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Problem area 

Aviation companies use prognostics for logistics and maintenance, but data fusion 
between these domains is rare. Supply chains have short planning horizons and 
vendors store extra spare parts at strategic locations for security of delivery. 
However, this approach results in additional cost and large logistics footprints. 
Accurate and timely predictions of failures and failure modes enable just in time 
spare parts delivery and efficient parts repair. 

Description of work 

The project Maintenance Add-on to Logistics (MATLOG) combines predictive 
maintenance and predictive logistics to reduce cost and logistics footprints. 
Diagnostics models and prognostics models for maintenance, as well as multi-
echelon models for logistics are developed as add-ons to a logistics management 
system. These items are combined to prove the concept of enriching logistics 
planning with information about forthcoming component failures to increase the 
planning horizon and reduce the troubleshooting workload. 
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Results and conclusions 

Component histories, flight data and maintenance records are combined to enrich 

data. Two line replaceable components are selected for case studies. Failures are 

predicted through binary classification. Supervised and unsupervised learning 

approaches are evaluated to obtain diagnostics models. Multi-echelon models are 

developed for network stock optimisation. All models are used as plug-ins to a 

logistics management system. 

 

Prognostics models provide triggers for components that are likely to fail within 3 

days with a confidence level above a preset threshold. Multi-echelon models 

calculate significantly reduced network stock and repair lead time with 3 days 

warning time, while maintaining an aggregate service level of 95% and taking up to 

10% false negatives into account.  

 

Conclusions are that: 1) material condition data is required for accurate diagnostics 

and prognostics; 2) accuracy and timeliness of failure predictions are key drivers of 

network stock; and 3) data-driven failure diagnostics, combined with multi-echelon 

models and a logistics management system, reduce lead times and cost of repairs. 

Applicability 

The concept of data fusion between logistics and maintenance is applicable to 

asset management of aircraft, infrastructure, installations, vehicles and vessels. A 

constraint to the concept is the presence of a geographically distributed supply 

chain for repairables. 
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Abstract 

Aviation companies use prognostics for logistics and maintenance, but data fusion between these domains is rare. 
Supply chains have short planning horizons and vendors store extra spare parts at strategic locations for security of 
delivery. However, this approach results in additional cost and large logistics footprints. Accurate and timely 
predictions of failures and failure modes enable just in time spare parts delivery and efficient parts repair.  
 
Component histories, flight data and maintenance records are combined to enrich data. Two line replaceable 
components are selected for case studies. Failures are predicted through binary classification. Supervised and 
unsupervised learning approaches are evaluated to obtain diagnostics models. Multi-echelon models are developed 
for network stock optimisation. All models are used as plug-ins to a logistics management system. 
 
Failure of a shop replaceable component in a main landing gear and a valve is predicted. Average accuracy and recall 
for the former is 75%, whereas the latter scores 60%. Available data does not generate reliable diagnostics models. 
Multi-echelon models calculate significantly reduced network stock and repair lead time with 3 days warning time, 
while maintaining an aggregate service level of 95% and taking up to 10% false negatives into account. 
 
Conclusions are that: 1) material condition data is required for accurate diagnostics and prognostics; 2) accuracy and 
timeliness of failure predictions are key drivers of network stock; and 3) data-driven failure diagnostics, combined with 
multi-echelon models and a logistics management system, reduce lead times and cost of repairs. 
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Abbreviations 

ACRONYM DESCRIPTION 

ADI Advance Demand Information 

AI Artificial Intelligence 

ALIS Autonomic Logistics Information System 

AOG Aircraft On Ground 

CMMS Computerised Maintenance Management System 

DT Decision Tree 

LRC Line Replaceable Component 

MATLOG Maintenance Add-on To Logistics 

METRIC Multi-Echelon Technique for Recoverable Item Control 

ML Machine Learning 

MLG Main Landing Gear 

NN Neural Network 

OLS OneLogistics System 

PdM Predictive Maintenance 

PHM Prognostics and Health Management 

PRC Percentage Cost Reduction 

PSI Product Support Integrator 

RF Random Forest 

SRC Shop Replaceable Component 

SVM Support Vector Machine 

TCO Total Cost of Ownership 

XGBoost Extreme Gradient Boosting 

 

 

 
  



 
 
 

6 

NLR-TP-2021-023  |  October 2021 

 

1 Introduction 

The Netherlands is a hotspot for logistics in Europe when measured with the aggregated logistics performance index 
(Arvis et al., 2018). Service providers add value to supply chains with their networks and regional warehouses, while 
some want to become a regional control tower. This concept implies connecting streams of goods and information to 
facilitate efficient collaboration between service providers. The regional control tower could be enhanced through the 
application of prognostics.         
 
Prognostics are increasingly used in logistics and maintenance, but data fusion between these domains is rare. One 
example is the F-35 Air System, which comprises of the F-35 Air Vehicle and the Autonomic Logistics Information 
System (ALIS). Its Prognostics and Health Management (PHM) system is a key enabler for autonomic logistics, which 
features on-board enhanced diagnostics and off-board prognostics. The objective of autonomic logistics is “to 
generate the required number of sorties at the lowest cost” (Hess, Calvello and Dabney, 2004). 
 
Supply chains sometimes have relatively short planning horizons and store extra spare parts in warehouses at 
strategic locations to fulfill customer demand with acceptable delivery times. However, this approach results in 
additional logistics cost and a larger logistics footprint. Reliable predictions of Line Replaceable Component (LRC) 
failures enable the supply chain to deliver spares just-in-time. The logistics process becomes more efficient due to a 
longer planning horizon. Even a one-day warning time can substantially reduce the network stock of spares. The 
hypothesis in this paper is: 
 

“The application of prognostics helps to reduce network stock, logistics cost and repair cost.” 
 
Models predict failures and failure modes of LRCs with sufficient accuracy. Failure mode in this context means the 
failed Shop Replaceable Component (SRC) within the LRC. Information about the moment of failure is used to reduce 
network stock and logistics cost, whereas information about the failure mode is used to reduce maintenance cost in 
terms of troubleshooting and repair. The aforementioned concept could be applied to asset management of aircraft, 
infrastructure, installations, vehicles and vessels. A constraint to the concept is the presence of a geographically 
distributed supply chain for repairables. This paper aims to prove the concept of a maintenance add-on to logistics for 
the European supply chain of a military aircraft program.    
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2 Literature survey 

2.1 Predictive maintenance 

Inside as well as outside the (aircraft) maintenance domain, business analytics play an essential role in Industry 4.0 
applications. To improve and support practical applications of predictive maintenance (PdM) solutions, Tiddens (2018) 
proposed a framework for optimally approaching the main problems of PdM applications based on the available data 
type, solution technique and goal of resulting solution. The approach of our study can be classified as a data driven 
model-based approach for diagnostic and prognostic purposes with access to asset history and usage data. As Tiddens 
(2018) states the data model-based approach relies on data analytics to extract and fuse features from various data 
sources and apply Machine Learning (ML) algorithms to derive patterns. 
 
A systematic literature review of machine learning methods applied to predictive maintenance is conducted by 
Carvalho et al. (2019). The literature explores common and state-of-the-art ML techniques applied to PdM. Notable 
information from their review is that Artificial Intelligence (AI) or ML approaches are increasingly applied in PdM 
applications and are proven to outperform classic statistical approaches. The authors conclude that the top 5 most 
used ML methods for PdM are: Random Forests (RF), Neural Networks (NN), Support Vector Machines (SVM) and k-
means clustering. Moreover, the most common data type used in the reviewed studies was vibration signals. 
 
Finally, to tackle aircraft domain specific PdM difficulties, Adhikari, Rao and Buderath (2018) propose a data driven 
diagnostics & prognostics framework. Similar to Tiddens (2018) the authors stress the importance of identifying 
features with sufficient prediction value with regards to component degradation levels. The proposed framework 
follows a common ML approach to PdM application with additional domain specific steps. Namely, Data pre-
processing, feature engineering, anomaly detection, fault isolation and identification. 

2.2 Predictive logistics 

The literature survey focuses on existing methods and models for inventory control optimization in a multi-echelon 
spare parts distribution system, subject to an availability constraint. Furthermore, the literature survey covers existing 
methods to include advance demand information (i.e. predictions of component failures) and lateral transhipments in 
these inventory control models.  
 
The typical problem of repairable inventory systems is concerned with the optimal stocking of repairable components 
at local and central warehouses. The central warehouse manages repairs of failed components returned from local 
warehouses while providing some predetermined service level. The objective of such a system is typically minimizing 
the backorders and hence the number of grounded aircraft, subject to a budget constraint.  
 
The Multi-Echelon Technique for Recoverable Item Control (METRIC) model represents a fundamental development in 
repairable inventory theory. Many repairable inventory theory models are based on Sherbrooke’s METRIC model for 
setting inventory levels and allocating components to achieve some desired level of expected backorders at the local 
warehouse level (Sherbrooke, 1968, 1986 & 2004). METRIC takes a system view of the repairable inventory problem, 
since it is concerned with setting the initial levels of inventory and the distribution of the inventory among the 
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warehouses so as to support a system-wide objective of minimizing backorders. A continuous one-for-one inventory 

replenishment policy is used. The repairable inventory problem faced by the METRIC model is identical to the problem 

at hand. Therefore, the METRIC model is selected as the baseline model.  

 

Demand lead times are the opposite of supply lead times for including Advance Demand Information (ADI) (Hariharan 

& Zipkin, 1995). The effect of a demand lead time on overall system performance is precisely the same as a 

corresponding reduction in the supply lead time. Predictions of LRC failures result in early warnings, which indicate 

that an SRC (e.g. a circuit board) within an LRC (e.g. a radio) is going to fail within a few days with a certain probability. 

The warning time is the time from the moment a warning is received until the moment the LRC fails. Therefore, by 

using the ADI of failures the inventory planner knows a few days in advance where an LRC will be needed with a 

certain probability. Based on this, the decision is made to ship a part from the central warehouse. Besides, the early 

warnings also specify the failure mode, so it is also known in advance which SRC will cause the LRC to fail. The repair 

shop can use this information to order the SRC that is needed for the repair earlier. Therefore, the warning time 

resulting from the ADI of failures, has to be included in the model as a reduction in the supply lead times.  

 

The imperfectness of the ADI has to be included in the model as well. This is done by making a distinction between 

false negatives and false positives. False negatives are LRCs that fail without advance warning and false positives are 

LRCs that fail later than predicted. For false negatives the result is no reduction in supply lead times, whereas for false 

positives there is a reduction in supply lead times, but the LRC is actually not needed yet. Topan et al. (2018) revealed 

that using imperfect ADI yields substantial savings, but only when the demand lead time is larger than the supply lead 

time. Furthermore, having fewer false negatives is more desirable than having fewer false positives and returning 

excess inventory is quite effective in coping with the consequences of false ADI, particularly for slow-moving items. 

The one-for-one inventory replenishment strategy can still be used, but the best way to incorporate ADI when using 

real-time condition-based sensor information is adopting a condition-based inventory policy (Lin et al., 2017; Li & 

Ryan, 2011).  

 

Finally, for including lateral transshipments the METRIC model must be extended with a new variable, namely the 

fraction of demand satisfied by lateral transshipments. Alfredsson & Verrijdt (1999) compared their model with lateral 

transshipments to the VARI-METRIC model and they found a maximum cost reduction of 43.9% and a minimum cost 

reduction of 13.2%. The results also show that in many cases the stock levels are lower, especially the central stock 

level. In addition, Kranenburg (2006) discussed a semi-conductor company and showed that using reactive lateral 

transshipments can save the company up to 50% of annual inventory related costs for spare parts. These results 

indicate that using lateral transshipments in a distribution network for service parts can be very beneficial. Therefore, 

the use of lateral transshipments is investigated for the spare parts supply chain of a military aircraft program. This is 

done by including lateral transshipments in the models and by comparing results to output from models without 

lateral transshipments. 
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3 Methods 

3.1 Predictive maintenance 

3.1.1 Approach 

Component histories, flight data and maintenance records are combined to generate a training and test set for this 
study. Namely, a historic time series for each unique component is constructed by summarizing the parameters of 
each flight (or cycle) into relevant features. This leaves one with a time series of damage/wear and maintenance 
features for each component from new state until failure. As mentioned previously, damage and wear are of 
cumulative nature, i.e. the component accumulates a certain amount of damage/wear until it fails. Therefore, the 
extracted usage and maintenance features are summed up accumulatively for each cycle to generate a cumulative 
feature set. To accomplish the latter, the selected features must be available for the majority of flights. Thus, the 
completeness of each components historical usage time series is of major importance to the quality of the training 
samples. 

Failure prognostics 

Note that for prognostic purposes, each flight from the historic time series is treated as a training sample for the 
binary classification model. We assuming that decisions should take place X cycles before the actual failure occurs to 
enable just-in-time spare parts delivery. Samples are labeled true if failure occurred X cycles later. Part of the effort 
includes determining an acceptable tradeoff between X and model performance (see Figure 1).  
 

 
Figure 1: Illustrative example for binary class labels where X = 3 

Failure diagnostics 

For diagnostics on the other hand, failure mode classification is done at a time when some failure is confirmed. 
Specifically, the samples used to obtain diagnostic models are the samples with parameters and features recorded at 
confirmed moments of failure. 

3.1.2 Data 

The dataset used for this study is taken from a record system which measures and records a variety of on-board digital 
and analog data. In addition to the operational data, maintenance related features as well as failure labels are 
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extracted from the maintenance logs. Both failure moment and reason are extracted to obtain labels respectively for 
failure prognostics and diagnostics. 

Usage features 

For the usage related features, the specific interest goes to the moment of touch-down during the landing, as this 
provides the relevant information for damage/wear done to the Main Landing Gear (MLG). Therefore, only processes 
have been selected that contain this moment at a sufficiently high sample rate. To determine the damage/wear done 
to the MLG during a landing, the most relevant data would be the strains in the MLG itself. Such direct measurement, 
however, is not available. Therefore, derived parameters have been selected. The applicable parameters are believed 
to be parameters related to forces on the MLG: aircraft weight and accelerations, both translational and rotational. 
Additionally, the flight angles during touch-down are related to the way the forces act on the MLG. One step further 
away from the strains are the aircraft velocities directly before touch-down, providing some measure for the landing 
severity. More general features like number of touchdowns are included as well. 

Maintenance features 

Key maintenance features are derived from the maintenance logs. For example, number of cycles since last inspection 
and number of time component is swapped from one aircraft to another. Additionally, features related to failure of 
other components related to the studied components are extracted as well. Finally, historic maintenance logs are 
merged with the usage data set to synchronize data points and enable generating cumulative maintenance features 
(see Figure 2). 
 

 
Figure 2: Overview of features available for this study (Green, yellow and red respectively correspond to available, 

partially available and not available) 
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3.1.3 Models 

Explainability of the machine learning models is key for practical acceptance and certification of the proposed 
solution. Therefore, we mainly focus on obtaining so called white-box models such that (partial) decision logic can be 
extracted and validated by domain experts. 

Supervised learning 

For this study we explore a supervised learning approach for components where labels can be determined from the 
available data. Established models such as Decision Trees (DT), Random Forests (RF) and eXtreme Gradient Boosting 
(XGBoost) are trained for prognostic and diagnostics purposes. Binary classification for prognostics is single label while 
the failure mode classification for diagnostics is multilabel. The latter means a component can fail due to multiple 
causes. DTs and RFs are inherently capable of multilabel classification. To enable multilabel classification for XGBoost 
we employ the One-vs-Rest method. 

Unsupervised learning 

Certain components might have a missing description of failure. As part of this study we attempt to determine classes 
of these missing labels in an unsupervised fashion. Dimensionality reduction techniques, such as principal component 
analysis, are employed to visually validate clustering results. 

3.1.4 Experiments 

Common Machine Learning (ML) practices are employed for data preparation, model training, (cross)validation, 
testing and parameter tuning. In this section we give a brief overview of the experimental setup. 

3.1.4.1 Data split 

For prognostic models: training, validation and test sample is split by unique component ID such that the trained 
model is evaluated on historic samples from components it has not seen during training. 

3.1.4.2 Performance measures 

Considered inventory models require a high rate of true positive predictions therefore in this paper we focus present 
performance results in overall accuracy and recall. For multilabel diagnostic classifiers, we expose performance based 
on sample accuracy and hamming loss. For more details on these performance metrics we refer the reader to the 
literature. 
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3.2 Predictive logistics 

The multi-echelon models are based on the METRIC model that is selected from literature. First, the multi-echelon 
model without ADI is designed. This model determines the optimal stock levels for the supply chain when ADI of 
component failures is not used. This model serves as the baseline. Next the multi-echelon model with ADI is designed. 
Finally, the model with ADI and lateral transhipments is designed. 

3.2.1 Model description 

There is a non-empty set 𝐽𝐽loc of local warehouses, numbered 𝑗𝑗 = 1, . . . , �𝐽𝐽loc�. Each local warehouse serves a number of 
aircraft, which is stated in parentheses in Figure 3. Each aircraft consists of a non-empty set of repairable items, which 
are called LRCs, numbered 𝑖𝑖 = 1, . . . , |𝐼𝐼|. The total stream of failures of item 𝑖𝑖 ∈ 𝐼𝐼 as observed by local warehouse 𝑗𝑗 ∈
𝐽𝐽loc constitutes a Poisson process with a constant rate 𝜆𝜆𝑖𝑖,𝑗𝑗 ≥ 0, as indicated in Figure 3. For at least one item 𝑖𝑖 and 
local warehouse 𝑗𝑗, it holds that 𝜆𝜆𝑖𝑖,𝑗𝑗 > 0. Apart from the local warehouses, there exists a central warehouse, denoted 
by index 0. Define 𝜆𝜆𝑖𝑖,0 = ∑ 𝜆𝜆𝑖𝑖,𝑗𝑗𝑗𝑗∈𝐽𝐽loc  as the total demand rate for item 𝑖𝑖 at the central warehouse. The demand at the 

central warehouse is also a Poisson process, since it is the superposition of the Poisson demand processes at the local 
warehouses. Let 𝐽𝐽 denote the set of all stock points, i.e., 𝐽𝐽 = {0} ∪ 𝐽𝐽loc.  
 
If an item 𝑖𝑖 fails at a local warehouse 𝑗𝑗, a spare part stocked at the local warehouse 𝑗𝑗 is used to replace the defective 
item, if local warehouse 𝑗𝑗 has a part on stock. Otherwise, a backorder arises, until a spare part becomes available from 
the central warehouse and this results in downtime for the aircraft. Upon failure, also immediately a replenishment 
order is placed at the central warehouse. The replenishment order arrives after a deterministic lead time 𝐿𝐿𝑖𝑖,𝑗𝑗 (supply 
lead time), if stock for item 𝑖𝑖 is available at the central warehouse. Otherwise, the order is backordered until a spare 
part becomes available from a repair shop. It is assumed that, for each item 𝑖𝑖 ∈ 𝐼𝐼, backordered replenishment orders 
from the local warehouses at the central warehouse are fulfilled according to first-come first-served policy.  
 
The defective part at the local warehouse is immediately sent to the assigned repair shop to be repaired there. It takes 
a certain random lead time with mean 𝐿𝐿𝑖𝑖,0 (i.e. repair lead time) before the defective item is repaired and back in 
stock at the central warehouse. Repaired parts are considered as new parts. Equivalently, from a modeling point of 
view, the defective part can be scrapped and after a certain random lead time, a newly purchased part is back in stock 
at the central warehouse.  
 
Notice that each item 𝑖𝑖 at each stock point 𝑗𝑗 is controlled according to a one-for-one inventory replenishment 
strategy, with base stock level 𝑆𝑆𝑖𝑖,𝑗𝑗. The policy in the total network is defined by the |𝐼𝐼| × |𝐽𝐽| matrix S, consisting of 
elements 𝑆𝑆𝑖𝑖,𝑗𝑗. Each column in this matrix, denoted by a vector S𝑗𝑗, consists of all base stock levels at stock point 𝑗𝑗 ∈ 𝐽𝐽. 

3.2.2 Assumptions 

These assumptions are made in the model: 
- Demands for the different items occur according to a stationary Poisson process. 
- All items are repaired successfully and there is no scrapping of items. 
- There are no lateral transhipments in the distribution network (relaxed later). 
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- Repair lead times for different items are independent and random. 
- For each item, the supply lead times are assumed to be deterministic. 
- A one-for-one inventory replenishment policy is applied for all items. 
- Replenishment orders at the central warehouse are fulfilled in first-come first-served order. 
- Ample servers are available at the repair facility, hence no waiting queue is present before repair is started. 
- The probability of failure of one item is independent of failures occurring for other items. 
- Each item failure is caused by a failure of at most one single subcomponent. 
 

 
Figure 3: Supply chain including notations for a military aircraft program 

3.2.3 Optimization problem 

Inventory investment cost 𝑐𝑐𝑖𝑖inv is counted for every item 𝑖𝑖 put on stock, and the aggregate inventory investment costs 
are given by: 

𝐶𝐶(S) =  ∑ ∑ 𝑐𝑐𝑖𝑖inv
𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 𝑆𝑆𝑖𝑖,𝑗𝑗        

 
The expected number of backorders for an item 𝑖𝑖 ∈ 𝐼𝐼 at local warehouse 𝑗𝑗 ∈ 𝐽𝐽loc at an arbitrary point in time at the 
long run is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗(𝑆𝑆𝑖𝑖,0, 𝑆𝑆𝑖𝑖,𝑗𝑗),. Therefore, the aggregate expected number of backorders is: 
 
    𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗�S0, S𝑗𝑗� =  ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,𝑗𝑗(𝑆𝑆𝑖𝑖,0, 𝑆𝑆𝑖𝑖,𝑗𝑗)𝑖𝑖∈𝐼𝐼       
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At local warehouse 𝑗𝑗, there is a maximum level 𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗
obj given for the aggregate expected number of backorders. The 

goal of the METRIC model is to determine optimal stock levels that minimize the total inventory investment costs 
subject to a target for the expected number of backorders per local warehouse. The optimization problem is 
formulated as follows: 
 

Min 𝐶𝐶(S) 
Subject to 𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗�S0, S𝑗𝑗� ≤  𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗

obj, ∀𝑗𝑗 ∈ 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙    
𝑆𝑆𝑖𝑖,𝑗𝑗 ∈  N0, ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈  𝐽𝐽, 

 
where N0 denotes all positive integers starting from 0. 

3.2.4 Greedy algorithm 

Feasible solutions can be obtained in an efficient way via a Greedy procedure similar to the procedures described in 
Wong et al. (2007). The basic idea of the Greedy algorithm is the following. For each level of central stock and each 
local warehouse the expected backorders must be computed as a function of the local stock. For each level of central 
stock, the optimal allocation of the units of stock to the several local warehouses must be determined, so as to 
minimize the sum of expected backorders at all local warehouses. This is accomplished by a marginal allocation. At 
each step, the next unit of stock is added to that local warehouse where it will cause the largest decrease in expected 
backorders.  

3.2.5 Advance demand information 

The warning time resulting from the ADI of a component failure has to be included in the model as a reduction in the 
supply lead time (Hariharan & Zipkin, 1995). The variable that will be used for the warning time is 𝐿𝐿𝑖𝑖,𝑗𝑗war. Therefore, the 
new supply lead times for satisfying a demand are max{𝐿𝐿𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑖𝑖,𝑗𝑗war, 0} for the central warehouse. The imperfectness of 

the ADI has to be included in the model as well. This is done by making a distinction between false negatives and false 
positives. False negatives result in backorders for Aircraft On Ground (AOG) situations when the local warehouse has 
no stock and do not reduce supply lead times. False positives lead to reduced supply lead times, but components are 
actually not needed yet. If, for example, the false negative percentage is 10%, the supply lead times for the central 
warehouse become �0.9 × max�𝐿𝐿𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑖𝑖,𝑗𝑗war, 0�� + �0.1 × 𝐿𝐿𝑖𝑖,𝑗𝑗�. 

 
Until this point only the effect of warning time on the required stock levels is accounted for. However, early warnings 
also specify the failure mode of an LRC (i.e. the Shop Replaceable Component (SRC) causing the failure). The repair 
shop can use this information to order the SRC needed for the repair earlier in time. The effect of warning time on the 
repair lead time is added. Simulation models are developed for the situations with and without warning time where 
the repair lead time is simulated. From these simulations, the average repair lead time can be determined in both 
situations. At this point the effect of warning time on the repair lead time is known. The average repair lead time with 
and without warning time is then used in the designed multi-echelon models as input variable. The multi-echelon 
models will give the required stock levels as output for both situations. Therefore, the effect of ADI on the repair lead 
time and in turn on the required stock levels is determined. 
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3.2.6 Lateral transhipments  

The same two-echelon model is considered as before, but now the following alternative option is considered to satisfy 
a demand for an item 𝑖𝑖 ∈ 𝐼𝐼 at local warehouse 𝑗𝑗 ∈ 𝐽𝐽loc if local warehouse 𝑗𝑗 is out of stock; lateral transshipment from a 
local warehouse. The variables used are 𝐿𝐿𝑖𝑖,𝑗𝑗,𝑘𝑘

lat  for the lateral transshipment lead time, and 𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘
lat  for the costs of the 

lateral transhipment. The procedure is as follows. First, the stock is checked at the central warehouse. If the central 
warehouse has an LRC on stock then the demand is satisfied by the central warehouse. If the central warehouse is out 
of stock, then the stocks are checked at one or more other local warehouses 𝑘𝑘 ∈ 𝐽𝐽loc, 𝑘𝑘 ≠ 𝑗𝑗, that have an LRC on stock. 
If one of these local warehouses has an LRC on stock, then the demand is immediately coupled to that item and the 
LRC is delivered at the required place. If two or more local warehouses have an LRC on stock, then the location with 
the lowest demand rate is chosen as the sending source because this location has the lowest backorder probability 
and the least impact on the aggregate availability level. If none of these local warehouses have an LRC on stock, then 
the demand is backordered and this results in an AOG situation. The demand is satisfied as soon as a part becomes 
available from a repair shop at the central warehouse. 
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4 Results 

4.1 Predictive maintenance 

The purpose of the failure prediction model we aim to obtain is to serve as a trigger mechanism for a logistic model, 
which in turn enables just-in-time delivery and inventory optimization. Therefore, the objective of our experiments 
was to determine if a reliable model can be obtained and for which prediction time window, i.e. how many cycles 
before a failure occurs can we accurately predict. Moreover, to enable further optimization of the logistic chain this 
study aims to obtain diagnostic models for failure classification as well. Two components are considered, namely a 
landing gear component and a pressure valve for respectively prognostics and diagnostics. 

4.1.1 Prognostics 

Prognostic model results are presented below for the landing gear component. Prediction window of X cycles 
corresponds to the binary classification if a component is predicted to fail within X cycles. 

Landing gear 

As mentioned previously, model training and parameter tuning is performed using 5-fold group split cross-validation 
on a time series corresponding to 160 unique landing gear components. To deal with the class imbalance only samples 
recorded no longer that 50 cycles prior to failure are considered. The best results are presented in Tables 1 and 2 for 
the landing gear and valve respectively. 
 

Table 1: Summary of binary classification model results after model parameter tuning for the landing gear component  
(component failure within next X cycles) 

Model Prediction window Accuracy Recall 
Decision Tree 5 cycles 63 % 58 % 

10 cycles 78 % 87 % 
Random Forest 5 cycles 70 % 71 % 

10 cycles 79 % 80 % 
XGBoost 5 cycles 73 % 67 % 

10 cycles 80 % 75 % 
Average 5 cycles 68 % 65 % 

10 cycles 79 % 80 % 

 
One can observe that better results were obtained with a prediction window of 10 cycles compared to 5 cycles prior 
to failure. However, individual (10 cycle window) models do not show significant deviation from the average 
performance of 79% accuracy and 80% recall. Thus, the differences may be due to a lucky test set split. 
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Pressure valve 

Similar to the landing gear, data is split using 5-fold cross-validation by (50) unique valve components. However, for 
the valve we were only able to obtain random forest and XGBoost models that do not overfit to the training data 
entirely. However, the performance of the best obtained model is poor. This might be due to the low prediction value 
of the available features with regards to the component degradation. 
 

Table 2: Summary of binary classification model results after model parameter tuning for the valve component  
(component failure within next X cycles) 

Model Prediction window Accuracy Recall 
Random Forest 5 cycles 65 % 38 % 

10 cycles 63 % 46 % 
XGBoost 5 cycles 67 % 33 % 

10 cycles 61 % 60 % 

 

4.1.2 Diagnostics 

The performance results of the obtained diagnostic models for the valve component are given below for both the 
unsupervised and supervised learning approach. Recall that only (50) samples at moment of failure are used for the 
diagnostic models.  

Unsupervised models 

Dimensionality reduction of the available features combined with the available multilabel failure modes of the valve 
indicate there are no clear clusters. 

Supervised models 

The imbalance of labels for the considered failure modes has led to poorly performing diagnostic models which overfit 
to the imbalance of the individual labels. This can be observed from the results in Table 3 where the overall sample 
accuracy is relatively low while the hamming loss is low as well. Furthermore, the poor performance of Random Forest 
and XGBoost is likely due to high correlation of the available features. These models profit from a large number of 
features. 
 

Table 3: Summary of multilabel failure classification model results, after model parameter tuning, for the valve 
component 

Model Sample Accuracy Hamming Loss 
Decision Tree 20 % 27 % 
Random Forest 33 % 22 % 
XGBoost 20 % 22 % 
R Neural Net 53 % 13 % 
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4.2 Predictive logistics 

The numerical results are obtained by implementing the optimization problem and corresponding Greedy solution 
algorithm. Furthermore, simulations are developed to validate the results of the different multi-echelon models. 

4.2.1 Base model 

The model results in Table 4 show that the base model requires a network stock of 17 LRCs and achieves an availability 
level of 95.9%. 9 LRCs are kept in stock at the central warehouse and every local warehouse keeps 1 LRC in stock, i.e., 
𝑆𝑆𝑖𝑖,0 = 9 and 𝑆𝑆𝑖𝑖,𝑗𝑗 = 1. These results are the baseline results.  

 

Table 4: Base model output for aggregate availability 

Stock point 𝑱𝑱 Stock levels 
𝑺𝑺𝒊𝒊,𝒋𝒋,𝑺𝑺𝒊𝒊,𝟎𝟎 

Expected 
availability 

Expected 
inventory 

Expected 
backorders 

Expected 
waiting time 

Local warehouse 1 1 97.3% 0.97 0.0004 0.0580 
Local warehouse 2 1 98.6% 0.99 0.0001 0.0262 
Local warehouse 3 1 98.5% 0.98 0.0001 0.0257 
Local warehouse 4 1 95.6% 0.96 0.0010 0.0906 
Local warehouse 5 1 93.6% 0.94 0.0022 0.1247 
Local warehouse 6 1 98.6% 0.99 0.0001 0.0237 
Local warehouse 7 1 95.7% 0.96 0.0010 0.0774 
Local warehouse 8 1 98.9% 0.99 0.0001 0.0266 
Central warehouse 9 95.9% 2.95 0.2028 3.2442 

4.2.2 Model with advance demand information 

The model results in Table 5 show that including ADI of component failures in the base METRIC model results in a 
significant reduction of the network stock and therefore, in a significant reduction of the inventory investment costs. 
When facing perfect ADI, i.e., 3 days warning time without false negatives, the model with ADI is the best model to 
use. This model results in a network stock of 10 LRCs, a 96.7% availability level, and an inventory investment reduction 
of 41.2% compared to the base model. All 10 LRCs should be kept in stock at the central warehouse (centralized 
allocation), i.e., 𝑆𝑆𝑖𝑖,0 = 10 and 𝑆𝑆𝑖𝑖,𝑗𝑗 = 0. 
 

Table 5: Output model with warning time for aggregate availability 

Warning time 𝑳𝑳𝒊𝒊,𝒋𝒋war (days) 
                                         0                           1                          2                          3                          4                          5 

Local warehouse 1 1 1 0 0 0 0 
Local warehouse 2 1 0 0 0 0 0 
Local warehouse 3 1 0 0 0 0 0 
Local warehouse 4 1 0 0 0 0 0 
Local warehouse 5 1 0 0 0 0 0 
Local warehouse 6 1 0 0 0 0 0 
Local warehouse 7 1 0 0 0 0 0 
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Warning time 𝑳𝑳𝒊𝒊,𝒋𝒋war (days) 
                                         0                           1                          2                          3                          4                          5 

Local warehouse 8 1 0 0 0 0 0 
Central warehouse 9 13 11 10 10 9 
Network stock 17 14 11 10 10 9 

4.2.3 Model with lateral transhipments 

 
When facing imperfect ADI, i.e., 3 days warning time with 10% false negatives, the model with ADI and lateral 
transhipments is the best model to use (see Table 6). This model results in a network stock of 11 LRCs, a 95.8% 
availability level, and an inventory investment reduction of 35.3% compared to the base model. 3 LRCs should be kept 
in stock at the central warehouse and every local warehouse should keep 1 LRC in stock (decentralized allocation), 
i.e., 𝑆𝑆𝑖𝑖,0 = 3 and 𝑆𝑆𝑖𝑖,𝑗𝑗 = 1. It can be concluded that using reactive lateral transshipments between the local warehouses 
almost neutralize the negative effect of the false negatives. 

 

Table 6: Simulation results using min BO, 3 days warning time with 10% false negatives, and 𝐿𝐿𝑖𝑖,0=85 

 Network stock = 11 Network stock = 12 Network stock = 13 
Availability Level simulation 
(without lateral transhipments) 

91.6% 94.5% 95.7% * 

Availability Level simulation (with 
lateral transhipments) 

95.8% * 97.8% 98.5% 

* indicates optimal solution 

4.3 Proof of concept 

A demonstrator is built to show how generated information leads to decisions of a supply chain manager. This 
demonstrator is based on the OneLogistics System (OLS), which uses ILIAS as its Enterprise Resource Planning (ERP) 
backbone, a predictive logistics add-on by Gordian and a predictive maintenance add-on by NLR. The demonstrator 
shows the data flow from an operator’s Computerised Maintenance Management System (CMMS) to the OLS and its 
add-ons.  
 
The scenario presented in Figure 4 is used to clarify the data requirement and to visualise interpretation and 
management of data in the supply chain. Figure 5 shows the information presented on the OneLogistics Console to 
the supply chain managers.  The proof of concept visualises the actions and interventions that supply chain managers 
initiate to minimise downtime for the operator, whilst reducing the required number of spares to minimise Total Cost 
of Ownership (TCO) for the military aircraft program. Pro-active failure information ensures that LRCs are shipped on 
time from the Central Warehouse or the Repair Vendor to the required Local Warehouse. Supply chain managers at 
OneLogistics use periodic data analysis to advice the Product Support Integrator (PSI) to reduce or expand the 
available spare parts in Europe.  
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Figure 4: Scenario for proof of concept 

 

 

 

Figure 5: OneLogistics Console  
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5 Conclusions and recommendations 

The following conclusions are drawn from the work presented in this paper: 
• Material condition data is required for accurate diagnostics and prognostics. Usage data at aircraft level or 

system level is often not representative for failure behaviour of components. Furthermore, maintenance data 
in the form of unscheduled removals does not provide information about the degradation process of 
components. Material condition data provides insight in the degradation process of components that 
eventually leads to failure. 

• Accuracy and timeliness of failure predictions are key drivers of network stock. False positives result in 
unnecessary shipments of spare parts to local warehouses, which implies additional logistics cost. False 
negatives result in aircraft on ground events, if no spares are available in local warehouses. Given the 
availability level, more spare parts in local warehouses and lateral transhipments are required, since defect 
rectification is less expensive than downtime. The sensitivity analysis indicates that increased warning time 
and mean time between failures results in a lower demand for network stock. Besides, shorter repair lead 
times facilitated by accurate failure diagnoses help to reduce the network stock requirement.  

• Data-driven failure diagnostics, combined with multi-echelon models and a logistics management system, 
reduce lead times and cost of repairs. Development of a reliable data-driven approach requires access to the 
failure mode, effect and criticality analyses, as well as engineering analyses of components. Knowledge 
obtained through the design process is used to select parameters, which are used to predict failure of 
components in-service on the basis of sensor data.     

 
From the conclusions above follow these recommendations for future work: 
 

• Every failure mode needs a dedicated model that is fed with data tailored to its nature. Data available in-
service must be sufficient to classify and characterise the failure mode to be detected. The added value of 
this data is increased by using a predefined syntax and recording meta data of events (e.g. reason for removal 
or actions taken for defect rectification). 

• A Greedy heuristic could be developed that is able to solve the METRIC model with lateral transhipments. The 
heuristic should be based on an efficient, but still accurate, approximate evaluation method.  

• The developed models could be extended with stochastic supply lead times, taking disturbances in the supply 
chain and disturbances in flight operations into account. In this paper deterministic supply lead times are 
assumed. Furthermore, these models could be applied to an inventory problem with more than two echelons 
to investigate differences in performance. 

• Coupling predictive maintenance and predictive logistics is a consideration during the design phase of an 
aircraft program. The ability to maximise affordability and sustainability depends on the capabilities of the 
PHM system, as well as the flexibility and responsiveness of the supply chain. Besides, the implementation at 
the aircraft operator is critical to success. Maintainers and logisticians must be aware of the fundamentals to 
make the system function properly. 

• Legacy aircraft may be equipped with additional sensors to obtain data for diagnostics or prognostics at sub-
system or component level. However, integrated vehicle management and autonomic logistics are fully 
achieved, only when considered during the design phase.     
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