . (14)

Assuming that totalZ  is independent of x, we have:

2 2

total2
D
D

p p Z
t rt
∂− =
∂ ∂

(15)

Eigenvalue equation
Consider a single mode:

( )( , , ) ( ) i x mp x r p r e α θθ += . (16)

From the convective wave equation (1), it follows that
( )p r  has to satisfy the following differential

equation:

( )
2 2

2 2
2 2

d 1 d 0
dd

p p mM p
r rr r

ω α α 
+ + + − − = 

 
. (17)

The solution of (17) reads (without hub)

( ) ( )mp r AJ rε= , (18)

where A  is a constant, mJ  the mth order Bessel
functions of the first kind, and ε the radial wave
number, given by the dispersion relation:

2 2 2( )Mε ω α α= + − . (19)

The boundary condition (15) then turns into the
eigenvalue equation:

( )2

total

( )
( )

m

m

M J
Z

i J
ω α ε

ωε ε
+

=
′

. (20)

Mode shapes in lined sections are determined by the
solutions of (20). For locally reacting liners, the right-
hand side totalZ  is independent of m and α. For the
spiralling liner, an expression is derived below.

For a mode inside the liner, we write:

( )( , , ) ( ) exp sin( ) cos( )q x r q r iC xθ χ θ χ= −   , (21)

by which condition (7) is satisfied. In the direction of
the wave-guides, Eq. (6), the acoustic mode inside the
liner must have the same periodicity as in the duct:

S q S q S p S pq p
x x x xθ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   − = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, (22)

which implies:

sin( ) cos( )C mα χ χ= − (23)

and, hence,

( )
( )

( , , ) ( ) exp sin( ) cos( )

sin( ) cos( ) .

q x r q r i m

x

θ α χ χ

χ θ χ

= −
× − 

(24)

In order to solve equation (4), we approximate it as
follows:

2 2
2 2 2

2 2 2

2 2 2
2

2 2 2

1

0.

p p

p

q q qq q r q
r r rx r

q q q q
x r

µ µ
θ

µ
θ

∂ ∂ ∂ ∂ ∇ + = + + + ∂ ∂∂ ∂ 
∂ ∂ ∂≈ + + + =
∂ ∂ ∂

(25)

Substitution of (24) yields
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( )( )
2

22
2

d sin( ) cos( ) 0
d p

q m q
r

µ α χ χ+ − − = . (26)

The general solution of (26), with boundary condition
(14), is

( )cos ( 1 )q B r dζ= − − , (27)

with

( )22 2 sin( ) cos( )p mζ µ α χ χ= − − . (28)

For totalZ , (13), we have using (27) and (5)

total 0 tan( )
p ci Z

Z Z
d

µ
ζ ζ

= − . (29)

Solution of eigenvalue equation
Eigenvalues α have to be solved from equation (20),
with right-hand side (29). A possible method to
determine these eigenvalues is to scan a relevant part
of the complex plane. Each scan point serves as initial
value for an iteration process (e.g. the Secant
Method14), which leads to a solution of the eigenvalue
equation. If the scan resolution is sufficiently high, all
eigenvalues in the considered complex domain are
found. This method is straightforward, but time-
consuming, nevertheless feasible with the currently
available computers. However, a smarter and much
faster method is the application of solutions of limit
cases as initial values15. This method is described in
detail in the Appendix.

Insertion Loss
To evaluate the performance of a liner, the Insertion
Loss (IL) is defined as the ratio between the acoustic
power transmitted through the inlet plane ( x L=  in
Fig. 2) of the configurations with and without liner. It
is usually expressed in dB:

10 Power(unlined)IL 10 log
Power(lined)

 
=  

 
. (30)

The acoustic power is defined as the integrated axial
component of the acoustic intensity. The acoustic
intensity is the time-averaged energy flux16.

Modal description
To calculate the acoustic power through the inlet
plane from a given acoustic field at the source plane

0x = , a modal description of the sound is used in the
three regions of the duct (Fig. 2):

1

1 2

2

Region I : 0 ,
Region II : ,
Region III : .

x x
x x x
x x L

≤ ≤
 ≤ ≤
 ≤ ≤

(31)

source
plane

hard-walled
section lined section

hard-walled
section inlet 

plane

0x =
1x x= 2x x= x L=

x

r

θ I II III

Fig. 2 Duct geometry

The modal description of the sound field in the
different regions is as follows

{ }
I

I I

1

( , , )

( ) ( ) ,m mik x ik x im
m m m m

m

p x r

A U r e B U r e eµ µ θ
µ µ µ µ

µ

θ
+ −∞ ∞

=−∞ =

=

+∑ ∑
(32)

{ }
II

II II

1

( , , )

( ) ( ) ,m mi x i x im
m m m m

m

p x r

A V r e B V r e eµ µα α θ
µ µ µ µ

µ

θ
+ −∞ ∞

+ −

=−∞ =

=

+∑ ∑
(33)

{ }
III

III III

1

( , , )

( ) ( ) ,m mik x ik x im
m m m m

m

p x r

A U r e B U r e eµ µ θ
µ µ µ µ

µ

θ
+ −∞ ∞

=−∞ =

=

+∑ ∑
(34)

where mµκ ±  and mµα ± are solutions of the eigenvalue

equation (20), with totalZ = ∞  (hard wall) for mµκ ±  and

totalZ  given by (29) for mµα ± . The eigenfunctions mU µ

and mV µ
±  are normalised as

1 1
22

0 0

( ) ( ) 1m mrU r dr r V r drµ µ
±= =∫ ∫ . (35)

The superscripts “+” and “−” stand for “running in the
positive x-direction” and “running in the negative x-
direction”, respectively. The classification of
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eigenvalues into “+” modes and “−” modes is done by
the sign of the imaginary part of α (in case of real α, a
small negative imaginary part is added to ω). This
classification disregards the possible existence of
unstable surface waves17. Herewith, numerical
instabilities are avoided, possibly at the expense of
physical reality.

We are interested in the acoustic power in region III.
This is (still dimensionless)

( ) ( )

0 ( )4

1

2 2III III

2 2

Power

,
1 1

m

m
m

m m

m m

A B

M M

µ

µ
µ

µ µ

µ µ

πβ β
ω

β ω β ω

∞

=−∞ =

=

  × − 
− +  

∑ ∑
(36)

where 0 ( )mµ  is the highest value of µ for which mµκ ±

is real (in other words, 0 ( )mµ is the number of radial
cut-on modes), and further

2 21 Mβ = − , (37)
2 2 2

m mµ µβ ω β ε= − , (38)
2 2 2

2 2

( ) ( )

( ) ( ) .
m m m

m m

M

M
µ µ µ

µ µ

ε ω κ κ

ω κ κ

+ +

− −

= + −

= + −
(39)

Mode matching at interfaces
At the interfaces 1x x=  and 2x x=  (Fig. 2) continuity
of pressure p and axial velocity xv  is prescribed.
Furthermore, we prescribe at the liner termination
1 1r d≤ ≤ +  the axial velocity xu  to vanish. At the
interface 1x x=  and for fixed m, this is worked out
below.

The interface conditions are:

I II
1 1( , , ) ( , , ),  0 1p x r p x r rθ θ= ≤ ≤ , (40)

I II
1 1( , , ) ( , , ),  0 1x xv x r v x r rθ θ= ≤ ≤ , (41)

II
1( , , ) 0,  1 1xu x r r dθ = ≤ ≤ + , (42)

The acoustic pressure is written as a finite number of
acoustic modes (cf. Eqs. (32) and (33)):

{ }max

I

I I

1

( , , )

( ) ( ) ,m mik x ik x im
m m m m

p x r

A U r e B U r e eµ µ
µ

θ
µ µ µ µ

µ

θ
+ −

=

=

+∑
(43)

{ }max add

II

II II

1

( , , )

( ) ( ) ,m mi x i x im
m m m m

p x r

A V r e B V r e eµ µ
µ µ

α α θ
µ µ µ µ

µ

θ
+ −

+
+ −

=

=

+∑
(44)

In the lined section (II), the number of unknowns is
increased by addµ , in order to have additional degrees
of freedom to satisfy the hard wall condition (42) at
the liner termination. The unknown coefficients II

mA µ

and I
mB µ  are solved by applying Galerkin projection

to Eqs. (40)-(42):

1
I

1
0

1
II

1 max
0

( ) ( , , )

( ) ( , , ) , 1,..., ,

m

m

rU r p x r dr

rU r p x r dr

µ

µ

θ

θ µ µ

=

=

∫

∫
(45)

1
I

1
0

1
II

1 max
0

( ) ( , , )

( ) ( , , ) , 1,..., ,

m x

m x

rU r v x r dr

rU r v x r dr

µ

µ

θ

θ µ µ

=

=

∫

∫
(46)

1
II

1 add
1

( ) ( , , ) 0,  1,...,
d

xW r u x r drµ θ µ µ
+

= =∫ , (47)

where Wµ  are “hard-wall eigensolutions” inside the

liner, i.e., functions satisfying

2
2

2

d
0

d
W

W
r

µ
µη+ = (48)

and

(1) (1 ) 0W W dµ µ′ ′= + = . (49)

In total, we have max add2µ µ+  unknowns in Eqs. (43)
and (44), and the same number of equations (45)-(47).

The choice for the number addµ  must be done with
caution. We choose addµ  such that the imaginary part
of the highest hard wall eigenvalue inside the liner
just does not exceed the imaginary part of the highest
hard wall eigenvalue inside the duct. Then, it is
expected that the so-called edge condition (the
internal energy of the field in the neighbourhood of an
edge has to be finite18) is fulfilled.

Substitution of (43) and (44) into (45), (46) and (47)
yields
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{ }
{ }

max
1 1

max add
1 1

I I

1

II II

1

max

,

1,..., ,

m m

m m

ik x ik x
m m

v

i x i x
m m

a A e a B e

c A e c B e

ν ν

ν ν

µ

µν ν µν ν

µ µ
α α

µν ν µν ν
ν

µ µ

+ −

+ −

+ −

=

+
+ −

=

+ =

+

=

∑

∑ (50)

{ }
{ }

max
1 1

max add
1 1

I I

1

II II

1

max

,

1,..., ,

m m

m m

ik x ik x
m m

v

i x i x
m m

b A e b B e

d A e d B e

ν ν

ν ν

µ

µν ν µν ν

µ µ
α α

µν ν µν ν
ν

µ µ

+ −

+ −

+ −

=

+
+ −

=

+ =

+

=

∑

∑ (51)

{ }max add
1 1II II

1

add

0,

1,..., .

m mi x i x
m mf A e f B eν ν

µ µ
α α

µν ν µν ν
ν

µ µ

+ −
+

+ −

=

+ =

=

∑ (52)

Using some results from the theory of Bessel
functions19, and omitting some constants, the
following expressions for the coefficients aµν

± , bµν
± ,

cµν
± , dµν

±  and fµν
±  can be derived:

aµν µνδ± = , (53)

m

m

kb
Mk
ν

µν µν
ν

δ
ω

±
±

±=
+

, (54)

( ) ( )2 22

1

(1) (1),

m m m

m m

c
M

U V

µν

µ ν ν

µ ν

ε ω α α
±

± ±

±

=
− + +

′×

(55)

( ) ( )2 22

1

(1) (1) ,

m m m

m
m m

m

d
M

U V
M

µν

µ ν ν

ν
µ ν

ν

ε ω α α

α
ω α

±

± ±

±
±

±

=
− + +

′×
+

(56)

( )

( )

22 2

2

1

sin( ) cos( )

(1) .

p m

m
m

m

f
m

V
M

µν

µ ν

ν
ν

ν

η µ α χ χ

α

ω α

±

±

±
±

±

=
− + −

′×
+

(57)

In (53) en (54), µνδ  is the “Kronecker delta”:

1,  for ,
0,  for .µν

µ ν
δ

µ ν
=

=  ≠
(58)

In (57), µη  are radial eigenvalues of (48) with (49):

( 1) dµη µ π= − . (59)

We can write the system (50)-(52) in matrix notation
as:

I I II II

I I II II

II II

,
,

.

+ − +

+ − +

+ −

 + = +


+ = +
 + =

-

-

a A a B c A c B
b A b B d A d B
f A f B 0

(60)

Reorganising the system (60) such that the unknown
vectors IIA  and IB  are in the left-hand side and the
known vectors IA  and IIB  are in the right-hand side,
leads to the following matrix equation:

II I

I II

+ − + −

+ − + −

+ −

   − −
      − = −      
      −   

c a a c
A A

d b b d
B B

f 0 0 f
. (61)

For high frequencies, the system can become ill-
conditioned. Then it may be necessary to use a matrix
regularisation technique14 to obtain solutions.

Reflection at the inlet
At the inlet x L=  (Fig. 2) acoustic modes are
reflected. The reflection matrix, by which

III
max,  1,...,mB µ µ µ=  can be calculated from

III
max,  1,...,mA µ µ µ=  can, for instance, be obtained from

a Wiener-Hopf technique, assuming an unflanged
open duct end20.

Calculation of total acoustic field
The total induced acoustic field in the duct, i.e., all
unknown amplitudes II

mA µ , III
mA µ , I

mB µ , II
mB µ , III

mB µ  are

calculated from the input amplitudes I
mA µ  by an

iterative procedure, as follows10.

(0) Set II III I II III 0m m m m mA A B B Bµ µ µ µ µ= = = = = , for all µ.

(1) Calculate II
mA µ  and I

mB µ  from I
mA µ  and II

mB µ  by
the matching equations at 1x x= .

(2) Calculate III
mA µ  and II

mB µ  from II
mA µ  and III

mB µ  by
the matching equations at 2x x= .

(3) Calculate III
mB µ  from III

mA µ  by the reflection matrix
at x L= (optional).

(4) In case of insufficient convergence, go to step 1.
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III. Experimental validation

Within the EU project “RANNTAC”, an experiment
was carried out with an air-filled spiralling liner, in the
NLR small anechoic wind tunnel KAT. As a
reference, also a locally reacting liner was tested. A
few relevant characteristics are given below.

The duct diameter as well as the liner length was 400
mm. The liner cavity depths were 25 mm for the locally
reacting liner and 18 mm for the spiralling liner. The
width of the helical wave-guides was also 18 mm. The
liner barrel was connected to a fan model (Fig. 3). The
sound field was generated by a rotor-stator combination
consisting of a rotor with 16 rods and a stator with 9
vanes. The rotation speed was 6850 RPM. The Mach
number in the duct was 0.16M = − .

Fig. 3 Liner barrel connected to fan model in NLR’s
anechoic wind tunnel KAT

Acoustic modes were generated at multiples of the
blade passing frequency: 16 6850 60f n= × × , with
circumferential mode numbers 16 9m n k= − . Note
that, in contrast with Eq. (16), the ( )exp imθ−

convention is used here. For validation of the theory,
measured results were used up to the 4th harmonic
( 4n = ). The cut-on modes for these harmonics are
listed in Table 1.

Table 1 Cut-on modes in validation experiment
n f m
1 1826.67 −2
2 3653.33 −4, 5
3 5480.00 −15, −6, 3, 12
4 7306.67 −17, −8, 1 ,10 ,19

The helical wave-guides of the spiralling liner had the
same direction as the rotor relative air speed. The spiral
angle, Eq. (6), was 32.5χ = ° .

The impedance of the perforated plate that covered the
spiralling liner was obtained experimentally on an
instrumented locally reacting liner sample. The locally
reacting liner was covered with a so-called “Screen On
Perforate”, of which the impedance is the sum of a
frequency-independent specific acoustic resistance and
a frequency-dependent mass-reactance21. The plate
impedances used are listed in Table 2.

Table 2 Plate impedances (non-dimensional) in
validation experiment

n Locally reacting Spiralling liner
1 (1.460, 0.337) (0.565, 0.260)
2 (1.460, 0.675) (0.627, 0.525)
3 (1.460, 1.012) (0.690, 0.790)
4 (1.460, 1.349) (0.753, 1.054)

The tests were set up for validation purposes only. No
conclusions can be drawn about the appropriateness
of the different liners. For cost efficiency, the
spiralling liner was not filled with porous material.
When the wave-guides are filled with a porous
material, a much better performance is expected.

For the two types of liners and for the input modes
mentioned in Table 1, measured and calculated
Insertion Loss were compared. The results are plotted
in Fig. 4 (locally reacting liner) and Fig. 5 (spiralling
liner). In general, the agreement is good.
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Fig. 4 Comparison of calculated and measured
Insertion Loss: locally reacting liner
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Fig. 5 Comparison of calculated and measured
Insertion Loss: spiralling liner

IV. Application

This section contains a summary of a parametric
study carried out in the RANNTAC project. Herein,
we had for the length and the thickness of the liner
(relative to the duct radius):

2 1 1.0x x− = , (62)
0.06d = . (63)

For the porous material inside the spiralling liner,
approximate properties of the metal foam “Retimet”
were used, which were measured in an impedance
tube at NLR, using the transfer function method of
Utsuno et al.22. The used values are:

1 2361.6p
cZ i

µ
ω ω

 = = − 
 

. (64)

For locally reacting and spiralling liners, an
optimisation study was performed for “broadband”
input at the source plane (all cut-on modes of a wide
range of frequencies are present with equal energy per
mode). Because of the symmetric input, the optimum
spiral angle was 0χ =  (ring-shaped wave-guides).
The difference in performance between both types of
liner for broadband noise appeared to be negligible.

However, it was found that the spiralling liner
performed 2 dB better for a typical “rotor alone noise”
spectrum at Sideline conditions. The Insertion Loss
using the locally-reaction liner was 18.7 dB. Using
the spiralling liner, it was 20.8 dB. By varying the
spiral angle χ, the Insertion Loss could be enlarged to
21.7 dB, which is 3 dB better than the locally reacting

liner. The optimum spiral angle was found at
53χ = ° .

For broadband noise, this spiralling liner with 53χ = °
performed almost the same as the spiralling liner
with 0χ = , and, hence, almost the same as the locally
reacting liner.

V. Conclusion
A theoretical model was described of a spiralling type
of non-locally reacting liner, consisting of helical
wave-guides filled with porous material, covered by a
perforated plate. The theory was validated
experimentally. The agreement between theory and
experimental results was good. A liner optimisation
study, with broadband noise input, showed negligible
difference in performance between the optimum
locally reacting liner and the optimum spiralling liner.
However, for a typical rotor alone noise input, 3 dB
more reduction was found with the spiralling liner.
This was achieved by optimising the advance ratio of
the wave-guides.
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Appendix: A method to solve the eigenvalue
equation

Restatement of the problem
The eigenvalue equation (20), with (29) is rewritten
here as:

0( ) ( ) 0V W Zα α+ − = , (65)

with

( )2 ( )
( )

( )
m

m

M J
V

i J
ω α ε

α
ωε ε

+
=

′
(66)

and

( )
tan( )

p ci Z
W

d
µ

α
ζ ζ

= . (67)

Initial values
As initial values for iterations leading to solutions of
(65), we use poles and zeros of V and W, i.e.,
solutions of ( )V α = ∞ , ( ) 0V α = , ( )W α = ∞  and

( ) 0W α = . Zeros and poles of V can be found by
solving, respectively,

( ) 0mJ ε′ = (68)

and

( ) 0mJ ε = . (69)

Both (68) and (69) only have real solutions19. Poles
and zeros of W are, respectively,

( )22cos( ) ( 1)
, 1, 2,...

sin( )
pm j d

j
χ µ π

α
χ

± − −
= = (70)

and

( )22 1
2cos( ) ( )

, 1,2,...
sin( )

pm j d
j

χ µ π
α

χ
± − −

= = (71)

Special initial values: surface waves
To be certain that the special surface waves17,23 are
included, also the solutions of the “surface wave
equation” are used as initial values. The surface wave
equation is the asymptotic expression of (65) which
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remains for large positive real values of 1γ  and 2γ ,
after insertion of 1 (1 )( ) rp r e γ− −=  and 2 ( 1)( ) rq r e γ− −=
into the governing equations for p and q. It can be
shown that the following asymptotic expressions
remain:

( )2
2 2
1

1

( ) ,  
i M

V
ω α

α γ ε
ωγ
+

→ − = − , (72)

2 2
2

2

( ) ,p ci Z
W

µ
α γ ζ

γ
→ − = − , (73)

where ε is given by (19) andζ  by (28). It follows that
the surface wave equation becomes

( )2

0
1 2

0p ci Zi M
Z

µω α
ωγ γ
+

− − − = , (74)

which implies

( )

( )( )
42 2 2 2 2

1 2

242 2 2 2 2 2 2 2 2
1 2 0 2 1

4

0.

p c

p c

M Z

Z M Z

ω γ γ ω α µ

ω γ γ γ ω α ω γ µ

+

− + + + =
(75)

This is a 12th order polynomial in α, which can be
solved by a standard technique.

Iteration
A number of equivalent formulations of the
eigenvalue equation (65) is used, al of which have the
same solutions

1 0( ) ( ) ( )F V W Zα α α= + − , (76)

2
0

1 1( )
( ) ( )

F
V W Z

α
α α

= +
−

, (77)

3
0

1 1( )
( ) ( )

F
V Z W

α
α α

= +
−

, (78)

( )4 ref 0

ref ref

( ) ( ) ( ) ( ) ,  
with ( )  or ( ) ,

F V W Z
V W

α α α α α
α α

= − + −
= ∞ = ∞

(79)

5 ref
0

ref

1 1( ) ( ) ,  
( ) ( )

with ( ) 0,

F
V W Z

V

α α α
α α

α

 
= − + − 

=

(80)

6 ref
0

ref

1 1( ) ( ) ,  
( ) ( )

with ( ) 0.

F
V Z W

W

α α α
α α

α

 
= − + − 

=

(81)

The search process can be done with the Newton-
Raphson Method14:

1

( )
( )

j n
n n

j n

F
F

α
α α

α+ = −
′

(82)

or with the Secant Method14:

1
1

1

( )( )
( ) ( )

j n n n
n n

j n j n

F
F F

α α α
α α

α α
−

+
−

−
= −

−
. (83)

In the procedure followed here, the first step in the
iteration process is done with Newton Raphson, the
others with the Secant Method. When surface waves
are used as initial values, all steps are done with the
Secant Method. The functions jF  are used according

to the scheme below.

Initial values First step Other steps
Zeros of V 1F 5F
First pole of V 2F 1F
Other poles of V 2F 4F
Zeros of W 1F 6F
Poles of W 3F 4F
Surface waves 4F 4F

For refα  in 4F , 5F  and 6F  the initial value are used,
except for the case of the surface waves. Then, a
lowest order pole of V or W is used, whichever is the
closest to the initial value.
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