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ABSTRACT
The present paper considers the problem of aerodynamic airfoil shape
optimization where the shape of an airfoil is to be determined such that
a priori specified design criteria are formulated by defining an
objective or cost function, the minimum of which represents the solution
to the design problem.
A survey is given of developments at NLR applying the adjoint operator
approach, utilizing a compressible inviscid flow model based on the Euler
equations and a compressible viscous flow model based on the Reynolds-
Averaged Navier-Stokes equations. Computational results are presented for
a two-point drag-reduction design problem.



- 2 -
TP 96748

Contents

1 Introduction 5

2 Formulation of the Gradient by means of the Variational Method 7

3 Computer Implementation 11

4 Computational Results 13

4.1 Multi-point design based on the Euler equations 14

4.2 Multi-point design based on the RANS equations 15

5 Conclusions 16

6 References 17

5 Figures

(21 pages in total)



- 3 -
TP 96748

Summary

The present paper considers the problem of aerodynamic airfoil shape optimization where the

shape of an airfoil is to be determined such that a priori specified design criteria will be met to the

best possible extent. The design criteria are formulated by defining an objective or cost function,

the minimum of which represents the solution to the design problem.

A survey is given of developments at NLR applying the adjoint operator approach, utilizing

a compressible inviscid flow model based on the Euler equations and a compressible viscous

flow model based on the Reynolds-Averaged Navier-Stokes equations. Computational results are

presented for a two-point drag-reduction design problem.
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1 Introduction

At NLR, successful computational methods for the design of airfoils and wings in subsonic

and transonic flow have been developed following the residual-correction approach (Ref. 4).

Essentially, these methods are based on solving an inverse problem, determining an airfoil or wing

shape such that it will generate a priori prescribed surface pressure distributions at given operating

conditions. The design goals, expressed in terms of these prescribed target pressure distributions,

are approximated to the best possible extent, taking into account additional requirements with

respect to the geometry. During the iteration process of solving the design problem, for each new

estimate of the airfoil or wing geometry, the surface pressure distribution is analyzed at each desired

operating condition and from the differences with the target pressure distributions a new estimate

of the geometry is determined. This way of specifying the design goals gives the designer direct

control over local flow properties, but constraints with respect to global characteristics as drag-

or lift-coefficients are specified less easily. The main advantage of the NLR residual-correction

methods is the fact that in each iteration step leading to a new estimate of the geometry only one

flow computation is required.

A more straightforward, direct approach to solve the airfoil or wing design problem is obtained

by posing the design problem as the minimization (or maximization) problem of an objective

functional subject to a number of design constraints. The advantage of this approach is that it

offers a great deal of flexibility with respect to the form in which the design goals should be

expressed; it is not restricted to design goals in terms of target pressure distributions. Moreover,

in principle any combination and number of appropriate design objectives may be specified.

Usually, minimization problems are solved most efficiently by making use of the gradient of

the objective functional with respect to the design variables. If this gradient is determinied by

numerical differentiation, such as pioneered by Hicks et.al. 6, the application of this type of

minimization is limited to problems involving only a small number of design variables, simply

because of otherwise prohibitively high computing costs. Gradient-based minimization involving

larger numbers of design variables is feasible only, when the gradient is determined analytically as

e.g. in Drela’s method for the design of airfoils in Euler flow, which is based on Newton-iteration 3.

The most efficient approach to solve design problems formulated as optimization problems, seems

to be the approach based on optimal control theory, which is also commonly referred to as the

variational method, as described by Jameson for airfoil and wing design 9. Following this type of

approach (see e.g. Refs. 12, 10, 8, 7), a design method based on the Euler and Reynolds-averaged
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Navier-Stokes (RANS) equations has been developed at NLR (Ref. 14). The feasibility of the

method is investigated for transonic single- and multi-point design problems.

The design problem is solved by means of an iteration process, involving at each iteration step the

solution of a flow problem for the state variables, the solution of an adjoint problem for the adjoint

variables and the determination of a new estimate of the geometry. In terms of computational

costs this approach comes in line with the residual-correction approach because of the fact that

for a geometry update in principle only one flow problem and one adjoint problem (of about the

same computational effort as the flow problem) have to be solved.

The design methodology presented in this paper takes advantage of the availability of a flow

solver and an optimization routine that requires the function value and gradient. The gradient of

the aerodynamic functionals are computed by means of the variational method. The formulation of

the adjoint problem, the construction of an adjoint solver for obtaining the Lagrange multipliers and

the gradient, and the integration of the adjoint solver with the existing flow solver and optimization

routine form the main subject of the investigation.

This paper describes experiences obtained with applications of the present design method to

aerodynamic airfoil design problems utilizing a compressible inviscid flow model based on the

Euler equations and a compressible viscous flow model based on the RANS equations. The

capability of the approach to address multi-point design problems is demonstrated by considering

a two-point airfoil drag reduction problem for transonic flow.
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2 Formulation of the Gradient by means of the Variational Method

The design problems are posed as optimization problems involving aerodynamic functionals

representing the lift (Cl), drag (Cd), and pitching moment (Cm) coefficients. These are defined

in terms of the pressure coefficient Cp obtained from the flow variables Q which satisfy the flow

equations.

The design variables consist of geometric parameters � (defining the airfoil geometry) and an

angle of attack � (defining the orientation of the free stream with respect to the airfoil geometry).

The optimal values of � and � are obtained by means of a gradient-based optimization algorithm.

The gradients of the aerodynamic functionals with respect to the design variables � and � are

computed by means of the variational method.

The optimization problem being addressed can be written as follows1,

Minimize P(Q; �; �); (1)

Subject to:

A(Q; �; �) � 0;

G(�) � 0;

where P and A represent such aerodynamic functionals as lift, drag and pitching moment coef-

ficients, while the vector G represents geometric constraints. The geometric parameters � and

the angle of attack � are treated as the design variables, of which the optimal values are to be

determined.

Problem (1) is subject to the flow equations for a given (fixed) value of the Mach number and

Reynolds number, which impose an implicit dependency of the flow variablesQ upon � and �.

Problem (1) is to be solved by means of a gradient-based optimization algorithm. The gradient

of G can be obtained rather easily by direct analytical differentiation, whereas the gradients of

the aerodynamic functionals P and A are computed by means of the variational method. This

implies that an adjoint problem must be formulated, the solution of which is used for evaluating

the gradients. Figure (1) illustrates the nomenclature. The time-dependent flow equations can be

1yFor the sake of brevity, the Mach number and Reynolds number (in the case of viscous flow) do not appear because

these are assumed fixed.



- 8 -
TP 96748

written in the form:

@Q

@t
+ ~r � ~F = 0; in Ω; (2)

whereQ is the vector of conservative flow variables:

Q =

0
BBBB@

�

�u

�v

�E

1
CCCCA : (3)

At the steady-state, equation (2) becomes

~r � ~F = 0: (4)

The vector ~F represents the mass, momentum, and energy fluxes. The flow equations are subject

to the boundary conditions on the airfoil surface Sa, which can be expressed as a vector equation:

B = 0: (5)

For an inviscid flow, equation (2) represents the Euler equations, while equation (5) represents the

zero normal-velocity boundary condition such that B is a one-dimensional vector. For a viscous

flow, equation (2) represents the Reynolds-Averaged Navier-Stokes equations, while equation (5)

represents the no-slip and the adiabatic wall boundary conditions. In this case,B is a vector with

three elements.

For the design cases to be considered, a general form of aerodynamic functionals is assumed as

follows

F =
Z
Sa

 (p; �; �) dS: (6)

where  is a function of the pressure p, the design variables �, and the angle of attack �. The
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notation F applies to both P and A of the problem statement (1).

Employing the variational method means that the adjoint equation must be formulated, the solution

of which provides the Lagrange multipliers. These in turn are used in evaluating the gradient of

the functional with respect to the design variables � and �.

As p is obtained from Q which satisfies the steady-state flow equations, the functional F is

independent of the transient state. Therefore, it is sufficient to consider the steady-state flow

equations (4) and boundary condition (5) in the definition of a Lagrangian L as follows,

L =

Z
Sa

 dS +

Z
Ω
� � (~r � ~F) dΩ +

Z
Sa

� �B dS; (7)

where � and � are the Lagrange multipliers. � is a vector with four components defined in Ω,

each component of which may be considered as corresponding to a component of the conservative

flow variables Q. The Lagrange multiplier � is defined on Sa. In the case of inviscid flow, �

consists of one element, whereas for viscous flow � consists of three elements.

In order to derive the adjoint and gradient equations, one must evaluate the variation of L, denoted

as �L, due to the independent variables �, � ,Q, � and �:

�L = �L� + �L� + �LQ + �L� + �L�:

The notation �L� refers to the variation of �L implied by the variation of � while the other

variables are kept fixed, and similarly for �L� , etc. The contribution of the variation of � and �

are eliminated as the flow equation (4) and the boundary condition (5) are satisfied. The adjoint

equation and boundary conditions are obtained by setting �LQ equal to zero, which also leads to

the relations between � and �.

After solving the flow and the adjoint equations, providing the values ofQ, � and � , the variation

of L becomes

�L = �L� + �L�: (8)

By direct analytical differentiation, the gradient of F with respect to � and to � can be obtained.
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These are expressed as, respectively,

dF

d�
= lim

��!0

�L�

��
=
@L

@�
; (9)

and

dF

d�
= lim

��!0

�L�

��
=
@L

@�
: (10)

For the case with a fixed (design) lift coefficient, the following condition holds�
dCl

d�

�
��+

�
dCl

d�

�
� �� = 0:

This implies that one variable out of the set of the components of � and � can be chosen to be

dependent. A convenient choice is to take � as the dependent variable, giving

�� = �

�
dCl

d�

�
�1 �dCl

d�

�
� ��: (11)

The variation of the Lagrangian is now expressed as

�L = �L� + �L� =

�
dF

d�

�
� �� +

�
dF

d�

�
��: (12)

Substitution of equation (11) gives

�L =

�
dF

d�

�
� �� �

�
dF

d�

��
dCl

d�

�
�1 �dCl

d�

�
� ��:

Hence, for a fixed Cl the gradient of F with respect to the design variables � can be obtained as

�
dF

d�

�
Cl

=
dF

d�
�

�
dF

d�

��
dCl

d�

�
�1 �dCl

d�

�
; (13)

with
�
dF

d�

�
given by equation (9), and

�
dF

d�

�
by equation (10). The expressions for

�
dCl

d�

�
and�

dCl

d�

�
are obtained by taking Cl for F .
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3 Computer Implementation

The present investigation makes use of the HI-TASK code of the National Aerospace Laboratory

NLR (Refs. 1 and 5). HI-TASK, which stands for Highly-Integrated Turbulent Airflow Simulation

Kernel, is basically a 2-D flow solver for single-element airfoil applications based on the Reynolds-

averaged Navier-Stokes (RANS) equations, employing the Baldwin-Lomax turbulence model.

The Euler mode of the code is obtained by dropping the viscous fluxes.

The discretization in HI-TASK is based on a cell-vertex finite volume scheme equivalent with

a central difference scheme. The steady-state flow solution is obtained by integrating the time-

dependent flow equations using the five-stage Runge-Kutta scheme with a V -cycle multigrid

procedure. For the stability of the central-difference scheme, 4-th order dissipation terms are in-

troduced, while 2-nd order dissipation terms are added for capturing shock waves. The dissipation

terms are formulated based on the work of Jameson et al. 11.

The discretization of the adjoint equations and the computer implementation are chosen such that

maximum advantage is taken of the existing features of HI-TASK. The philosophy is to treat the

flow solver as a black box. This leads to a similar discretization scheme for solving the adjoint

equation as that for solving the flow equations. Also, the dissipation terms can be formulated in

the same way as that for the flow equations.

The present investigation employs the optimization routine FSQP, which stands for Feasible

Sequential Quadratic Programming. This routine is based on a modified Sequential Quadratic

Programming (SQP) algorithm capable of generating feasible iterates. The routine requires as

input the objective and constraint function values and the gradients. The detailed description of the

algorithm used in FSQP is given in Ref. (15). Apart from the consideration that SQP is generally

known to be the most cost-effective method for non-linear constrained optimization, the reasons

for selecting FSQP are the followings,

(i) FSQP generates feasible iterates with respect to constraints. This has a practical advantage

that,—if the optimization process should be stopped at an intermediate stage—, the last

iterate would still be useful in the sense that it would represent an improvement over the

initial design while the constraints are satisfied.

(ii) If the initial design provided by the designer is infeasible for some inequality constraints,

FSQP first generates a feasible iterate before minimizing the objective. This offers conve-

nience if the designer is primarily concerned about the constraints.

(iii) FSQP has the capability of solving multi-objective optimization problems in a min-max
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sense. This is suitable for dealing with multi-point aerodynamic design to be described in

Section 4.

In order to solve an airfoil design problem, the airfoil geometry must be parameterized. A

parameterization scheme should satisfy the following requirements:

(i) In principle there should be no restriction on the possible number of design variables. This

is desirable in order not to restrict the design space to a certain family of airfoil shapes.

(ii) The surface curvature must be continuous to ensure smoothness of the airfoil surface.

This is desirable so as to avoid numerical irregularities that could be implied by surface

discontinuities.

(iii) The design variables should preferably have (in an approximate sense) a linear relationship

with the surface curvature. This is expected to have an effect of reducing the non-linearity

of the optimization problem, considering that, for local subsonic flow, a local variation of

the surface curvature is proportional (in an approximate sense) with the local variation of

pressure (Refs.2, 13), while the aerodynamic functionals of interest are defined in terms of

pressure. This consideration can be expected also to be relevant for transonic conditions

because the flow is locally subsonic over a large part of the airfoil surface.

In the present investigation, these requirements have led to a shape parameterization scheme which

generates an airfoil geometry with C2 surface continuity (Ref. 14).
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4 Computational Results

In order to demonstrate the suitability of the present design method for multi-point airfoil design

problems, Case ME and MN are defined for an inviscid and a viscous flow, respectively. The

design points are specified as follows:

� Design Point 1 (DP-1): Cl = 1:, M1 = 0:72, Re = 6:5� 106.

� Design point 2 (DP-2): Cl = 0:5, M
1
= 0:78. Re = 6:5� 106.

The Reynolds number, Re, is not applicable in the Euler case. The objective is to reduce the

pressure drag (Cd1 and Cd2 ) while satisfying constraints on the pitching moments (Cm1 and Cm2)

in both design points. Geometric constraints are imposed, limiting the value of the leading-edge

radius, the trailing-edge angle, and the cross-sectional area of the airfoil. The optimization starts

with an initial airfoil specified as a best-fit of the RAE 2822 airfoil. The optimization begins with

all constraints active.

In order to be representative for a real multi-disciplinary design practice, in which compromise

might have to be accepted, it is assumed that, in reducing the drag, a certain amount of violation

of the pitching moment constraint (i.e. the aerodynamic constraint) is allowed in favour of strictly

satisfying the geometric constraint (e.g. due to structural requirements). Then, the multi-point

design problem can be posed as a fuzzy optimization problem. Here, the so-called membership

function � , 0 � � � 1, is introduced for representing the aerodynamic objective and constraint.

The form of membership function for the drag to be minimized is depicted in Figure 2(a), while

that for the pitching moment constraint is shown in Figure 2(b). These apply to both design

points, which can be interpreted as that a 75% reduction of drag is desirable while allowing a 10%

violation of the pitching moment constraints.

In a fuzzy optimization involving a single membership function, one attempts to achieve the

highest possible value of the membership function. If there are n membership functions, one

attempts to achieve the highest possible value of the minimum amongst the membership functions,

i.e.

Maximize min(�1; :::; �n):

This can be interpreted as that, at any intermediate stage of optimization process, the criterion with

the worst quality (i.e. with the smallest membership function) will be improved (i.e. maximized)

ignoring (temporarily) the other criteria.
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For the design case being considered, the fuzzy optimization problem can be expressed as a

min-max problem as follows,

Minimize max(��(Cd1);��(Cd2);��(Cm1);��(Cm2)) (14)

subject to: G � 0:

where G is the vector of geometric constraints. It is noted that the equivalent min �max form

has been chosen in order to maintain the compatibility with the optimization routine FSQP which

is a minimizer.

4.1 Multi-point design based on the Euler equations

The drag and pitching moment coefficients are shown in Figure 3. An empty circle, referred to

as "Evaluated", represents one geometry and one flow analysis. A cross, referred to as "New

iterate", indicates that the corresponding geometry and flow analysis are used by the optimization

algorithm as a basis for finding the next iterate. The gradient needs to be computed only for the

crossed circles. The process from one crossed circle to another represents a so-called line search.

As can be seen in theCp distributions, the shock waves are indeed weaker in the final iterate. The

optimization process was stopped after a maximum number of 20 flow analyses in a design point

was exceeded. The obtained airfoil geometry is shown in Figure 4(a).

Figure 4(b) shows the history of the membership functions. In fuzzy optimization, the minimum

amongst the membership function values corresponds to the most important criterion. The fig-

ure indicates that the membership function value of the pitching moment constraints is not the

minimum for most iterates. Hence, for most iterates, the pitching moment constraints are not

considered as important. This can be interpreted as that the 10% "leeway" provides ample room

for the reduction of drag. The figure also indicates that, in the early stages of optimization, the

drag in DP-2 was considered more important than in the other design point. This role is switched

at the fifth iteration, where the first design point became more important. It is also indicated that

taking one criterion (objective or constraint) as the most important one, does not necessarily mean

that the other criteria must be compromised (e.g., from the 3rd to the 4th iteration all criteria are

improved). As a matter of fact, the change in membership function from one iteration to another

gives an indication of the "sensitivity" of the associated criterion with respect to the most important

one.

In the final result a balanced reduction of drag is obtained, i.e. about 25% and 28% reduction in the

first and the second design point, respectively. This is accompanied by about 3% and 5% violation
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of the pitching moment constraints in the respective design points. The balanced reduction of

drag is an expected result, because the drag values in the two design points are initially considered

as equally bad, while it is desired to obtain an equal amount of improvement (75% reduction of

drag).

4.2 Multi-point design based on the RANS equations

The drag and pitching moment coefficients are shown in Figure 5. Like in the Euler case, a

balanced reduction of drag values has again been obtained, but with a smaller amount than for

the inviscid case. About 12% and 10% drag reduction in the first and the second design point

is achieved, respectively. This is accompanied by about 7% and 7.5% violation of the pitching

moment constraints in the respective design points. In agreement with the drag reduction, the

shock waves appear to be slightly weaker in the final Cp distributions.
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5 Conclusions

The results given above indicate that the present method represents a viable approach for solv-

ing constrained transonic aerodynamic design (pressure drag reduction) problems, based on the

compressible inviscid and viscous flow models described by the Euler and the RANS equations,

respectively. The possibility for incorporating both aerodynamic and geometric constraints is

of great practical value, since in real design practice one is always confronted with such design

constraints.

The computational results indicate that (both aerodynamic and geometric) constraints tend to be

more stringent in case of the viscous (RANS) flow model. This is to be expected, since in the

Euler case there are no restrictions on the local pressure gradient while in the RANS case these

are limited by the ability of the boundary-layer to cope with them without (significant) separation.

The complexity of multi-point design problems is not only incurred by conflicting aerodynamic

objectives, but also by restrictions imposed by aerodynamic constraints. The fuzzy optimization

method appears to be effective in alleviating the level of problem complexity, because the objec-

tives and constraints are treated in the same way as the set of criteria which have to be achieved.

This is measured in terms of membership functions. The results demonstrate that allowing rela-

tively small constraint violations can lead to significant improvements in the objectives.

In the test cases considered in the present investigation, the design space was defined by 11

design variables. The sensitivity of the solutions to the number of design variables has not been

investigated.

The present methodology is not limited to two-dimensional single airfoil problems, but can be

extended in order to deal with multi-component airfoils and three-dimensional design problems.

This would imply a drastic increase in the number of design variables. Then, there might be a

need for an optimization routine dedicated to large-scale optimization problems.
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(f) Cp distribution at DP-2

Fig. 3 Computational result for Case ME
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Fig. 4 Computational result for Case ME
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(f) Cp distribution at DP-2

Fig. 5 Computational result for Case MN


