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ABSTRACT
A symmetrical boundary element formulation is described for the
transmission of sound through the panels of a cabin wall of an aircraft.
The geometrical model consists of a double panel configuration including
a cavity partly filled with porous material and with air. The acoustic
pressure in the vibrating medium (air and porous material) is modelled by
a boundary integral ansatz. The vibrating panels and the vibrating medium
are coupled by the boundary condition for flexible walls. Classical
boundary integral formulations result in a non-symmetric boundary
element-matrix, while the discretization of the Helmholtz equation using
finite elements would yield a symmetrical stiffness matrix. In the
present paper a symmetrical boundary element matrix is derived for the
acoustic pressure inside and outside the cabin wall. The boundary
elements are put on the panels of the cabin wall and on the interface
between the air and the porous material. The computational costs of the
present symmetrical boundary element formulation are comparable with the
costs of classical boundary element formulations in acoustics, which are
based on the direct method.
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Summary

A symmetrical boundary element formulation is described for the transmission of sound through

the panels of a cabin wall of an aircraft. The geometrical model consists of a double panel

configuration including a cavity partly filled with porous material and with air. The acoustic

pressure in the vibrating medium (air and porous material) is modelled by a boundary integral

ansatz. The vibrating panels and the vibrating medium are coupled by the boundary condition

for flexible walls. Classical boundary integral formulations result in a non-symmetric boundary

element matrix, while the discretization of the Helmholtz equation using finite elements would

yield a symmetrical stiffness matrix. In the present paper a symmetrical boundary element matrix

is derived for the acoustic pressure inside and outside the cabin wall. The boundary elements are

put on the panels of the cabin wall and on the interface between the air and the porous material.

The computational costs of the present symmetrical boundary element formulation are comparable

with the costs of classical boundary element formulations in acoustics, which are based on the

direct method.
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1 Introduction

Investigations on the acoustic field around and inside commercial aircraft are motivated by the

urge to reduce cabin noise inside the aircraft. The exterior acoustic field causes vibrations of

the cabin wall, which contribute to the interior noise. The cabin noise inside the aircraft can be

reduced by putting porous acoustically absorbing material (insulation) just on the inside of the

skin panel of the cabin wall.

In this paper a symmetrical boundary element is described for the transmission of sound through the

panels of a cabin wall. The geometrical model consists of a double panel configuration including

a cavity partly filled with porous material and with air (an illustration is given in figure 1). The

lower panel is a stiffened skin panel, while the upper panel is an un-stiffened trim panel. The trim

panel is backed by a semi-infinite room modelling the interior of the aircraft. The displacement of

the skin panel is assumed to be given by the exterior acoustic field at the outer side of the aircraft.

The sound transmission problem requires the calculation of the acoustic pressure in the air and

in the porous material as well as the fluid-structure interaction with the un-stiffened trim panel.

The acoustic pressure in the air and porous material is modelled by the Helmholtz equation (in

the case of glass wool insulation with a complex wavenumber, which models the damping). The

porous material is essentially assumed to be described by its porosity, resistivity, effective density

and effective speed of sound, all of which are frequency dependent.

The acoustic pressure in the vibrating medium (air and porous material) is modelled by a bound-

ary integral ansatz. The vibrating panels and the vibrating medium are coupled by the boundary

condition for flexible walls. Classical boundary integral formulations result in a non-symmetric

boundary element matrix, while the discretization of the Helmholtz equation using finite elements

would yield a symmetrical stiffness matrix. In the present paper a symmetrical boundary integral

formulation is described for the acoustic pressure inside and outside the cabin wall. The formu-

lation maps the normal derivative of the pressure along the boundary on the pressure itself. In

the case of a bounded domain (e.g. the volume covered by the porous medium or the volume

covered by the air inside the cabin wall) the symmetrical boundary integral formulation has been

taken from ref. 1. The symmetrical boundary element matrix follows from applying Galerkin’s

method. The present formulation is advantageous from the point of view that the boundary ele-

ment matrix has the same mapping properties as the finite element matrix of the weak formulation

of the Helmholtz equation. These properties are not preserved by the classical boundary element

formulation, which yields an asymmetric system matrix. The basis and test functions are given

by the classical piecewise linear functions on flat non-overlapping triangular elements.
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The boundary elements are put on the panels of the cabin wall and on the interface between

the air and the porous material. The computations involve the discretization of a hyper-singular

integral operator, a weakly singular integral operator and a regular operator. The hyper-singular

integral operator is regularized by integration of parts. Once this operator has been regularized, the

computation of the coefficients of the corresponding boundary element matrix requires the same

number of kernel evaluations as the computation of the coefficients of the weakly singular operator.

Therefore, the computational costs of the present symmetrical boundary element formulation are

comparable with the costs of classical boundary element formulations in acoustics, which are

based on the direct method.
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2 Mathematical formulation

In this section a mathematical model is presented for the transmission of sound through panels of

a cabin wall. The model is applied to a double wall configuration of a cabin wall panel as shown

in figure 1. It contains a closed cavity, partly filled with air and partly with porous material (e.g.

glass wool). This cavity is given by the rectangular box Ω1 in R3, with Ω1 = Ω1;a [ Ω1;g. The

boundary of Ω1 is denoted by Γ = @Ω1. The unit normal vector n on Γ is pointing outwards, i.e.

intoR3 nΩ1. The boundary is split into three parts

Γ = Γ1 [ Γ2 [ Γ3;

where Γ1 corresponds to the stiffened skin panel and Γ3 corresponds to the un-stiffened trim panel.

The double wall configuration is assumed to be baffled in an infinite plate in the plane z = 0. The

part of this plane that is not occupied by Γ3 is denoted by Γ1.

Let the semi-infinite space given by z > 0 be denoted by Ωi and the space denoted by the

complement of Ωi [ Ω1 in R3 by Ωe. Here, Ωi and Ωe represent the interior and the exterior

space of the aircraft cabin.

The transmission problem requires the modelling of the sound pressure in and outside the cabin

wall as well as the fluid-structure interaction with the stiffened and un-stiffened panel. The

problem is assumed to be time harmonic with angular frequency !. In the present paper the sound

pressure in Ωe is not modelled. It is assumed that the acoustic field in Ωe as well as the induced

displacement on Γ1 are known.

The acoustic pressure p in the regions Ωi and Ω1;a has to satisfy the Helmholtz equation

∆p+ k2p = 0; k =
!

c
; (1)

where c is the speed of sound in air and k is the acoustic wave number. The acoustic pressure p

in the region Ω1;g also has to satisfy the Helmholtz equation, but with a complex wave number 
,

∆p+ 
2p = 0; (2)

where the definition of 
 depends on the material properties of the porous medium. The porous

material is essentially assumed to be described by its porosity h, resistivity �, effective density
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�e and effective speed of sound ce, all of which are frequency dependent. For wave propagation

in limp material (an approximate model for glass wool) the following expression for 
 has been

derived in Ref. 2


 = (!=ce)
q
h�(!)=�e; �(!) = �e � ({�=!)=(1�

{h�

!M
); (3)

where M is the density of the fibre part. In the limp model the stiffness of the fibres is neglected.

The limitation of the model is that the resonances in the porous material can not be described.

This would require both stiffness and mass effects to be taken into account. As a consequence,

the high frequency range (small wavelength) can not be calculated with sufficient accuracy. When

the minimum acoustic wavelength of the computational problem is larger than the thickness of the

porous layer, the assumption of the limp material holds.

The appropriate boundary conditions for p are

@p

@n
(r) = �(!)!2W (r); r 2 Γ1 (4)

= 0; r 2 Γ2 [ Γ1 (5)

= �a!
2w(r); r 2 Γ3: (6)

At boundary Γ1 the normal displacement W of the skin panel is prescribed. The boundaries Γ2

and Γ1 are assumed to be acoustically hard. At boundary Γ3 the normal displacement w follows

from solving an appropriate elastomechanical model for the trim panel. For reasons of explanation

it is assumed in this section that the trim panel is isotropic and that the displacements are small,

so that w is governed by the equations for a harmonically vibrating plate

L(w) � D∆2w � !2��sw = �; (7)

where ∆ denotes the Laplace operator, D the bending stiffness of the plate, �s its density and � its

thickness. The right-hand side of (7) represents the load acting on the plate caused by the jump �

in the acoustic pressure,

� = p+ � p�; (8)
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where p+ ( p�) denotes the pressure on the upper (lower) side of the trim panel. In numerical

investigations the elastomechanical operatorLwill be modeled by four-noded finite shell elements.

Note that the equations (1), (6), (7) and (8) define a coupled fluid-structure interaction problem.

At the fluid surface S between the porous material and the air two boundary conditions have to be

satisfied. First, the pressure has to be continuous

pg = pa (9)

and second the mass flow has to be continuous across the interface S. For glass-wool, having

a porosity which is almost equal to unity, the mass flow continuity reduces to continuity of the

normal displacement,

ung = una = unS : (10)

Far away from the double wall configuration it is required that p satisfies the Sommerfeld radiation

condition, which requires that

@p

@r
� {kp = O(1=r); r!1: (11)
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3 Boundary integral formulas for the acoustic pressure

In the previous section it has been shown that the acoustic pressure in the closed domain Ω1 (partly

filled with porous material and partly with air) and in the half-space Ωi above the trim panel is

governed by the Helmholtz equation (for air (1) and for the porous medium (2) ). In this section

boundary integral formulas for the acoustic pressure are presented which satisfy the Helmholtz

equation. First, a formula is given for the acoustic pressure in the half-space Ωi and second a

symmetric formula is derived for a closed domain Ω (in terms of the previous section Ω is defined

either by the domain Ω1;a or by the domain Ω1;g). In the following sections the Green-functionG

for the Helmholtz equation in an infinite domain is used,

G�(r; r
0) =

e{�jr�r
0j

4�jr� r0j
; r 6= r0; (12)

with � = k for waves propagating in air and with � = 
 (as defined in (3) ) for waves propagating

in the porous medium.

3.1 Boundary integral formula for the half-space Ωi

The vibrating trim panel is baffled in a perfectly rigid plane given by Γ1. The boundary integral

formula for the acoustic pressure in the half-space Ωi is given by the single layer potential ansatz

p(r) = (Vk�)(r); r 2 Ωi;

Vk�(r) =
Z

Γ3

Gk(r; r
0)�(r0) dΓ(r0); r 2 Ωi: (13)

with the single layer given by

�(r) = �2�a!2w(r); r 2 Γ3: (14)

It can be shown that this single layer potential satisfies the Helmholtz equation and the boundary

conditions (5), (6) and (11). This follows from classical results of potential theory. The integral

operator Vk is weakly singular, so that (13) is also well defined for r 2 Γ3, i.e.

p(r) = (Vk�)(r); r 2 Γ3: (15)
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Note that Vk is a symmetric operator, because Gk is symmetric with respect to r and r0.

3.2 Boundary integral formula for a closed domain Ω
Let Ω � R3 be a bounded domain with piecewise smooth boundary @Ω. In terms of the previous

section Ω is defined either by the sub-domain Ω1;a or by the sub-domain Ω1;g. Note that the

boundary of Ω1;a is given by @Ω1;a = Γ2;a [ Γ3 [ S, while the boundary of Ω1;g is given by

@Ω1;g = Γ2;g [ Γ1 [ S (Γ2;a and Γ2;g are the parts adjoining the air and the porous medium,

respectively).

For the acoustic pressure the following representation formula holds

p(r) =
Z
@Ω
G�(r; r

0)@
n

0 p(r0) dΓ(r0)�
Z
@Ω
@
n

0G�(r; r
0)p(r0) dΓ(r0): (16)

Define the following boundary integral operators

V��(r) :=
Z
@Ω
G�(r; r

0)�(r0) dΓ(r0); r 2 @Ω;

K��(r) :=
Z
@Ω
@
n

0G�(r; r
0)�(r0) dΓ(r0) r 2 @Ω;

K
0

��(r) := @n

Z
@Ω
G�(r; r

0)�(r0) dΓ(r0) r 2 @Ω;

D��(r) := �@n

Z
@Ω
@
n

0G�(r; r
0)�(r0) dΓ(r0); r 2 @Ω:

The representation formula (16) and the jump relations for single and double layer potentials lead

to the following boundary integral equations on @Ω

p = V�@p�K�p+
1
2
p = V�@p+ (

1
2
I �K�)p (17)

@p = D�p+K
0

�@p+
1
2
@p (18)

In most boundary element calculations in acoustics the first equation (17) is being used for sound

predictions. For some applications also the second one is used. However, the discretization of

these boundary integral equations result in general in non-symmetric system matrices, which have

fictitious eigenvalues and eigenvectors. The equations (17) and (18) can be rewritten as

p = (
1
2
I +K�)

�1V�@p (19)
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p = D�1
� (

1
2
I �K

0

�)@p (20)

Observe that the operators ( 1
2I +K�)

�1V� andD�1
� (1

2I �K
0

�) define so called Poincaré-Steklov

operators mapping

@p! p j@Ω :

The operators in (19) and (20) are not symmetric, while the weak formulation of (1): find

p 2 H1(Ω) such that

Z
Ω
(rp � r � �2p )dA�

Z
@Ω

@p

@n
 dS = 0; (21)

for all test functions 2 H1(Ω), yields (with restriction of p to @Ω) a symmetric Poincaré-Steklov

operator. The boundary element discretization of (17) or (18) will result in a non-symmetric

boundary element matrix. Therefore, the boundary element discretization of (17) or (18) will not

have the same mapping properties as the finite element discretization of (21). It has been shown

in Ref. 1 that a symmetric boundary element discretization of a Poincaré-Steklov operator can be

obtained by substituting (20) into (17). The result becomes

p = T�@p (22)

with

T� = V� + (
1
2
I �K�)D

�1
� (

1
2
I �K

0

�): (23)

Note that T� defines a symmetric Poincaré-Steklov operator, since V� and D� are symmetric.

The discretization of T� involves, however, the approximation of the hypersingular operator

D� , the weakly singular operator V� and the regular operator K�. The hypersingular operator

can be regularized by integration of parts and the integrals reduce to weakly singular integrals.

The coefficients of the boundary element matrices of the operators D� and V� can be evaluated

simultaneously so that the computational costs are comparable with the costs of the discretization

of (17) or (18).
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4 Boundary element discretization

The integral operators Vk of (15) and T� of (23) are discretized using a Galerkin boundary element

method. The trial spaces are given by the piecewise linear basis functions fwlg
N
l=1 on a triangular

surface mesh withN nodes andM elements fSkgMk=1. Following ref. 1 one obtains the following

boundary element discretization for the operator T�

T�;h =M�1
h V�;hM

�1
h + (

1
2
Ih �M�1

h K�;h)D
�1
�;h(

1
2
Ih �K

0

�;hM
�1
h ); (24)

with

(Mh)l;j = (wl; wj);

(V�;h)l;j = (V�wl; wj);

(K�;h)l;j = (K�wl; wj);

(K
0

�;h)l;j = (K�;h)j;l

(D�;h)l;j = (D�wl; wj):

Note that (24) defines a symmetric boundary element matrix, becauseV�;h andD�;h are symmetric.

The calculation of the matrix element (D�;h)l;j involves the evaluation of a hypersingular integral,

since

(D�wl; wj) = �
Z

Γ

Z
Γ

@2G�

@n@n0
(r; r0)wl(r) wj(r

0) dΓ(r)dΓ(r0);

where the second integral must be interpreted as a finite part integral for r 2 Γ. The hypersingular

integral can be regularized by integration of parts using the fact thatG� is the fundamental solution

of the Helmholtz operator (See e.g. ref. 3). It can be shown that

(D�wl; wj) =
Z

Γ

Z
Γ
G�(r; r

0)hnr � rrwl(r) ; n
0
r � rr0wj(r

0) idΓ(r)dΓ(r0)

��2
Z

Γ

Z
Γ
wl(r) wj(r

0) G�(r; r
0)hnr; nr0i dΓ(r)dΓ(r0) (25)

Observe that (25) only contains weakly singular integrals.
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5 Numerical implementation

Let the nodes of the finite element mesh be given by frlgNl=1. On each triangular element Sk three

local linear functions  k
i (r), i = 1; 2; 3 are introduced, which yield the value 1 at the i-th vertex

of Sk and 0 at the other two vertices of Sk. Indirect addresses are used to associate vertices of a

triangular element with the node numbers of the mesh, i.e. there exists an array nn(i; k) yielding

the node number of the i-th vertex of the k-th triangular element. The basis and test functions are

continuous functions of the form

�(r) =
MX
k=1

3X
i=1

�ki 
k
i (r);

where �ki is the value of the function � at the node rl with l = nn(i; k).

With this set of basis and test functions the form (D��; �) can be rewritten as

(D��; �) =
MX
l=1

3X
j=1

MX
k=1

3X
i=1

Dl;k
j;i �

l
j�

k
i (26)

where

D
l;k
j;i =

Z
Sl

Z
Sk

�2hnSl ; nSki 
k
i (r

0) l
j(r)G�(r; r

0) dΓ(r0)dΓ(r);

�
Z
Sl

Z
Sk

hnSl �r l
j ; nSk � r k

i iG�(r; r
0) dΓ(r0)dΓ(r): (27)

The matrix elementsV l;k
j;i ,Kl;k

j;i andM l;l
j;i, which follow from substituting the basis and test functions

into (V��; �), (K��; �) and the mass-matrix (�; �), can be obtained in a similar way,

V l;k
j;i =

Z
Sl

Z
Sk

 k
i (r

0) l
j(r)G�(r; r

0) dΓ(r0)dΓ(r); (28)

Kl;k
j;i =

Z
Sl

Z
Sk

�1 + {�jr � r0j

4�
e{�jr�r

0j

jr � r0j2
hn(r0);

r0 � r

jr0 � rj
i k

i (r
0) l

j(r) dΓ(r0)dΓ(r);(29)

M l;l
j;i =

Z
Sl

 l
j(r) 

l
i(r) dΓ(r): (30)

The coefficients of the global boundary element matrices of the previous section (related to the

unknown quantities at the nodes) are obtained by assembling the local boundary element matrices,



- 15 -
TP 96344

e.g. the coefficients (V�;h)p;q follow from summing the influence coefficients V l;k
j;i for which

nn(j; l) = p and nn(i; k) = q, i.e.

(V�;h)p;q =
MX
l=1

3X
j=1

nn(j;l)=p

MX
k=1

3X
i=1

nn(i;k)=q

V l;k
j;i :

Analogously (D�;h)p;q, (K�;h)p;q and (Mh)p;q are obtained. The matrix K
0

�;h can be obtained

from transposing the matrixK�;h.

Note that the derivatives of  l
j(r) are constant for r 2 Sl, since the basis functions are piecewise

linear. As a consequence the terms between brackets h i in (27) are constant. Therefore, the

evaluation of the influence coefficients Dl;k
j;i in (27), V l;k

j;i in (28) andKl;k
j;i in (29) requires only the

calculation of the following boundary integrals

Z
Sl

Z
Sk

 k
i (r

0) l
j(r)G�(r; r

0) dΓ(r0)dΓ(r); (31)

Z
Sl

Z
Sk

G�(r; r
0) dΓ(r0)dΓ(r); (32)

and

Z
Sl

Z
Sk

�1 + {�jr � r0j

4�
e{�jr�r

0j

jr � r0j2
hn(r0);

r0 � r

jr0 � rj
i k

i (r
0) l

j(r) dΓ(r0)dΓ(r): (33)

The calculation of the singular integrals in (27) and (28) has been described in Ref. 4. They are

approximated by use of a Gauss quadrature rule for the outer integral and a regularizing coordinate

transformation for the inner integral. This approach is also used for the evaluation of the nearly

singular integrals in (27) and (28), i.e. the regular integrals for which the distance of Sk to Sl is

small.

It remains to calculateKl;k
j;i for k 6= l. Note thatKk;k

j;i = 0 for flat elements since hn(r0); r0�r
jr0�rji = 0

for r; r0 2 Sk. The coefficients Kl;k
j;i are computed by applying a Gauss quadrature rule, i.e. Kl;k

j;i

is approximated by

4jSljjSkj
4�

NGX
n=1

NGX
m=1

wnwm(�1+{�jrn�r
0
mj)

e{�jrn�r
0

mj

jrn � r0mj
2 hnSk ;

r0m � rn
jr0m � rnj

i k
i (r

0
m) 

l
j(rn); (34)
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where jSkj is the area of the triangular element Sk, nSk the unit normal on Sk and NG the number

of Gauss points. The weights of the Gauss quadrature rule sum up to 1
2.

The integral M l;l
j;i is easily calculated. For i = j the exact value is jSlj=18 and for i 6= j the exact

value is jSlj=24.
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6 Numerical results

The symmetrical boundary element formulation has been implemented in the modular finite

element program B2000 and has been coupled with the existing finite element code for the

structural analysis of plates and shells. The boundary element formulation is applied to the

acoustic-structural analysis of a double panel configuration. The structure consists of two identical

aluminium plates with a length of 1.46 m and a width of 0.76 m (see figure 2), which are clamped

at all edges. The distance between the plates is 0.1 m. The gap between the plates is either filled by

air or by glass-wool. The eigenfrequencies of this double panel configuration and its environment

are computed. The results are compared with a finite element code where the acoustic pressure

was obtained by the numerical solution of (21) using 20-noded acoustic elements.

The elastomechanics of the plates is modelled by putting 100 linear quadrilateral finite shell

elements on each plate. The basic properties of the aluminium plates are: modulus of elasticity =

7.0E+10 N/m2, Poisson’s ratio = 0.3, density = 2800 kg/m3 and thickness = 0.0025 m.

In the first example the cavity between the plates is filled with air. The air surrounding the plates

can also be modelled, but is left out here, to be able to compare the results with the finite element

acoustic calculations. The properties of air are: �a = 1:2 kg/m3 and c = 340 m/s.

The boundary element surface discretization consists of 200 triangular elements on each plate (in

such a way that the nodes correspond with the nodes of the structural quadrilateral elements) and

320 triangular elements on the four vertical faces to close the cavity between the plates. The first

five eigenfrequencies computed are given in the second column of table 1. In the third column

of table 1 the results are shown of the finite element acoustic calculations. A good agreement of

the results is observed between both methods. The small differences are due to differences in the

numerical methods, e.g. integration rules.

In the second example the cavity between the plates is filled with glass-wool, having the following

properties: �e = 1:2 kg/m3, ce = 290 m/s, M = 2267 kg/m3, h = 0:9955 and � = 2:3E4

Ns/m3. Note that the complex wavenumber (as defined in (3) ) depends on the frequency !,

so that the coupled eigenvalue problem becomes non-linear. The same number of elements has

been used as in the first example. The first five eigenfrequencies as computed by the symmetrical

boundary element approach and the acoustic finite limp element model are given in the fourth

end fifth column of table 1. The eigenfrequencies are complex valued due to energy dissipation.

Again small differences are observed between the two numerical methods. For this example the



- 18 -
TP 96344

differences are also due to the non-linearity of the eigenvalue problem. In order to solve the

eigenvalue problem an initial value of ! has to be specified to calculate �(!) in (3). The results

of table 1 have been obtained taking a value close to the real part of the eigenfrequency. When,

however, a value of 30 Hz (! = 60� rad /s) would have been chosen for the calculation of �(!),

the first eigenfrequency would have been 7.84+i*0.190, showing the dependency of the problem

on the initial value of �(!).

medium: air glass-wool

MODE BEM FEM BEM FEM

1 11.95 12.27 7.46+i*0.161 7.84+i*0.081

2 13.16 13.16 12.73+i*0.019 12.62+i*0.018

3 20.83 21.02 14.97+i*0.188 15.05+i*0.153

4 21.93 21.93 21.21+i*0.054 21.93+i*0.049

5 36.98 37.14 29.61+i*0.657 29.29+i*0.466

Table 1 Eigenfrequencies [Hz] of double panel configuration
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7 Conclusions

A symmetrical boundary element formulation has been described for the sound transmission

through a cabin wall of an aircraft. The computational costs of the presented boundary element

formulation are comparable with the costs of classical boundary element formulations in acoustics.

This could be achieved by regularizing the hypersingular integral operator and by computing the

coefficients of the boundary element matrices of the weakly singular and hypersingular integral

operators simultaneously.

The symmetrical boundary element formulation has been applied to compute the eigenfrequencies

of the coupled acoustic-structural problem of a double panel configuration where the cavity

between the panels was filled by either air or by glass-wool. The computed eigenfrequencies of

this coupled problem show a fair agreement with results of a code where both the elastomechanics

of the panels and the acoustic pressure was modelled by finite elements. In a forthcoming paper

the described boundary element formulation will be applied to a double panel configuration where

the cavity is partly filled by air and partly by glass-wool.
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Fig. 1   Cross section of baffled double wall configuration
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Fig. 2   Two panels clamped at the edges at a distance from each other


