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ABSTRACT

A symmetrical boundary element formulation is described for the
transmission of sound through the panels of a cabin wall of an aircraft.
The geometrical model consists of a double panel configuration including
a cavity p_artI%/ filled with porous material and with air. The acoustic
pressure in the vibrating medium (air and porous material) is modelled by
a boundary integral ansatz. The vibrating panels and the vibrating medium
are coupled by the boundary condition for flexible walls. Classica
boundary integral formulations result in a non-symmetric boundary
element-matrix, while the discretization of the Helmholtz equation using
finite elements would yield a symmetrical stiffness matrix. In the

present paper a symmetrical boundary element matrix is derived for the
acoustic pressure inside and outside the cabin wall. The boundary
elements are put on the panels of the cabin wall and on the interface
between the air and the porous material. The computational costs of the
present s¥mmetrlcal boundary element formulation are comparable with the
costs of classical boundary element formulations in acoustics, which are
based on the direct method.
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Summary

A symmetrical boundary element formulation is described for the transmission of sound through
the panels of a cabin wall of an aircraft. The geometrica model consists of a double panel
configuration including a cavity partly filled with porous material and with air. The acoustic
pressure in the vibrating medium (air and porous material) is modelled by a boundary integral
ansatz. The vibrating panels and the vibrating medium are coupled by the boundary condition
for flexible walls. Classical boundary integral formulations result in a non-symmetric boundary
element matrix, while the discretization of the Helmholtz equation using finite elements would
yield asymmetrical stiffness matrix. In the present paper asymmetrical boundary element matrix
is derived for the acoustic pressure inside and outside the cabin wall. The boundary el ements are
put on the panels of the cabin wall and on the interface between the air and the porous material.
The computational costs of the present symmetrical boundary element formulation are comparable
with the costs of classical boundary element formulations in acoustics, which are based on the
direct method.
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1 Introduction

Investigations on the acoustic field around and inside commercia aircraft are motivated by the
urge to reduce cabin noise inside the aircraft. The exterior acoustic field causes vibrations of
the cabin wall, which contribute to the interior noise. The cabin noise inside the aircraft can be
reduced by putting porous acoustically absorbing materia (insulation) just on the inside of the
skin panel of the cabin wall.

Inthispaper asymmetrical boundary element isdescribed for thetransmi ssion of sound throughthe
panels of acabin wall. The geometrical model consists of a double panel configuration including
a cavity partly filled with porous material and with air (an illustration is given in figure 1). The
lower panel is astiffened skin panel, while the upper panel isan un-stiffened trim panel. Thetrim
panel is backed by a semi-infiniteroom modelling theinterior of the aircraft. The displacement of
the skin panel is assumed to be given by the exterior acoustic field at the outer side of the aircraft.
The sound transmission problem requires the calculation of the acoustic pressure in the air and
in the porous material as well as the fluid-structure interaction with the un-stiffened trim panel.
The acoustic pressure in the air and porous material is modelled by the Helmholtz equation (in
the case of glass wool insulation with a complex wavenumber, which models the damping). The
porous material is essentially assumed to be described by its porosity, resistivity, effective density
and effective speed of sound, al of which are frequency dependent.

The acoustic pressure in the vibrating medium (air and porous material) is modelled by a bound-
ary integral ansatz. The vibrating panels and the vibrating medium are coupled by the boundary
condition for flexible walls. Classical boundary integral formulations result in a non-symmetric
boundary element matrix, whilethe discretization of the Helmholtz equation using finite el ements
would yield asymmetrical stiffness matrix. In the present paper a symmetrical boundary integral
formulation is described for the acoustic pressure inside and outside the cabin wall. The formu-
lation maps the normal derivative of the pressure along the boundary on the pressure itself. In
the case of a bounded domain (e.g. the volume covered by the porous medium or the volume
covered by the air inside the cabin wall) the symmetrical boundary integral formulation has been
taken from ref. 1. The symmetrical boundary element matrix follows from applying Gaerkin's
method. The present formulation is advantageous from the point of view that the boundary ele-
ment matrix has the same mapping properties as the finite element matrix of the weak formulation
of the Helmholtz equation. These properties are not preserved by the classical boundary element
formulation, which yields an asymmetric system matrix. The basis and test functions are given
by the classical piecewise linear functions on flat non-overlapping triangular el ements.
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The boundary elements are put on the panels of the cabin wall and on the interface between
the air and the porous material. The computations involve the discretization of a hyper-singular
integral operator, a weakly singular integral operator and a regular operator. The hyper-singular
integral operator isregularized by integration of parts. Once thisoperator hasbeen regularized, the
computation of the coefficients of the corresponding boundary element matrix requires the same
number of kernel eval uationsasthe computation of the coefficients of theweakly singular operator.
Therefore, the computational costs of the present symmetrical boundary element formulation are
comparable with the costs of classical boundary element formulations in acoustics, which are
based on the direct method.
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2 Mathematical formulation

In this section amathematical model is presented for the transmission of sound through panels of
acabinwall. The model is applied to a double wall configuration of acabin wall panel as shown
in figure 1. It contains a closed cavity, partly filled with air and partly with porous materia (e.g.
glasswool). This cavity is given by the rectangular box Q; in R3, with Q; = Q; , U Qq,. The
boundary of Q; isdenoted by ' = 9Q;. The unit normal vector » on I is pointing outwards, i.e.
into R3\ Q;. The boundary is split into three parts

M=r1UlrauUrls,

where [ 1 correspondsto the stiffened skin panel and I 3 correspondsto the un-stiffened trim panel .
The doublewall configuration is assumed to be baffled in an infinite platein theplane = = 0. The
part of this plane that is not occupied by '3 isdenoted by I,

Let the semi-infinite space given by = > 0 be denoted by Q; and the space denoted by the
complement of Q; U Q; in R® by Q.. Here, Q; and Q. represent the interior and the exterior
space of the aircraft cabin.

The transmission problem requires the modelling of the sound pressure in and outside the cabin
wall as well as the fluid-structure interaction with the stiffened and un-stiffened panel. The
problem isassumed to be time harmonic with angular frequency w. In the present paper the sound
pressurein Q. isnot modelled. It is assumed that the acoustic field in Q. as well as the induced
displacement on I'; are known.

The acoustic pressure p in the regions Q; and Q1 , has to satisfy the Helmholtz equation

Ap+ k%p =0, k=

w
C

; @

where ¢ is the speed of sound in air and & is the acoustic wave number. The acoustic pressure p
intheregion Q1 , aso hasto satisfy the Helmholtz equation, but with a complex wave number v,

Ap++%p =0, )

where the definition of v depends on the materia properties of the porous medium. The porous
materia is essentially assumed to be described by its porosity h, resistivity o, effective density
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p. and effective speed of sound ¢, all of which are frequency dependent. For wave propagation
in limp materia (an approximate model for glass wool) the following expression for v has been
derived in Ref. 2

3= @le s e K@) = pe (o) /(1= 1), @

where M isthe density of the fibre part. In the [imp model the stiffness of the fibres is neglected.
The limitation of the model is that the resonances in the porous material can not be described.
This would require both stiffness and mass effects to be taken into account. As a consequence,
the high frequency range (small wavelength) can not be cal cul ated with sufficient accuracy. When
the minimum acoustic wavelength of the computational problem islarger than the thickness of the
porous layer, the assumption of the limp material holds.

The appropriate boundary conditionsfor p are

op

8n(r) = H(w)wZW(r), refly 4
= 0, relUl, ®)
= paww(r), rels. (6)

At boundary I"; the normal displacement 1/ of the skin pand is prescribed. The boundariesT
and I, are assumed to be acoustically hard. At boundary I3 the normal displacement « follows
from solving an appropriate el astomechanical model for thetrim panel. For reasons of explanation
it is assumed in this section that the trim panel isisotropic and that the displacements are small,
so that w isgoverned by the equations for a harmonically vibrating plate

L(w) = DNw — w?sp,w = p, (7

where A denotesthe Laplace operator, D the bending stiffness of the plate, p; itsdensity and ¢ its
thickness. The right-hand side of (7) represents the load acting on the plate caused by the jump p
in the acoustic pressure,

p=pt—p, €S)
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where pt ( p~) denotes the pressure on the upper (lower) side of the trim panel. In numerical
investigationsthe elastomechani cal operator £ will bemodeled by four-noded finiteshell el ements.
Note that the equations (1), (6), (7) and (8) define a coupled fluid-structure interaction problem.

At thefluid surface S between the porous material and the air two boundary conditions haveto be
satisfied. First, the pressure has to be continuous

Pg = Pa 9)

and second the mass flow has to be continuous across the interface 5. For glass-wool, having
a porosity which is almost equal to unity, the mass flow continuity reduces to continuity of the
normal displacement,

ul = ull = ub. (10)

Far away from thedoublewall configurationitisrequired that p satisfiesthe Sommerfeld radiation
condition, which requires that

op _ wkp = O(1/r), r— 0. (1)
Jr
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3 Boundary integral formulasfor theacoustic pressure

In the previous section it has been shown that the acoustic pressure in the closed domain Q; (partly
filled with porous material and partly with air) and in the half-space Q; above the trim panel is
governed by the Helmholtz equation (for air (1) and for the porous medium (2) ). In this section
boundary integral formulas for the acoustic pressure are presented which satisfy the Helmholtz
equation. First, aformulais given for the acoustic pressure in the half-space Q; and second a
symmetric formulais derived for aclosed domain Q (in terms of the previous section Q is defined
either by thedomain Q4 , or by thedomain Q1 ,). In the following sections the Green-function &
for the Helmholtz equation in an infinite domain is used,

I
ezoz|r—r |

Golrr') = oo

r# 7, (12)

with o = k for waves propagatingin air and with o = + (asdefined in (3) ) for waves propagating
in the porous medium.

3.1 Boundary integral formulafor the half-space Q;
The vibrating trim panel is baffled in a perfectly rigid plane given by I .. The boundary integral
formulafor the acoustic pressure in the half-space Q; is given by the single layer potential ansatz

p(T) Vk¢)( ) T E QZ?
Vio(r) = / Gal(r )Y dr(#), 1€ Q. (13)

with the single layer given by

o(r) = —Zpawzw(r), r els. (14)

It can be shown that this single layer potentia satisfies the Helmholtz equation and the boundary
conditions (5), (6) and (11). Thisfollows from classica results of potentia theory. The integral
operator V;, isweakly singular, so that (13) isaso well defined for r € '3, i.e.

p(r) = (Vio)(r), reTs (15)
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Note that V}, isasymmetric operator, because GG, is symmetric with respect to and r’.

3.2 Boundary integral formulafor aclosed domain Q

Let Q ¢ RS be abounded domain with piecewise smooth boundary 9Q. In terms of the previous
section Q is defined either by the sub-domain Q1 , or by the sub-domain Q, ,. Note that the
boundary of Qq , isgivenby 0Q1, = 'z, U 3U S, while the boundary of Q, , is given by
0Q1, =T2,UlN1US (M2, and Mz, are the parts adjoining the air and the porous medium,
respectively).

For the acoustic pressure the following representation formula holds

p(r) = / Go(r, r’)@n/p(r') drr'y— 0,1 Go(r, rp(r') dT (r"). (16)
aQ aQ

Define the following boundary integral operators

Vag(r) = /QQGQ(T,T’)qb(r’)dF(r’), r e 0Q,

Kyo(r) = 0,1 Go(r, rYe(r") dr (r') re oQ,
aQ
K.o(r) = @, / Go(r,)o(r) AT (+) € 0Q,
aQ
Dyo(r) = -0, 8n/Ga(r,r’)¢(r’) drr’y, r € 0Q.
aQ

The representation formula (16) and the jump relations for single and doublelayer potentialslead
to the following boundary integral equations on 0Q

1 1
po= Vadp = Kop+5p=Vadp+ (51 = Ko)p (17)
/ 1
dp = Dup+ K, 0p+ E@p (18)
In most boundary element calculationsin acoustics the first equation (17) is being used for sound
predictions. For some applications also the second one is used. However, the discretization of

these boundary integral equationsresult in general in non-symmetric system matrices, which have
fictitious elgenvalues and eigenvectors. The equations (17) and (18) can be rewritten as

1
po= 51+ Ko) V,0p (19)
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1 /

p o= DINGI-K.)dp (20)
Observe that the operators (17 + K,)~*V,, and D; (11 — K_,) define so called Poincaré-Steklov
operators mapping

Ip— plaq -

The operators in (19) and (20) are not symmetric, while the weak formulation of (1): find
p € HY(Q) such that

2 dp _
(¥ Vo apiiaa- [ Poas o 1)

for all test functions+ € H1(Q),yields(withrestriction of p to 9Q) asymmetric Poincaré-Steklov
operator. The boundary element discretization of (17) or (18) will result in a non-symmetric
boundary element matrix. Therefore, the boundary element discretization of (17) or (18) will not
have the same mapping properties as the finite element discretization of (21). It has been shown
in Ref. 1 that a symmetric boundary element discretization of a Poincaré-Steklov operator can be
obtained by substituting (20) into (17). The result becomes

pP= Taap (22)
with
T, =V, + (—I — I(Q)Da (—I — Ka). (23)

Note that T, defines a symmetric Poincaré-Steklov operator, since V,, and D, are symmetric.
The discretization of 7, involves, however, the approximation of the hypersingular operator
D, , the weakly singular operator V,, and the regular operator K. The hypersingular operator
can be regularized by integration of parts and the integrals reduce to weakly singular integrals.
The coefficients of the boundary element matrices of the operators D, and V,, can be evaluated
simultaneously so that the computational costs are comparabl e with the costs of the discretization
of (17) or (18).
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4 Boundary element discretization

Theintegral operators V. of (15) and T, of (23) are discretized using a Gal erkin boundary element
method. Thetrial spaces are given by the piecewise linear basisfunctions {w, }* ; on atriangular
surface mesh with N nodesand M elements {5} . Following ref. 1 one obtainsthe following
boundary element discretization for the operator 7,

1

T = My Was M+ (Gl — MK ) DIA (5T — KL M7, (24)
with

(Mp); = (w,w;j),

Vol = (Vawp,w;),

(Kapy = (Kawpwg),

Ko = (Kania

(Do) = (Dawr,wy).

Notethat (24) definesasymmetricboundary element matrix, becauseV,, ;, and D, j, aresymmetric.

Thecalculation of the matrix element (D, 1, ); ; involvestheevaluation of ahypersingular integral,
since
%G,

// G T wi(r) wj(r") T (r)dT (1),

where the second integral must be interpreted as afinite part integral for » € I'. The hypersingular

(Dowy, w;)

integral can beregularized by integration of partsusing thefact that (7, isthefundamental solution
of the Helmholtz operator (See e.g. ref. 3). It can be shown that

(Dowr, w;)

L[ Garaay e () ol x V(27 ) (r)ar (+)
—az/r /r wi(r) wi(r') Go(r, 7")<n,,, ) dr(r)dr(r’)

Observe that (25) only contains weakly singular integrals.

(25)
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5 Numerical implementation

Let the nodes of the finite element mesh be given by {r;}/,. On each triangular element .5 three
local linear functions ©»*(r), i = 1,2, 3 are introduced, which yield the value 1 at the i-th vertex
of 5% and O at the other two vertices of 5. Indirect addresses are used to associate vertices of a
triangular element with the node numbers of the mesh, i.e. there existsan array nn(s, k) yielding
the node number of the :-th vertex of the k-th triangular element. The basisand test functions are
continuous functions of the form

M 3
= D> Hiel(r)
k=1:=1

where ;¥ isthe value of the function 1z at the node r; with = nn(i, k).

With this set of basis and test functions the form (D¢, i) can berewritten as

DENIEDIPIDIPIL T (26)

where

D5t = [ [ e ns RGO Galr ) ar () (1),
_ / / (nsy X Vi, ns, x Vo) Go(r,r') dr () (r). 27)
s, /s,

Thematrix € ementsvjl i ICl " and Ml !, whichfollow from substitutingthebasisand test functions

into (Vo&, 1), (Ku€, 1) and the mass-matrix (&, 1), can be obtained in asimilar way,

Vil = [ e Gatr ) dr (), 8)

Lk —1 4 2alr — ¢] elr=l N =T ,
- Ty (e Yl () dT ()T ()42
K= () ) r) T )ar(1) (29)

47

M]lf = /Sz ij T Qbi r)dl(r). (30)

The coefficients of the global boundary element matrices of the previous section (related to the
unknown gquantitiesat the nodes) are obtained by assembling thelocal boundary element matrices,
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eg. the coefficients (V,,1)p,, follow from summing the influence coefficients V]lf for which
nn(j,l) = pandnn(i, k) = q,i.e

Anaogously (Da p)p,qr (Kap)p,e @d (My), , are obtained. The matrix IC'M can be obtained
from transposing the matrix £, 5,.

Note that the derivatives of @(r) are constant for » € .5, since the basis functions are piecewise
linear. As a consequence the terms between brackets ( ) in (27) are constant Therefore, the
evaluation of theinfluence coefficients D" in (27), V¥ in (28) and K% in (29) requires only the
calculation of the following boundary |ntegrals

/S s, GE Y () Ga(r, ) dE(r')dT (1), (31)

/. | /. Galrar!) dE (AT (r), @
and

/sl /sk — wir - |€;a_|rrj||z<"(7")v %Wf(r’)#(r) dr (r')dr (r). (33)

The calculation of the singular integralsin (27) and (28) has been described in Ref. 4. They are
approximated by use of a Gauss quadrature rulefor the outer integral and aregularizing coordinate
transformation for the inner integral. This approach is also used for the evaluation of the nearly
singular integralsin (27) and (28), i.e. the regular integrals for which the distance of 5 to .5 is
small.

ItremainstocalculatelCé:f fork # 1. Notethathi’f = Ofor flat dlementssince (n(r'), 5==) = 0

=]

for r, 7’ € Si. The coefficients IC%“ are computed by applying a Gauss quadrature rule, i.e. IC%“

is approximated by

4|Sl||sk| Ne Ng €2a|rn—r;n| T;n —r, ,

Z Z Wy W, l—|—2a|rn—r;n|)|rn — |2<nsk, >¢Zk(rm)¢;(rn)7(34)

|T;n_7‘n|
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where | Sy | isthearea of thetriangular element Sy, ns, theunit normal on Sj, and N¢ the number
of Gauss points. The weights of the Gauss quadrature rule sum up to %

Theintegral M iseasily calculated. For i = j the exact valueis|S;|/18 and for i # j the exact
valueis|9;|/24.
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6 Numerical results

The symmetrical boundary element formulation has been implemented in the modular finite
element program B2000 and has been coupled with the existing finite element code for the
structural analysis of plates and shells. The boundary element formulation is applied to the
acoustic-structural analysisof adouble panel configuration. The structure consistsof two identical
aluminium plateswith alength of 1.46 m and awidth of 0.76 m (seefigure 2), which are clamped
at all edges. Thedistancebetween theplatesis0.1 m. The gap between the platesiseither filled by
air or by glass-wool. The eigenfrequencies of thisdouble panel configuration and its environment
are computed. The results are compared with afinite element code where the acoustic pressure
was obtained by the numerical solution of (21) using 20-noded acoustic elements.

The elastomechanics of the plates is modelled by putting 100 linear quadrilatera finite shell
elements on each plate. The basic properties of the aluminium plates are: modulus of elasticity =
7.0E+10 N/m?, Poisson’s ratio = 0.3, density = 2800 kg/m® and thickness = 0.0025 m.

In the first example the cavity between the platesisfilled with air. The air surrounding the plates
can aso be modelled, but isleft out here, to be able to compare the results with the finite element
acoustic calculations. The properties of air are: p, = 1.2 kg/m® and ¢ = 340 m/s.

The boundary element surface discretization consists of 200 triangular elements on each plate (in
such away that the nodes correspond with the nodes of the structural quadrilateral elements) and
320 triangular elements on the four vertical faces to close the cavity between the plates. The first
five eigenfrequencies computed are given in the second column of table 1. In the third column
of table 1 the results are shown of the finite element acoustic calculations. A good agreement of
the results is observed between both methods. The small differences are due to differencesin the
numerical methods, e.g. integration rules.

In the second exampl e the cavity between the platesisfilled with glass-wool, having the following
properties. p. = 1.2 kg/mS, ¢, = 290 m/s, M = 2267 kg/m?, h = 0.9955 and ¢ = 2.3E4
Ns/m3. Note that the complex wavenumber (as defined in (3) ) depends on the frequency w,
so that the coupled eigenvalue problem becomes non-linear. The same number of elements has
been used asin thefirst example. Thefirst five eigenfrequencies as computed by the symmetrical
boundary element approach and the acoustic finite limp element model are given in the fourth
end fifth column of table 1. The eigenfrequencies are complex valued due to energy dissipation.
Again small differences are observed between the two numerical methods. For this example the
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differences are aso due to the non-linearity of the eigenvaue problem. In order to solve the
eigenvalue problem an initial value of w has to be specified to caculate x(w) in (3). The results
of table 1 have been obtained taking a value close to the real part of the eigenfrequency. When,
however, avaue of 30 Hz (w = 60r rad /s) would have been chosen for the calculation of x(w),
the first eigenfrequency would have been 7.84+i*0.190, showing the dependency of the problem
on theinitial value of x(w).

medium: ar glass-wool

MODE

BEM

FEM

BEM

FEM

11.95

12.27

7.46+i*0.161

7.84+i*0.081

13.16

13.16

12.73+i*0.019

12.62+i*0.018

20.83

21.02

14.97+i*0.188

15.05+i*0.153

21.93

21.93

21.21+i*0.054

21.93+i*0.049

Aa|lbhlwN

36.98

37.14

29.61+i*0.657

29.29+i*0.466

Table1l Eigenfrequencies[Hz] of double panel configuration
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7 Conclusions

A symmetrical boundary element formulation has been described for the sound transmission
through a cabin wall of an aircraft. The computational costs of the presented boundary element
formulation are comparablewith the costs of classical boundary element formulationsin acoustics.
This could be achieved by regularizing the hypersingular integral operator and by computing the
coefficients of the boundary element matrices of the weakly singular and hypersingular integral
operators simultaneously.

The symmetrical boundary element formulation has been applied to compute the el genfrequencies
of the coupled acoustic-structural problem of a double panel configuration where the cavity
between the panels was filled by either air or by glass-wool. The computed eigenfrequencies of
this coupled problem show afair agreement with results of acode where both the elastomechanics
of the panels and the acoustic pressure was modelled by finite elements. In a forthcoming paper
the described boundary element formulation will be applied to a double panel configuration where
the cavity is partly filled by air and partly by glass-wool.
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domain Qe np 1 g

Fig. 1 Cross section of baffled double wall configuration
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Fig. 2 Two panels clamped at the edges at a distance from each other



