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Summary

For the problem of tracking closely spaced targets from possibly false and missing observations,

the paper studies combinations of IMM and PDA where both the IMM step and the PDA step

is performed jointly over all targets. The resulting filter algorithms are referred to as Joint IMM

Coupled PDA (JIMMCPDA) and track-coalescence-avoiding Joint IMM Coupled PDA (JIMM-

CPDA*). Through Monte Carlo simulations these novel algorithms are compared to IMMPDA,

IMMJPDA, IMMJPDA* and particle filtering implementation of the exact Bayesian filter equa-

tion.
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1 Introduction

In a series of papers [1–4]we have studied the problem of tracking multiple closely spaced maneu-

vering targets. These studies resulted in six types of results that go beyond the IMMJPDA filter

algorithm derivation by [5]:

1. Jump-linear descriptor system embedding of the multi target tracking problem [1, 2]

2. Exact Bayesian filter characterization [2, 3]

3. Development of a track-coalescence-avoiding version of IMMJPDA, i.e. IMMJPDA* [1, 2]

4. Development of a combination of IMM and PDA where both steps are performed jointly

over all targets [4]

5. Monte Carlo simulations for 1-D scenarios including comparison of results to Particle filter

(PF) implementation of the exact Bayesian filter [3, 4]

Based on the Monte Carlo simulations for 1-D scenarios it appeared that the IMMJPDA* filter

outperforms the other filter algorithms. Moreover the IMMJPDA* performs on average almost

as well as the particle filter implementation of the exact Bayesian filter does, at a 10 to 100 times

lower computational load though. Since this is a very good finding for IMMJPDA*, the aim of this

paper is to extend the track-coalescence-avoiding approach to the development mentioned under

point 5 and also to extend the Monte Carlo simulations mentioned under point 6 to 2-D scenarios.

The paper is organized as follows. Section 2 defines the multi-target tracking problem consid-

ered. Section 3 presents the Joint IMM Coupled PDA (JIMMPDA) filter algorithm. Section 4

develops the track-coalescence-avoiding version of JIMMCPDA. Section 5 compares the algo-

rithms through simulation for 1-D and 2-D scenarios; an overview of characteristics of these filter

algorithms is given in table 1. Section 6 draws conclusions.
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Table 1 Characteristics of filter algorithms considered

Joint Joint Hypo- Hypo- Particle

measure- manoeuvre theses theses filter

ments modes merging pruning

IMMPDA [6] - - yes - -

IMMJPDA [5] yes - yes - -

IMMJPDA* [1, 2] yes - yes yes -

JIMMCPDA [4] yes yes yes - -

JIMMCPDA* yes yes yes yes -

PF [3, 4] yes yes - - yes
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2 The multi-target tracking problem

Consider M targets and assume that the state of the i-th target is modelled as a jump linear system:

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t, i = 1, ..., M, (1)

where xi
t is the n-vectorial state of the i-th target, θi

t is the Markovian switching mode of the i-th

target and assumes values from {1, .., N} according to a transition probability matrix Πi, ai(θi
t)

and bi(θi
t) are (n × n)- and (n × n′)-matrices and wi

t is a sequence of i.i.d. standard Gaussian

variables of dimension n′ with wi
t , wj

t independent for all i 6= j and wi
t ,xi

0, xj
0 independent for

all i 6= j.

A set of measurements consists of measurements originating from targets and measurements orig-

inating from clutter. We assume that a potential measurement originating from target i is also

modelled as a jump linear system:

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t , i = 1, ...,M (2)

where zi
t is an m-vector, hi(θi

t) is an (m×n)-matrix and gi(θi
t) is an (m×m′)-matrix, and vi

t is a

sequence of i.i.d. standard Gaussian variables of dimension m′ with vi
t and vj

t independent for all

i 6= j. Moreover vi
t is independent of xj

0 and wj
t for all i,j.

Let xt
4
= Col{x1

t , ..., x
M
t }, θt

4
= Col{θ1

t , ..., θ
M
t }, A(θt)

4
= Diag{a1(θ1

t ), ..., a
M (θM

t )}, B(θt)
4
=

Diag{b1(θ1
t ), ..., b

M (θM
t )}, and wt

4
= Col{w1

t , ..., w
M
t }. Then we can model the state of our M

targets as follows:

xt+1 = A(θt+1)xt + B(θt+1)wt (3)

with A and B of size Mn ×Mn and Mn ×Mn′ respectively, with {θt} assuming values from

{1, ..., N}M according to transition probability matrix Π = [Πη,θ]. If the M targets switch mode

independently of each other, then:

Πη,θ =
M∏

i=1

Πi
ηi,θi (4)

for every (η, θ) ∈ {1, ..., N}2M .

Next with

zt
4
= Col{z1

t , ..., zM
t },

H(θt)
4
= Diag{h1(θ1

t ), ..., h
M (θM

t )},

G(θt)
4
= Diag{g1(θ1

t ), ..., g
M (θM

t )},
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and vt
4
= Col{v1

t , ..., v
M
t }, we obtain:

zt = H(θt)xt + G(θt)vt (5)

with H and G of size Mm×Mn and Mm×Mm′ respectively.

We next assume that with a non-zero detection probability, P i
d, target i is indeed observed at

moment t. In addition to this there may be false measurements. We assume that the number of

false measurements at moment t, Ft, has Poisson distribution:

pFt(F ) = (λV )F

F ! exp
(−λV

)
, F = 0, 1, 2, . ..

= 0, else
(6.a)

where λ is the spatial density of false measurements and V is the volume of the observed region.

Thus, λV is the expected number of false measurements in the observed region. We assume

that the false measurements are uniformly distributed in the observed region, which means that a

column-vector v∗t of Ft i.i.d. false measurements has the following density:

pv∗t |Ft
(v∗|F ) = V −F (6.b)

Furthermore we assume that the process {v∗t } is a sequence of independent vectors, which are

independent of {xt}, {wt}, {vt} and {φt}.

At moment t a vector observation yt is made, the components of which consist of the poten-

tial observations zi
t of the detected targets plus the false measurements {v∗t }. The multi-target

tracking problem considered is to estimate (xt, θt) given observations Yt
4
= {ys, 0 ≤ s ≤ t}.
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3 Joint IMM Coupled PDA filter

In [1–3] the problem formulated in section 2 has been embedded into one of filtering for a jump-

linear descriptor system and the exact Bayesian filter equations have been derived. In [4] these

have been used to develop a recursive algorithm by assuming that, for each θ ∈ {1, ..., N}M , the

conditional density pxt|θt,Yt−1
(x | θ) is approximated by a single Gaussian density on IRMn. The

resulting algorithm performs both the IMM and the PDA steps jointly over all targets. We refer

to the resulting algorithm as the JIMMCPDA (Joint IMM Coupled PDA) filter1. It consists of the

following six subsequent steps.

JIMMCPDA Step 1: Interaction of the estimates from the previous filter cycle:

For all θ ∈ {1, ..., N}M , starting with

γ̂t−1(θ)
4
= pθt−1|Yt−1

(θ),

x̂t−1(θ)
4
= E{xt−1|θt−1 = θ, Yt−1},

P̂t−1(θ)
4
= E{[xt−1 − x̂t−1(θ)][xt−1 − x̂t−1(θ)]T | θt−1 = θ, Yt−1}

one evaluates the mixed initial condition for the filter matched to θt = θ as follows [7]:

γ̄t(θ) =
∑

η∈{1,...,N}M

Πη,θ · γ̂t−1(η)

x̂t−1|θt
(θ) =

∑

η∈{1,...,N}M

Πη,θ · γ̂t−1(η) · x̂t−1(η)/γ̄t(θ)

P̂t−1|θt
(θ) =

∑

η∈{1,...,N}M

Πη,θ · γ̂t−1(η) ·

·
(
P̂t−1(η) + [x̂t−1(η)− x̂t−1|θt

(θ)] · [x̂t−1(η)− x̂t−1|θt
(θ)]T

)
/γ̄t(θ)

JIMMCPDA Step 2: Prediction for all θ ∈ {1,...,N}M :

x̄t(θ) = A(θ)x̂t−1|θt
(θ) (7.a)

P̄t(θ) = A(θ)P̂t−1|θt
(θ)A(θ)T + B(θ)B(θ)T (7.b)

Q̄t(θ) = H(θ)P̄t(θ)H(θ)T + G(θ)G(θ)T (7.c)

1In [4] this algorithm was referred to as JIMMPDA, but JIMMCPDA is more appropriate.
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Let Q̄i
t(θ) be the i-th m×m diagonal block matrix of Q̄t(θ).

JIMMCPDA Step 3: Gating, which is based on [6].

Identify for each target the mode for which Det Q̄i
t(θ) is largest:

θ∗it = Argmax
θ

{Det Q̄i
t(θ)}

and use this to define for each target i a gate Gi
t ∈ IRm as follows:

Gi
t
4
= {zi ∈ IRm; [zi − hi(θ∗it )x̄i

t(θ
∗i
t )]T ·

·Q̄i
t(θ

∗i
t )−1[zi − hi(θ∗it )x̄i

t(θ
∗i
t )] ≤ ν}

with ν the gate size. If the j-th measurement yj
t falls outside gate Gi

t; i.e. yj
t /∈ Gi

t, then the j-th

component of the i-th row of [Φ(φ)T χ̃] is assumed to equal zero at moment t. This reduces the set

of possible detection/permutation hypotheses to be evaluated at moment t for various φ to X̃t(φ).

JIMMCPDA Step 4: Evaluation of the detection/permutation hypotheses taking into account the

reduced detection probability due to the limited gate size ν:

βt(φ, χ̃, θ) = γ̄t(θ)
ct

· Ft(φ, χ̃, θ)λ(Lt−D(φ))·
·
[∏M

i=1

(
1− P i

d · Chi2m(ν)
)(1−φi) · (P i

d · Chi2m(ν)
)φi

]
for χ̃ ∈ X̃t(φ),

= 0 else

(8.a)

Ft(φ, χ̃, θ) ∼= [(2π)mD(φ)Det{Qt(φ, θ)}]− 1
2 ·exp{−1

2
µT

t (φ, χ̃, θ)Qt(φ, θ)−1µt(φ, χ̃, θ)} (8.b)

where

µt(φ, χ̃, θ)
4
= χ̃yt − Φ(φ)H(θ)x̄t(θ) (8.c)

Qt(φ, θ)
4
=Φ(φ)

(
H(θ)P̄t(θ)H(θ)T + G(θ)G(θ)T

)
Φ(φ)T (8.d)

with ct normalizing βt(φ, χ̃, θ) and Chi2m(·) the Chi-squared cumulative distribution function with

m degrees of freedom.

JIMMCPDA Step 5: Measurement-based update equations:

γ̂t(θ) =
∑

φ,χ̃

βt(φ, χ̃, θ) (9)
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x̂t(θ) ∼= x̄t(θ) +
∑

φ

φ6=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)
)

(10)

P̂t(θ) ∼= P̄t(θ)−
∑

φ

φ6=0

Kt(φ, θ)Φ(φ)H(θ)P̄t(θ)
( ∑

χ̃

βt|θ(φ, χ̃)
)

+

+
∑

φ

φ 6=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ) · µT
t (φ, χ̃, θ)

)
·KT

t (φ, θ) +

−




∑

φ

φ6=0

Kt(φ, θ)
( ∑

χ̃

βt|θ(φ, χ̃)µt(φ, χ̃, θ)
)


 ·

·




∑

φ′
φ′ 6=0

Kt(φ′, θ)
(∑

χ̃′
βt|θ(φ′, χ̃′)µt(φ′, χ̃′, θ)

)



T

(11)

with:

Kt(φ, θ) = P̄t(θ)H(θ)T Φ(φ)T Qt(φ, θ)−1 if φ 6= 0,

= 0 else

βt|θ(φ, χ̃) = βt(φ, χ̃, θ)/γ̂t(θ)

JIMMCPDA Step 6: Output equations:

x̂t =
∑

θ∈{1,...,N}M

γ̂t(θ) · x̂t(θ) (12)

P̂t =
∑

θ∈{1,...,N}M

γ̂t(θ)
(
P̂t(θ) + [x̂t(θ)− x̂t] · [x̂t(θ)− x̂t]T

)
(13)
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4 Track-coalescence-avoiding JIMMCPDA filter

A shortcoming of CPDA is its sensitivity to track coalescence. With the CPDA* approach, [8]

has shown that this is due to CPDA’s merging over permutation hypotheses, and that a suit-

able hypothesis pruning may provide an effective countermeasure. The CPDA* filter equations

can be obtained from the CPDA algorithm by pruning per (φt, ψt)-hypothesis all less likely χt-

hypotheses prior to measurement updating. The physical explanation for why this is working

for two targets has been explained by Koch and Van Keuk [9]: ”If targets move closely spaced

for a longer period of time, it seems to be reasonable to represent the pdf by a symmetric form

invariant against a permutation of the objects.” In order to apply this approach to JIMMCPDA

the CPDA* hypothesis pruning strategy is now extended: evaluate all (φt, ψt,θt) hypotheses and

prune per (φt, ψt,θt)-hypothesis all less-likely χt-hypotheses. To do so, define for every φ, ψ and

θ, satisfying D(ψ) = D(φ) ≤ Min{M, Lt}, a mapping χ̂t(φ, ψ,θ):

χ̂t(φ, ψ, θ)
4
= Argmax

χ
βt(φ, χT Φ(ψ), θ)

where the maximization is over all permutation matrices χ of size D(φ)×D(φ).

The pruning strategy of evaluating all (φ, ψ, θ)-hypotheses and only one χ-hypothesis per (φ, ψ, θ)-

hypothesis implies that for D(φ) > 0 we adopt the following pruned hypothesis weights β̂t(φ, ψ, θ):

β̂t(φ, ψ, θ) = βt(φ, χ̂(φ, ψ, θ)T Φ(ψ), θ)/ĉt if D(φ) = D(ψ) ≤ Min{M, Lt}
= 0 else

with ĉt a normalization constant for β̂t; i.e. such that

∑

φ,ψ,θ

D(ψ)=D(φ)

β̂t(φ, ψ, θ) = 1

By inserting these particular weights within JIMMCPDA, we get JIMMCPDA*. One cycle of

the JIMMCPDA* filter algorithm consists of 7 steps, the first four of which are equivalent to the

JIMMCPDA steps:

JIMMCPDA* Step 1: Mixing

Equivalent to JIMMCPDA Step 1 in section 3.

JIMMCPDA* Step 2: Prediction

Equivalent to JIMMCPDA Step 2 in section 3.
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JIMMCPDA* Step 3: Gating

Equivalent to JIMMCPDA Step 3 in section 3.

JIMMCPDA* Step 4: Evaluation of the detection/permutation hypotheses

Equivalent to JIMMCPDA Step 4 in section 3.

JIMMCPDA* Step 5: Track-coalescence hypothesis pruning.

First evaluate for every (φ, ψ,θ) such that 0 < D(ψ) = D(φ) ≤ Min{M, Lt}:

χ̂t(φ, ψ, θ)
4
= Argmax

χ
βt(φ, χT Φ(ψ), θ)

Next evaluate all χ̂t(φ, ψ,θ) hypothesis weights:

β̂t(φ, ψ, θ)= βt(φ, χ̂t(φ, ψ, θ)T Φ(ψ), θ)/ĉt if 0 < D(ψ) = D(φ) ≤ Min{M, Lt}
= βt({0}M , {}Lt , θ)/ĉt if D(ψ) = D(φ) = 0

= 0 else

where ĉt is a normalizing constant for β̂t.

JIMMCPDA* Step 6: Measurement update equations

For all i ∈ {1, ..., M}, θi ∈ {1, ..., N} :

γ̂t(θ) ∼=
∑

φ,ψ

β̂t(φ, ψ, θ) (14.a)

x̂t(θ) ∼= x̄t(θ) +
∑

φ

φ6=0

Kt(φ, θ)
( ∑

ψ

β̂t|θ(φ, ψ)µ̂t(φ, ψ, θ)
)

(14.b)

P̂t(θ) ∼= P̄t(θ)−
∑

φ

φ6=0

Kt(φ, θ)Φ(φ)H(θ)P̄t(θ)
( ∑

ψ

β̂t|θ(φ, ψ)
)

+

+
∑

φ

φ 6=0

Kt(φ, θ)
( ∑

ψ

β̂t|θ(φ, ψ)µ̂t(φ, ψ, θ) · µ̂t(φ, ψ, θ)T

)
·KT

t (φ, θ) +

−




∑

φ

φ6=0

Kt(φ, θ)
( ∑

ψ

β̂t|θ(φ, ψ)µ̂t(φ, ψ, θ)
)


 ·

·




∑

φ′
φ′ 6=0

Kt(φ′, θ)
(∑

ψ′
β̂t|θ(φ′, ψ′)µ̂t(φ′, ψ′, θ)

)



T

(14.c)
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with

Kt(φ, θ) = P̄t(θ)H(θ)T Φ(φ)T Qt(φ, θ)−1 if φ 6= 0,

= 0 else

µ̂t(φ, ψ, θ) = µt(φ, χ̂(φ, ψ, θ)T Φ(ψ), θ)

β̂t|θ(φ, ψ) = β̂t(φ, ψ, θ)/γ̂(θ)

JIMMCPDA* Step 7: Output equations

Equivalent to JIMMCPDA Step 6 in section 3.
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5 Monte Carlo simulations

In this section some Monte Carlo simulation results are given for the IMMJPDA, JIMMCPDA,

IMMJPDA*, and JIMMCPDA* filter algorithms, and for an IMMPDA which updates an indi-

vidual track using PDA by assuming the measurements from the adjacent targets as false. The

simulations primarily aim at gaining insight into the behavior and performance of the filters when

objects move in and out close approach situations, while giving the filters enough time to con-

verge after a manoeuvre has taken place. In the example scenarios there are two targets. First

we simulate a 1-D position example for 100 different parameterizations. Next we simulate a 2-D

position example for 8 different parameterizations. For the 1-D position scenarios we also provide

the exact Bayesian filter based particle filtering (PF) results of [3, 4], though the computational

load increases a factor 10 to 100 over the others.

5.0.1 1-D position scenarios
In the simple example scenarios (see figure 1), two objects start moving in 1-D position towards

each other, each with constant initial velocity Vinitial (i.e. the initial relative velocity Vrel, initial =

−2V ). At a certain moment in time both objects start decelerating with -50 m/s2 until they both

have zero velocity. The moment at which the deceleration starts is such that when the objects both

have zero velocity, the distance between the two objects equals d. After spending a significant

number of scans with zero velocity, both objects start accelerating with 50 m/s2 away from each

other without crossing until their velocity equals the opposite of their initial velocity. From that

moment on the velocity of both objects remains constant again (thus the final relative velocity

Vrel, final = 2V ). Note that d < 0 implies that the objects have crossed each other before they have

reached zero velocity. Each simulation runs for 40 scans and the filters start with perfect estimates.

Examples of the trajectories for d > 0 and d < 0 are depicted in figures 1a and 1b respectively.

For each target, the underlying model of the potential target measurements is given by (1) and (2)

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t (1)

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t (2)



- 16 -
NLR-TP-2005-685

0 100 200 300 400
−1000

−500

0

500

1000
Trajectories for d    0≥

time

p
o

si
tio

n

 d    0 ≥

1a. Trajectories examples for d ≥ 0
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1b. Trajectories examples for d < 0

Fig. 1 Trajectories examples for d ≥ 0 and for d < 0

with for i = 1, 2 and θi
t ∈ {1,2}:

ai(1) =




1 Ts 0

0 1 0

0 0 0


 , ai(2) =




1 Ts
1
2T 2

s

0 1 Ts

0 0 1




bi(1) = σi
a ·




0

0

1


 , bi(2) = σi

a ·




0

0

0




hi =
[

1 0 0
]
, gi = σi

m
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Π =

[
1− Ts/τ1 Ts/τ1

Ts/τ2 1− Ts/τ2

]

where σi
a represents the standard deviation of acceleration noise and σi

m represents the standard

deviation of the measurement error. For simplicity we consider the situation of similar targets

only; i.e. σi
a = σa, σi

m = σm, P i
d = Pd. With this, the scenario parameters are Pd, λ, d, V , Ts,

σm, σa, τ1, τ2, and the gate size ν. We used fixed parameters σm = 30, σa = 50, τ1 = 50, τ2 = 5,

and ν = 25. Table 2 gives the other scenario parameter values that are being used for the Monte

Carlo simulations.

Table 2 Scenario parameter values;
d ∈ {−12, ...,−1, 0, 1, ..., 12}

IMMPDA’s λ = 0.00001 for scenarios A1 and A3

Scenario Pd λ d V Ts

A1 1 0 Variable 75 1

A2 1 0.001 Variable 75 1

A3 0.9 0 Variable 75 1

A4 0.9 0.001 Variable 75 1

During our simulations we counted track i ”O.K.”, if

| hix̂i
T − hixi

T |≤ 9σm

where | · | denotes the l2-norm. We counted track i 6= j ”Swapped”, if

| hix̂i
T − hjxj

T |≤ 9σm

and we counted track i and j “Coalescing” at scan t, if

| hixi
t − hjxj

t |> 9σm ∧ | hix̂i
t − hj x̂j

t |≤ σm

For each of the scenarios Monte Carlo simulations containing 100 runs have been performed for

each of the tracking filters. To make the comparisons more meaningful, for all tracking algorithms

the same random number streams were used. The Monte Carlo simulation results for the four

scenarios are presented in Table 3.

For the 1-D position example considered, the simulation results show that JIMMCPDA, JIMMCPDA*,

IMMJPDA and IMMJPDA* perform much better than IMMPDA. The results in table 3 also show
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Table 3 Monte Carlo simulation results.

Average % Average % Both Tracks

Both Tracks O.K. O.K. or Swapped

A1 A2 A3 A4 A1 A2 A3 A4

IMMPDA 19 10 6 4 28.3 18.9 8.5 5.6

IMMJPDA 66 56 63 41 99.96 92.5 99.8 76.6

IMMJPDA* 73 68 69 50 100 96.8 100 81.0

JIMMCPDA 54 47 52 35 79.6 77.3 80.1 65.6

JIMMCPDA* 70 66 68 49 99.8 97.3 99.9 76.8

PF 75 70 72 57 96.2 94.6 95.8 82.3

Average number of Average CPU time

Coalescing scans per scan (in milliseconds)

A1 A2 A3 A4 A1 A2 A3 A4

IMMPDA 9.7 11.0 18.9 14.5 16 38 14 38

IMMJPDA 1.5 2.1 1.7 2.6 22 54 20 61

IMMJPDA* 0.4 0.3 0.5 0.5 23 48 20 56

JIMMCPDA 3.3 3.7 3.4 3.8 42 70 37 85

JIMMCPDA* 0.4 0.4 0.6 0.5 40 63 36 78

PF 1.3 1.4 1.3 1.5 440 7960 440 7810

that JIMMCPDA* and IMMJPDA* perform on average better than JIMMCPDA and IMMJPDA.

Both JIMMCPDA* and IMMJPDA* avoid track coalescence and are less sensitive to track loss

than JIMMCPDA and IMMJPDA are. As a result of this, the IMMJPDA and IMMJPDA* per-

form on average better than JIMMCPDA and JIMMCPDA* respectively. As expected, a particle

filter implementation of the exact Bayesian filter [3, 4] provides the best performance when the

tracking scenario is most demanding (scenario A4). However, even then, the improvement over

IMMJPDA* and JIMMCPDA* is rather limited. Previous results [3, 4] also show that each of the

algorithms may outperform the others at some particular d value. Thus if the comparison would

be for one d-value only, as is common practice in literature, each of the algorithms might be a best

performing tracking algorithm.

5.1 2-D position scenarios
So far all simulation results apply to a 1-dimensional position example. Now we verify if similar

results also apply to a 2-dimensional example. To do so, we perform Monte Carlo simulations for

two targets flying the 2-D trajectory patterns as pictured in Figure 2 and in Figure 3.
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Fig. 2 Trajectory patterns of scenario R0
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Fig. 3 Trajectory patterns of scenario R1

The target trajectory patterns in Figure 2 are of [5]. We refer to this as scenario R0. In addition

to this we simulate trajectory patterns that are kind of 2-D position versions of the 1-D position

jointly manoeuvering target scenarios of section 5.1. These are depicted in Figure 3. From 0

to 20s, targets 1 and 2 fly at a speed of 400 m/s in a straight line in south and north direction

respectively. From 20 to 35s, both targets make a coordinated turn to the east. From 35 s to 55s,

both targets fly in a straight line to the east. From 55s to 70s, targets 1 and 2 make a coordinated

turn to the north and to the south respectively. From 70s to 90s, targets 1 and 2 fly in a straight

line to the north and to the south respectively. Of the jointly manoeuvering target trajectories we

consider seven scenarios, which differ in the initial position of Target 1 only:
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Scenario R1: Target 1 starts at (0,11820m) and target 2 starts at (0,-11820m).

Scenario R2/R2′: Same as R1 but initial position of target 1 is shifted 200/100m to the south.

Scenario R3/R3′: same as R1 but initial position of target 1 is shifted 200/100m to the north.

Scenario R4/R4′: Same as R1 but initial position of target 1 is shifted 200/100m to the east.

Similar as in [5], the target motion models for the two targets are identical. In each mode the target

dynamics are modelled in Cartesian coordinates as given by (1):

xi
t+1 = ai(θi

t+1)x
i
t + bi(θi

t+1)w
i
t (1)

where the state of the target is position, velocity and acceleration in each of the the two Cartesian

coordinates (x, y). Thus xi
t is of dimension 6 (n = 6). Three modes for {θi

t} are adopted. The

corresponding system matrices ai(θi) and bi(θi), for θi ∈ {1, 2, 3} and i ∈ {1, 2}, are defined as:

ai(θi) =

[
ai

1(θ
i) 0

0 ai
2(θ

i)

]
, ai

j(1) =




1 Ts 0

0 1 0

0 0 0




ai
j(2) = ai

j(3) =




1 Ts
1
2T 2

s

0 1 Ts

0 0 1




bi(θi) =

[
bi
1(θ

i) 0

0 bi
2(θ

i)

]
, bi

j(1) = σi
a(1) ·




1
2T 2

s

Ts

0




bi
j(2) = σi

a(2) ·




1
2T 2

s

Ts

1


 , bi

j(3) = σi
a(3) ·




1
2T 2

s

Ts

1




where Ts is the sampling period.

• Model 1: nearly constant velocity model with zero mean perturbation in acceleration with

ai(θ) = ai(1) and bi(θ) = bi(1). The standard deviation σi
a(1) of the process noise is

σi
a(1) = 5m/s2.

• Model 2: Wiener process acceleration (nearly constant acceleration motion) with ai(θ) =

ai(1) and bi(θ) = bi(2). The standard deviation σi
a(1) of the process noise is σi

a(2) =

7.5m/s2.

• Model 3: Wiener process acceleration (model with large acceleration increments, for the

onset and termination of maneuvers) with ai(θ) = ai(3) and bi(θ) = bi(3). The standard

deviation σi
a(3) of the process noise is σi

a(2) = 40m/s2.

The initial model probabilities for the two targets are identical: γ̂i
0(1) = 0.8, γ̂i

0(2) = 0.1, γ̂i
0(3) =

0.1. The mode switching probability matrix for each of the two targets is also identical and is given
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by:

Πi =




0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




The potential sensor measurements for target i are as given by (2):

zi
t = hi(θi

t)x
i
t + gi(θi

t)v
i
t (2)

with

hi(θi) =

[
hi

1(θ
i) 0

0 hi
2(θ

i)

]
, gi(θi) =

[
gi
1(θ

i) 0

0 gi
2(θ

i)

]

hi
j(θ

i) =
[

1 0 0
]
, gi

j(θ
i) = σm, j ∈ {1, 2}

The standard deviation σm of the measurement error is σm = 20m. The sensor is assumed to be

located at the coordinate system origin. The sampling interval Ts = 1s and it was assumed that the

probability of detection Pd = 0.997. For generating false measurements in simulations the clutter

was assumed to be Poisson distributed with expected number of λ = 1× 10−6/m2. The gates for

setting up the validation regions for the measurements were based on the threshold ν = 25.

For each of the scenarios Monte Carlo simulations containing 100 runs have been performed

for each of the tracking filters. To make the comparisons more meaningful, for all tracking al-

gorithms the same random number streams were used. Using the same criteria as for the 1-D

position example, the results of the Monte Carlo simulations for the scenarios are depicted in four

Tables:

• The percentage of Both tracks ”O.K.”, in Table 4.

• The percentage of Both tracks ”O.K.” or ”Swapped”, in Table 5.

• The percentage of ”Coalescing” tracks, in Table 6.

• The average CPU time per scenario in Table 7.

Most remarkable is the dramatic decrease in performance by JIMMCPDA for scenarios where the

two targets come closer than 200m to each other, i.e. R1 (0m), R2′ (100m), R3′ (100m) and R4′

(100m). These scenarios have in common that they cause JIMMCPDA to be caught in a situa-

tion where it has strongly coupled uncertainty about which target is gone in which direction. As

a result of this JIMMCPDA increases its covariance and then diverges. For these scenarios, the

permutation hypothesis pruning of JIMMCPDA* appears to mitigate this problem effectively.

Although to a far less degree, the same negative phenomenon for JIMMCPDA is working for



- 22 -
NLR-TP-2005-685

Table 4 % Both tracks ”O.K.”.

R0 R1 R2 R2′ R3 R3′ R4 R4′

IMMPDA 94 0 1 0 17 0 8 0

IMMJPDA 97 0 71 42 96 59 98 39

IMMJPDA* 97 51 73 57 95 59 98 71

JIMMCPDA 97 0 83 4 91 5 97 10

JIMMCPDA* 97 46 80 39 95 32 98 78

Table 5 % Both tracks ”O.K.” or ”swapped”.

R0 R1 R2 R2′ R3 R3′ R4 R4′

IMMPDA 94 1 15 0 23 1 18 2

IMMJPDA 97 0 92 91 98 94 98 90

IMMJPDA* 97 97 96 96 98 97 98 98

JIMMCPDA 97 0 97 15 93 16 97 15

JIMMCPDA* 97 97 96 96 98 97 98 98

Table 6 % Coalescing tracks. i.e. tracks with three or more subsequently coalescing scans

R0 R1 R2 R2′ R3 R3′ R4 R4′

IMMPDA 2 99 82 98 77 98 71 99

IMMJPDA 0 74 0 0 0 0 0 1

IMMJPDA* 0 0 0 0 0 0 0 0

JIMMCPDA 0 99 0 51 5 43 1 59

JIMMCPDA* 0 0 0 0 0 0 0 0

Table 7 Average CPU time per scan (in milliseconds).

R0 R1 R2 R2′ R3 R3′ R4 R4′

IMMPDA 18 17 17 17 16 16 16 17

IMMJPDA 20 74 20 21 19 19 18 21

IMMJPDA* 20 18 18 18 18 18 18 18

JIMMCPDA 33 138 33 123 36 130 30 127

JIMMCPDA* 31 29 31 29 28 28 27 27
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scenario R3, in which target 1 stays 200m north of target 2. This for JIMMCPDA negative phe-

nomenon is gone for scenario R4, in which target 1 stays 200m behind target 2. JIMMCPDA

works best of all for scenario R2, in which target 1 crosses target 2 and then stays 200m south of

it.

In contrast with JIMMCPDA, IMMJPDA keeps performing quite well for all scenarios, except for

R1, i.e. when the two targets come at zero distance of each other. IMMJPDA*, IMMJPDA* and

IMMJPDA perform similarly well for 4 scenarios (R0, R2, R3, R4), and IMMJPDA* performs

dramaticly to significantly better than IMMJPDA for 3 scenarios (R1, R2′, R4′). If track swap is

preferred above track loss, then IMMJPDA* even performs significantly better than IMMJPDA

for 5 scenarios (R1, R2, R2′, R3′, R4′)

The results can be summarized as follows:

Scenario R0: Significant improvement of IMMJPDA, JIMMCPDA, JIMMCPDA* and IMMJPDA*

over IMMPDA, and similar performance by these four.

Scenario R1: Dramatic improvement of IMMJPDA* and JIMMCPDA* over IMMPDA, IM-

MJPDA and JIMMCPDA.

Scenarios R2, R3 and R4: Dramatic improvement of IMMJPDA, JIMMCPDA, JIMMCPDA*

and IMMJPDA* over IMMPDA. For R2, JIMMCPDA and JIMMCPDA* perform signifi-

cantly better than IMMJPDA and IMMJPDA*. For R3, IMMJPDA, JIMMCPDA and IM-

MJPDA* perform significantly better than JIMMCPDA. For R4 similar performance by all

four.

Scenarios R2′, R3′, R4′: Dramatic improvement of IMMJPDA, JIMMCPDA* and IMMJPDA*

over IMMPDA and JIMMCPDA. Moreover, significant improvement of IMMJPDA* over

IMMJPDA for R2′ and R4′, and similar performance for R3′.

If two targets fly for a while very close to each other (i.e. R1), then IMMJPDA* and JIMMCPDA*

perform far better than the others. If the targets stay 5 times σm from each other (i.e. R2′, R3′,

R4′), then IMMJPDA* performs similar or significantly better than IMMJPDA. If the targets stay

10 times σm from each other (i.e. R2, R3, R4), then IMMJPDA, JIMMCPDA, IMMJPDA* and

JIMMCPDA* perform almost equally well. Similar as for the 1-D position example, each of the

four may perform best in some special situations, i.e. IMMJPDA for R3, JIMMCPDA for R2,

JIMMCPDA* for R4′, IMMJPDA* for R1 and R2′. Situations of significant track coalescence

apply to IMMPDA for R1-R4; to IMMJPDA for R1 and to JIMMCPDA for R1, R2′, R3, R3′ and

R4′. It is also nice to see that IMMJPDA* clearly outperforms IMMPDA at a 10%-20% higher

computational load only.
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6 Concluding remarks

For the problem of tracking closely spaced maneuvering targets from possibly false and missing

observations, the paper has developed a track-coalescence-avoiding version (JIMMCPDA*) of the

JIMMCPDA in [4]. Through Monte Carlo simulations for 1-D and 2-D scenarios, JIMMCPDA* is

compared to IMMJPDA, IMMJPDA* and JIMMCPDA. For closely spaced maneuvering targets,

JIMMCPDA* and IMMJPDA* perform best in terms of the chance that both tracks are ”OK” or

”swapped”, whereas JIMMCPDA* has about a 50% higher computational load than IMMJPDA*.

The paper has also shown that in case of significant clutter density there remains some room for

improvement by using a better approximation of the exact Bayesian equations (e.g. by a good

particle filter). However the computational load is then much higher.

Interesting follow up work is to extend IMMJPDA*, JIMMCPDA* and particle filtering imple-

mentations of the exact Bayesian filter into other directions such as finite sensor resolution (e.g.

[9]), Variable Structure IMM (e.g. [10]). and Integrated track initiation (e.g. [11, 12]),
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