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Summary 

To improve the damage tolerance characteristics of composite structures made by a fibre 

placement process a new fibre architecture called AP-PLY is developed. AP-PLY combines the 

advantages of woven fabrics and unidirectional laminates in an automated production process. 

 

Instead of placing parallel fibre bands directly adjacent to each other, room is left in between 

which is filled up after first placing fibres in a different direction. A pattern is created that 

mimics a woven fabric, improving the out-of-plane strength of fibre placed laminates. 

 

Compression after impact tests are performed on several AP-PLY patterns for both thermoset 

and thermoplastic material systems, comparing them to unidirectional baseline laminates. Tests 

show that indentation depth and delamination size are influenced by the pattern, indicating a 

redistribution of damage mechanisms and a different BVID value. Residual strength is higher 

for all AP-PLY patterns with respect to their unidirectional counterparts, varying from 4-7% 

depending on pattern, lay-up and material system. 

 

Possible applications include damage tolerance dominated structures, but also the replacement 

of woven fabrics for amongst others outer surface plies and sandwich facesheets. Further 

research includes optimization of the pattern and lay-up as well as testing properties such as 

bearing and open hole compression strength.  
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Abbreviations 

AP-PLY Advanced Placed Ply 

ASTM  American Society for the Testing of Materials 

BVID  Barely Visible Impact Damage 

CAI  Compression After Impact 

LVDT  Linear Variable Differential Transformers 

TP  Thermoplastic 

TS  Thermoset 

UD  Unidirectional 
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1 Introduction 

One of the challenges composite aircraft structures face is damage tolerance. High or low speed 

impacts may cause large delaminations and other damage, which cannot be detected easily. Current 

composite aircraft do not exploit the advantages of composites to the fullest as they are often overly 

dimensioned to meet the damage tolerance requirements. Automated production processes, such as 

fibre placement, have made the cost-effective production of composite aircraft possible. They have 

also made possible the use of more complicated fibre architectures than the traditional unidirectional 

laminates. These unidirectional laminates are known to have a higher in-plane stiffness than woven 

fabrics. A downside is that woven fabrics, which exhibit better impact behaviour than unidirectional 

laminates1, cannot be used with a fibre placement machine.  

 

Recent advances in non-conventional fibre patterns that can be fabricated via fibre placement 

machines are variable stiffness laminates and dispersed laminates. Variable stiffness laminates2 

make use of curved fibre paths, dictated by stress distribution patterns and thus resulting in a tailor-

made laminate for specific loading conditions. All fibres are placed in the same plane, which results 

in gaps and/or overlaps between fibre bands. Dispersed laminates3 reduce the angle difference 

between adjacent plies in order to reduce interlaminar stresses and thus delaminations. These plies 

however are still unidirectional with straight fibres. So far, variable stiffness laminates have been 

used for improved strength and buckling performance with or without cut-outs present, whereas 

dispersed laminates have been designed for improved damage tolerance.  

 

This paper presents a fibre architecture that combines the superior impact resistance of woven 

fabrics with the advantages of fibre placement. Compression after impact test results are presented 

for thermoset specimens with different AP-PLY patterns and compared with baseline unidirectional 

laminates. The best performing pattern is also made from thermoplastic material and compared to a 

thermoplastic baseline laminate.  
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2 AP-PLY Concept 

Traditionally fibre placed laminates consist of unidirectional layers, each constructed by aligning all 

the passes of the machine head to be parallel to one another, and ensuring that each pass is adjacent 

to the previous pass without leaving any gap between them. In this new concept, instead of placing 

multiple fibre bands directly next to each other, bands are placed in two directions leaving space in 

between adjacent bands. These spaces are filled up with alternating bands in both directions, such 

that on every location two bands are positioned on top of each other. Basically two plies are 

interwoven, where the number of bands to skip and the angle between them can be infinitely varied, 

resulting in an endless amount of possible patterns. For example, the pattern in Figure 1 is created 

by placing a group of fibre bands in one direction, leaving a gap of exactly one bandwidth in 

between. A second group of fibre bands is placed in a second direction, creating the pattern shown 

in Figure 1 B. Next the empty spaces shown in Figure 1 A are filled up by a second group of fibre 

bands in the first direction shifted over one bandwidth. Finally in Figure 1 D the second direction is 

filled up creating a two-ply laminate with a uniform thickness. 

 

 

Figure 1: A woven pattern created using fibre placement 

 

In this example only two layers are interwoven, whereas in theory an arbitrary amount of layers 

with different angles can be interwoven. Also instead of this 90 degree angle between the two plies, 

any angle is possible. A photo example of one possible configuration with a 45° pattern is shown in 

Figure 2. Depending on the application and preferred layup, this can be varied. Any layup can be 

created with this approach, and the location of the interwoven layers can be chosen at will, even 

combining unidirectional plies and AP-plies. Finally the width of the bands used determines the 

resolution of the pattern, which influences the homogeneity of the laminate, performance and 

production time. As this fibre architecture does not involve curved fibre paths it does not have to 

deal with the gap and overlap issues often encountered in new fibre placement concepts4. 

 

 

 

B A C D 
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Figure 2: Example of one of the possible patterns 

 
3 Manufacturing 

For the compression after impact tests, specimens were manufactured according to ASTM standard 

71365. Several options exist to make the prescribed quasi-isotropic laminate with a thickness of 4 

mm. Two widely used lay-ups are [-45/45/90/0]S and [-45/90/45/0] S, which are also described in the 

ASTM standard. These are well suited for the proposed pattern and allow for two different interface 

angles in the pattern, namely 45° and 90°. Two layers are interwoven, which could be described as 

[(-45/45)/(90/0)]S and [(-45/90)/(45/0)]S.  

 

To let the machine place the desired pattern, a points file is created in Matlab and Excel which is 

used as input for the Fibre Placement Manager software. This creates the file with trajectories, head 

orientations and cutting commands for the Automated Dynamics Corporation automated fibre 

placement machine of the National Aerospace Laboratory NLR. Large 500 x 550 mm plates are 

manufactured from which the specimens are cut.  

 

The thermoset material used is Hexcel AS4/8552 prepreg slit tape, supplied as 1/8” slit tape and 4 

tapes placed together resulting in a bandwidth of ½” or 12.7 mm.  As this material has a cured ply 

thickness of 0.18 mm the laminates were built up from 24 layers, resulting in a laminate thickness of 

4.3 mm. The autoclave cycle recommended by the supplier is 60 minutes at 110° C followed by 120 

minutes at 180° C. 

 

For the thermoplastic specimens the Automated Dynamics Corporation fibre placement machine 

was fitted with the thermoplastic processing head. Again, the AS4 fibre was used, but this time in a 

pre-preg with Cytec APC-2 PEEK thermoplastic resin, supplied as 1/2 inch tape with a final ply 

thickness of 0.125 mm. To reach the desired laminate thickness of 4 mm in a quasi-isotropic layup 

32 layers were needed. The material is heated to 380° C just before placing it into the mould. As it 



  
NLR-TP-2010-626 

  
 10 

cools down rapidly it does not stick to the mould, which makes placement challenging, especially 

patterns skipping bands. This results in slightly more closely spaced bands in the lower layers as 

compared to the upper layers. To ensure a high consistent quality the plates were heated in the 

autoclave at 380° C for 60 minutes. 

 

An increase in fabrication time is expected, but the difference at this stage is very small. Whereas 

the time on the mould is exactly the same as for unidirectional plies, only slightly more time is spent 

by the machine head in the air. With a minor adaptation to the machine head, practically the same 

manufacturing speeds can be accomplished. 

 

During curing a metal top-plate was used, which ensured a smooth surface and no difference in 

surface quality was found between the baseline and the AP-PLY. After cure, all plates were C-

scanned to verify specimen quality. A water-cooled diamond saw cut the specimens to the 

dimensions presented in Table 1, as specified by ASTM 3176. 

 
Table 1: Specimen Dimensions 

Length 150 mm 

Width 100 mm 

Thickness 4.3 mm (TS) 4.0 mm (TP) 
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4 Tests 

Two stages can be identified in the testing procedure: impact and compression. After impact and 

before compression all specimens are C-scanned to determine the size of the delaminations.  

 

4.1 Impact 

The NLR-designed drop tower was used together with the clamping device shown in Figure 3 which 

has an unsupported rectangular cut-out of 125 mm by 75 mm. Impactor mass is 2.31 kg and the tup 

has a diameter of 16 mm. The impactor head is equipped with a strain gauge to measure impact 

force, and its velocity is measured just before and after impact.  

 

 

Figure 3: Impact Test Clamping Device 
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From the first three tested specimens in one series the Barely Visible Impact Damage (BVID) level 

was estimated by fitting a curve through the Impact Energy vs Indentation Depth curve. BVID is 

prescribed as an indentation depth of 1 mm directly after impact. As can be seen in Table 2 the 

energy levels used are, typically, higher for the thermoplastic specimens, as BVID was reached 

early for the thermoset specimens. Several thermoset configurations are tested, leading to different 

BVID levels. 

 
Table 2: Test Impact Energy Levels for all specimens 

 Impact Energy [J] 

Specimen TS TP 

1 40 40 

2 15 BVID (35-39) 

3 20 BVID (35-39) 

4 25 BVID (35-39) 

5 30 30 

6 30 40 

7 30 40 

8 BVID (25-28) 30 

9 BVID (25-28) 30 

10 BVID (25-28) 50 

11 20 25 

12 20 20 

 

After impact the indentation depth was measured and photographs were taken of both sides of the 

specimens. In order to determine the delamination size and shape, all specimens were C-scanned 

which is described in the next section. In Figure 4 and Figure 5 it can be seen that, from the outside, 

the difference in damage can already be observed. In contrast to most baseline specimens, which 

have delaminations and other damage in the bottom (backside) layer along the fibre direction, the 

damage in the AP-PLY specimens seems more confined to a small region in the vicinity of the 

impact point. 
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Figure 4: Backside of TS baseline(left) and AP-PLY (right) specimens at BVID 

 

 

    

Figure 5: Backside of TP baseline (left) and AP-PLY (right) specimens at BVID 

 

 

Three more specimens were also impacted, but at different locations to determine the influence of 

impact location. Instead of compression testing, a cross cut of  these specimens was made to 

determine the through-the-thickness damage. 

 

4.2 Compression 

Using the prescribed test fixture shown in  

Figure 6 the impacted specimens were tested in the Instron 5887 300 kN test equipment according 

to ASTM D71376. Two Linear Variable Differential Transformers (LVDT) were used to measure 

the displacement of the machine compression platens more accurately and the loading rate was set 

at 1.25 mm/min.  
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Figure 6: Compression test set-up 
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5 Results 

In determining the performance of the various patterns three factors play an important role. First, the 

indentation influences the detectability of the induced damage. Second, the delamination size and 

other damage such as matrix cracks and broken fibres determine the size and severity of the 

damage. And most important, the residual strength determines the ability of the structure to carry 

loads in a damaged state. 

 

5.1 Indentation 

Directly after impact, the indentation was measured. As can be seen in Figure 7 the indentations are 

higher for the AP-PLY configuration than for the baseline laminate at the same energy levels. A 

possible explanation is that more energy is dissipated by fibre breakage instead of delaminations, 

resulting in more localized but deeper damage. The section cuts discussed later support this 

explanation. Whether fibre breakage or delaminations are favourable depends on the application. In 

tension fibre breakage is more critical than delaminations, whereas in compression fibre breakage is 

favoured7. An advantage of deeper indentations could be that for the same energy level damage can 

be detected at an earlier stage: the Barely Visible Impact Damage threshold is lower.  

For the BVID level the damage is smaller for two reasons: the lower impact energy and the smaller 

delaminations resulting from the AP-PLY pattern.  
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Figure 7: TS Indentation of Pattern D vs Impact Energy 
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The thermoplastic specimens show exactly the opposite behaviour: AP-PLY has a smaller 

indentation than the baseline laminate for the same impact energy level. Also a crack (broken fibres) 

in the top layer was observed, aligned with the length direction of the specimens.  
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Figure 8: TP Indentation of Pattern D vs Impact Energy 

 

Figure 9 shows these longitudinal cracks right next to the impact location. Main differences between 

the TS and TP specimens are, apart from the tougher matrix material, the smaller ply thickness 

resulting in more layers and a 7% smaller laminate thickness. The bending deformation caused 

during impact results in compression of the top layer of the specimen.  Due to the increased out of 

plane strength and toughness of the TP material, less energy is dissipated in delamination and more 

is available to break fibres. 
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Figure 9: Longitudinal cracks in TP specimen 

5.2 Delamination 

After impact all specimens were C-scanned with the impacted side up to inspect the extent of 

the delaminations. NLR’s Ultrasonic Sciences C-scan system was used with a 6 dB reference 

level. Delaminations were measured and two examples are shown in Figure 10 for the same 

energy level. 

 

 

Figure 10: Delamination C-Scan for Baseline (Left) and AP-PLY Pattern A (Right) 

 

On the left hand C-Scan of the unidirectional specimen clearly a diagonal extension of the 

delamination can be seen while the right C-scan of pattern A shows only a circular 

delamination. For the determination of the size of the delamination, only the circular part of the 

C-Scans was taken. It is assumed that for thick specimens as the ones used here, the non-

circular backside delamination does not play a large role in the strength degradation.  

 

For the thermoset material system all AP-PLY pattern delaminations are smaller than the 

unidirectional lay-ups at an equal energy impact, as can be seen in Figure 11.  
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Figure 11: TS Delaminated Area Pattern B vs Impact Energy 

 

Figure 12 shows the same information on the thermoplastic material system, where a lot more 

scatter is present, also in the baseline (UD) specimens. Scatter is inherent to impact testing, and 

makes judging by delamination size in this case difficult.  

It must be noted that this measured area is in fact a ‘projection’ of all delaminations through the 

layers. In general this can be treated however as a measure of the induced damage. 
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Figure 12: TP Delaminated Area Pattern D vs Impact Energy 
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5.3 Residual Strength 

Although only showing a selection of results, compression tests of the impacted specimens 

made clear that all interwoven laminates examined so far perform better than their 

unidirectional counterparts. In general the 45° interface laminates with ply orientations in 

adjacent plies differing by no more than 45° perform better than laminates where some adjacent 

plies may have fibre orientations that differ by 90°; even the unidirectional laminate with 45o 

angle difference performs better than the best AP-PLY laminate with 90o difference. It is well 

known that the smaller the angle between adjacent plies, the smaller the interlaminar stresses7. 

As these interlaminar stresses cause delaminations, it explains the better performance of the 45° 

interface laminates. 
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Figure 13: TS Residual Strength Pattern A vs Impact Energy 
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Figure 14: TP Residual Strength Pattern D vs Impact Energy 

 

For both material systems AP-PLY performs better than unidirectional laminates with the same 

layup, and all tested thermoplastic laminates perform better than the thermoset laminates. 

 



  
NLR-TP-2010-626 

  
 21 

6 Comparison 

To have a clear comparison between the two material systems and the two placement patterns, 

the averaged residual strength values after a barely visible impact are shown in Table 3. For 

reasons of confidentiality the patterns tested are not specified, but vary in lay-up and pattern. 

 

AP-PLY performs better, where the increase in performance (7 %) is larger for the 

thermoplastic material system than for the thermoset material system (4 %).   These differences 

are relatively small because the AP-PLY patterns are not fully optimized.  Additional 

improvements are anticipated with new patterns currently under investigation.  It should also be 

pointed out that the AP-PLY laminates seem to have more scatter in the test results (see Figures 

10-13).  This is mainly due to the relatively wide band used here (12.7 mm).  The residual 

strength might be affected by the position with respect to the pattern where the specimen was 

impacted.  Using narrower bands should minimize this effect. 

 
Table 3: Comparison at BVID Level (1 mm) 

  Baseline AP-PLY 

BVID Impact Energy [J] 27.6 25.4 

TS Residual Maximum Stress 

[MPa] 

201 210 

    

BVID Impact Energy [J] 35.5 38.8 

TP Residual Maximum Stress 

[MPa] 

276 289 

 

6.1 Stiffness 

The stiffnesses of the undamaged specimens were measured using CAI specimens loaded under 

compression to 30 % of the failure load. Machine head displacement was taken for simplicity 

and the stiffness was calculated using the slope of the linear part of the stress-displacement 

curve.  

Although not suitable for determining the absolute strain in the specimen, the normalised value 

is used for comparison purposes. As can be seen in the table below there is no significant 

difference in stiffness between the different patterns, for both material systems. All results are 

well within experimental scatter.  
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Table 4: TS Normalised Stiffnesses 

Laminate Normalised Stiffness 

Unidirectional 90° interface 100.0 

Pattern A 101.0 

Pattern B 100.5 

Pattern C 101.7 

Unidirectional 45° interface 100.2 

Pattern D 100.7 

Pattern E 101.7 

  

Coefficient of variation 0.68 % 

 

 
Table 5: TP Normalised Stiffnesses 

Laminate Normalised Stiffness 

Unidirectional 45° interface 100.0 

Pattern D 98.1 

  

Coefficient of variation 1.39 % 

 

When looking at the cross-section of an AP-PLY laminate under a Zeiss Axioplan 2 optical 

microscope it is clear that the undulation is very small as the bands are very thin. Only a 7 

degree angle is observed in TS, with very small resin rich areas. For the thinner thermoplastic 

layers the angle is even smaller. Fibre bands are slightly deformed at the edges to accommodate 

the crossing of the fibre bands to another layer. Since the undulation is very small, tensile 

properties of these laminates are not expected to be different from standard unidirectional 

laminates. 
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Figure 15: Microscopic images (25x) of an AP-PLY laminate cross-section in TS (left) and TP 
(right) 

 

6.2 Thickness 

Due to the more complicated layup of AP-PLY, its thickness could be expected to be larger. For 

all 12 specimens of each pattern the thickness was measured at three locations, after which the 

average was taken. As is shown in Table 6, in the case of the thermoset material system the 

thickness was actually smaller, however with such a small difference that it may be considered 

within scatter. The thermoplastic AP-PLY was slightly thicker however, but again a small 

enough difference to be within experimental scatter. 

 
Table 6: Thicknesses [mm] (TP and TS) for Baseline and AP-PLY 

 Average Thickness [mm] St. Deviation [%] 

TS   

Unidirectional 90° interface 4.46 0.70 

Pattern A 4.35 0.84 

Pattern B 4.45 0.73 

Pattern C 4.29 0.59 

Unidirectional 45° interface 4.38 0.43 

Pattern D 4.32 0.85 

Pattern E 4.39 0.50 

   

TP   

Unidirectional 45° interface 3.96 0.43 

Pattern D 4.10 0.42 

 

6.3 Section Cuts 

Of all patterns of the thermoset specimens a section cut of an impacted specimen with 25 J was 

made for both the baseline and AP-PLY specimens to get a clear view of the delaminations 
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through-the-thickness. The specimens were cut through at an angle perpendicular to the loading 

direction, 1 cm away from the heart of the impact.  Next the specimens were poured in resin and 

sanded to get to the middle of the delamination.  

 

Thermoset 

At first sight there seems to be more damage in the AP-PLY specimen, which seems to be fibre  

breakage. This is consistent with the earlier observation that the indentation is deeper for AP-

PLY, which was then also attributed to fibre breakage. When looking at the delaminations  

they seem to be fewer and smaller in AP-PLY. At the location of a cross-over of the fibre band, 

the delamination seems to end. This suggests that these cross-overs act as built-in delamination 

arresting mechanisms and may account for the reduced delamination size of AP-PLY laminates. 

 

 

Figure 16: TS Baseline 

 

Figure 17: TS AP-PLY Pattern D 

 

Thermoplastic 

Figure 18 and Figure 19 show the section cuts for the TP specimens impacted at 25 J. As BVID 

is considerably higher for the TP specimens overall less damage is visible, as well as less 

difference for both laminate configurations. It is clear however that less and smaller 

delaminations are present in the AP-PLY configuration as compared to the Baseline. Also 

slightly more fibre breakage in the Baseline seems contrary to the deeper indentation. 

 

 

Figure 18: TP Baseline 
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Figure 19: TP AP-PLY Pattern D 

 

Whether fibre breakage or delaminations are favourable depends on the application. In general, 

delaminations are more of a problem in compression whereas fibre breakage causes more 

concern in tension. As these specimens were not tailored to any specific application but do show 

interestingly different behaviour, there seems to be enough room for optimizing a lay-up with 

all known characteristics. 
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7 Conclusions 

A new fibre architecture is presented that shows improved damage tolerance for all the patterns 

tested compared to its unidirectional counterparts, for two material systems. This can be 

explained by the multiple load path provided by the interweaving, halving the number of ply 

interfaces and the creation of physical barriers for a delamination to grow. 

 

The influence of impact location is an important topic for future research. Although the worst 

case of the new pattern has the same residual strength as its unidirectional counterpart, a 

solution for the heterogeneity of the pattern could make it even more damage tolerant. A smaller 

bandwidth or a different stacking sequence could be the solution for this. 

 

Only quasi-isotropic lay-ups were compared in this research. More often other lay-ups are used, 

to meet specific loading conditions. Other lay-ups should be tested, and perhaps a combination 

with the earlier described dispersed stacking sequences could be beneficial. 

 

In this research only 45 and 90 degree angles were tested, where in theory all angles are 

possible. It could be the case that for very small angles matrix rich areas are created as the fibres 

do not fit up properly, as well as for more than two interwoven layers. Further research will be 

focused on determining the best pattern and the influence of AP-PLY patterns on properties 

such as open hole compression and bolt-bearing 

 

Possible applications include damage tolerance dominated structures, (fuselage or wing), but the 

applications are not limited to that.  The ability to replace woven fabrics, which are often used 

for improved bearing properties or (on the surface) for improving hole quality during drilling, 

makes this concept usable to a large variety of applications including sandwich with thin 

facesheets.  

 

 

 



  
NLR-TP-2010-626 

  
 27 

References 

                                                      
1 N.K. Naik, Y. Chandra Sekher, Sailendra Meduri, Damage in woven-fabric composites 

subjected to low-velocity impact, Composites Science and Technology, 60, 2000, 731-744 

 
2 Z. Gürdal, "Design tailoring of laminated composite structures," 46th 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials 

Conference, 18-21 April 2005, Austin, Texas, AIAA 2005-2164 

 
3 C. Lopes et al., Stacking Sequence Dispersion and Tow-Placement for Improved Damage 

Tolerance, 

49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

Conference, 2008, Schaumburg Illinois 

 
4 Z. Gürdal, B. Tatting, c. Wu, Tow-Placement Technology and Fabrication Issues for 

Laminated Composite Structures, 46th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics & Materials Conference, 18-21 April 2005, Austin, Texas, AIAA 

2005-2164 

 
5 American Society for the Testing of Materials, D7136 

 
6 American Society for the Testing of Materials, D7137 

 
7 G.A.O. Davies, R. Olsson, Impact on Composite Structures, The Aeronautical Journal, 

November 2004, 541-563 


	1 Introduction
	2 AP-PLY Concept
	3 Manufacturing
	4 Tests
	4.1 Impact
	4.2 Compression

	5 Results
	5.1 Indentation
	5.2 Delamination
	5.3 Residual Strength

	6 Comparison
	6.1 Stiffness
	6.2 Thickness
	6.3 Section Cuts

	7 Conclusions

