
NLR-TP-2000-198

Mining aircraft incident databases with aMining aircraft incident databases with aMining aircraft incident databases with aMining aircraft incident databases with a
genetic-based algorithmgenetic-based algorithmgenetic-based algorithmgenetic-based algorithm

R. Choenni

.

NationaalNationaalNationaalNationaal Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2000-198

Mining aircraft incident databases with aMining aircraft incident databases with aMining aircraft incident databases with aMining aircraft incident databases with a
genetic-based algorithmgenetic-based algorithmgenetic-based algorithmgenetic-based algorithm

R. Choenni

This investigation has been carried out under a contract awarded by the Royal Netherlands
Navy (RNLN), contract number 726.98.0343.01. RNLN has granted NLR permission to
publish this report.

This report is published in the Proceedings of the 3rd Federal Symposium on Data Mining,
AFCEA Press, March 2000.

The contents of this report may be cited on condition that full credit is given to NLR and
the author.

Division: Information and Communication Technology

Issued: August 2000

Classification of title: unclassified

-3-
NLR-TP-2000-198

Abstract

The capabilities of conventional data analysis tools are limited for a thorough analysis of aircraft

incident databases. This is due to the enormous number of attributes and the various types of

attributes involved in those databases. Since data mining has as goal to extract knowledge from

databases without putting any restriction on the type and amount of data, data mining techniques

are interesting for the analysis of aircraft incident databases. We have mined two real-life

aircraft incident databases with a prototype data mining tool that is developed at our laboratory.

This tool is based on a genetic algorithm. In this paper, we report on the implementation of this

tool and the mining results that we have obtained with regard to the aircraft incident databases.

-4-
NLR-TP-2000-198

Contents

1 Introduction 5

2 Data mining and searching 7

3 Genetic-based mining algorithm 9

3.1 Representation 10

3.2 Fitness function 10

3.3 Manipulation operators 11

4 SHARVIND: A prototype data mining tool 13

4.1 Architecture 13

4.2 Implementation 16

5 Mining two databases 17

5.1 ECCAIRS 17

5.2 FAA 19

5.3 Mining results 19

6 Conclusions and further research 21

7 References 23

(23 pages in total)

-5-
NLR-TP-2000-198

1 Introduction

Organisations have realised that their databases may contain knowledge that can improve the

quality of decisions taken in the present or future. Conventional data analysis tools are

inadequate to extract this knowledge, while manually extracting this knowledge is a time-

consuming and tedious process at best. Therefore, there is a practical need to (partially)

automate this process. Data mining contributes to the need by combining techniques from

different fields, such as database technology, machine learning, statistics, and artificial

intelligence. Research and development in data mining evolves in several directions, such as

association rules, time series, and classification. The direction of association rules is focussing

on the development of algorithms to find frequently occurring patterns in databases [AgIS93,

AgSr94]. In time series databases, one tries to find all common patterns embedded in a database

of sequences of events [AgSr95]. Classification of tuples based on common characteristics and

the search for rules in a class is another direction of interest [AgGI92, HaCC92, HoKe94]. In

this paper, we address data mining problems as mentioned in the last direction.

Many data mining problems can be formulated as search problems. A database is regarded as a

set of tuples, and each (projected) subset of tuples is considered as an element in the search

space. The problem is to select interesting subsets without inspecting the whole search space.

For example, in a car insurance environment the identification of profiles of risky drivers, i.e.,

drivers with (more than average) chances of causing an accident, can be modelled as a search

problem. Consider an artificial relation Driver(gender, age, town, category, price, damage), in

which the attributes gender, age, town refer to the driver, while the remaining attributes refer to

the car. Attribute category records, whether a car is leased or not, and damage records, whether

a car has been involved in an accident or not. The challenge is to select a conjunction of

predicates that represents the group of risky drivers. Assume that young males in leased cars

form this group. Then, an expression like: gender = “male” ∧ age ∈ [18, 24] ∧ category =

“leased” should be searched for, which actually represents a projected subset of tuples in the

database.

In general, the search spaces that should be inspected in order to answer mining questions are

very large, making an exhaustive search infeasible. Therefore, heuristic search strategies are of

vital importance to data mining. In the literature a wide variety of heuristic search strategies

have been reported to walk efficiently through a search space, e.g., hill climbing, simulated

annealing, genetic algorithms, etc. The success of an algorithm is often dependent on the

structure of the search space. For example, a hill climber will generally perform better on a

search that consists of a few optima, while a genetic algorithm will perform better if the search

space consists of many optima. The reason is that a hill climber terminates if it reaches an

-6-
NLR-TP-2000-198

optimum, while a genetic algorithm does not. In a search space that contains many optima, it

will generally be worthwhile to continue searching the space after having found the first

optimum. Unfortunately, the search spaces that stem from data mining problems neither has a

specific structure nor are the structures known in advance. On the basis of evidence, one should

choose for a search strategy. Therefore, a data mining tool should be equipped with several

search strategies.

It has been recognised by several researchers that genetic algorithms might be suitable for a

wide range of data mining tasks [AuVK95, Frei97]. Genetic algorithms have been successfully

applied in several areas, such as air traffic management [KeAK96], query optimization

[Grae93], data warehouse design [ZaYa99], etc. A genetic algorithm is capable of exploring

different parts of a search space.

This paper is devoted to the implementation of a prototype genetic-based data mining tool,

called SHARVIND, and the application of SHARVIND on two real-life databases, containing

aircraft incident data. SHARVIND is running in a Microsoft ACCESS environment that uses

the Microsoft Jet Engine. The tool takes as input a mining question, which actually selects the

part of the database where interesting knowledge should be searched. Furthermore, a number of

parameter values are required as input. These values are necessary to run the genetic-based

algorithm, which is the core of SHARVIND. We note that it is possible to specify requirements:

as use attribute attj and/or do not use attk. The output of the tool is a set of expressions. In order

to be selected as output, an expression should meet the following two criteria. First, the

expression should be a conjunction of predicates, in which an attribute (involved in the

database) appears at most once. We note that an expression actually represents a projected

subset of tuples in the database. Second, the number of tuples that is represented by an

expression should be in an interval, which is defined by a domain expert.

As noted before, we have mined two real-life databases. Both databases contain aircraft incident

data, one is set up by the Federal Aviation Administration (FAA) in the USA, referred as FAA

database, and the other is set up by the Joint Research Centre (JRC) in Italy, referred as

ECCAIRS database. We note that the FAA database is obtained from the Internet and is mined

at our laboratory, while the JRC database is mined on location. In the FAA database aircraft

incident are recorded from 1978 to 1995, while ECCAIRS is recently in production. Currently,

ECCAIRS consists of data that is converted from the Scandinavian accident and incident

reporting system.

-7-
NLR-TP-2000-198

We have mined both databases by posing the mining question “What are the profiles of risky

flights?” We have posed to the FAA databases some additional mining questions (concerning

safety aspects), such as “Given the fact an incident was due to operational defects not inflicted

by the pilot, what is the profile of this type of incident”, etc. We have presented the mining

results to safety experts at our laboratory and our overall conclusion was that the answers to the

mining questions were correct and promising. The mining results helped safety experts to gain

insight in the databases and hopefully also knowledge in future.

The remainder of this paper is organised as follows. In Section 2, we view data mining tasks as

searching problems, in which the search space consists of an enormous number of expressions.

Then, in Section 3, we tailor a genetic algorithm to walk efficiently through the search space. In

Section 4, we discuss a prototype data mining tool, called SHARVIND, which is based on the

previously described genetic algorithm. Section 5 is devoted to the mining of two aircraft

incident databases with SHARVIND and the mining results that we have obtained. Finally,

Section 6 concludes the paper.

2 Data mining and searching

The large amount of data stored in databases may serve two purposes. First, it may help in

understanding a phenomenon, and second it may help to predict the outcome of similar

phenomena. In our view, data mining is a powerful tool that contributes to the realization of

these purposes. Data mining has as goal to extract potentially useful information from large

databases by using a wide variety of methods and techniques that are able to explore large data

sets efficiently.

In the following, a database consists of a universal relation [Ullm89]. The relation is defined

over some independent single valued attributes, such as att1, att2,..., attn, and is a subset of the

Cartesian product dom(att1) × dom(att2) ×...× dom(attn), in which dom(attj) is the set of values

that can be assumed by attribute attj. A tuple is an ordered list of attribute values to which a

unique identifier is attached. An expression is defined as a conjunction of predicates, and is used

to select a set of tuples from the database, which in turn represents a class in the database.

Consider the earlier introduced relation Driver(gender, age, town, category, price, damage) and

a snapshot of this relation as depicted in Table 1. For example, the expression gender = “male”

selects the set of tuples corresponding to the males in the database, i.e., the tuples 1, 3 and 4 in

Table 1, the expression age ∈ [18, 24] ∧ category = “leased” selects the set of tuples

corresponding to persons between eighteen and twenty four years old driving a leased car, i.e.,

the tuples 1 and 3, etc. A main advantage of introducing the notion of expression is that we do

-8-
NLR-TP-2000-198

not have to enumerate explicitly all tuples of a class, and therefore an expression can be

regarded as a summary/description of a class. So, a database contains an enormous number of

classes, and each class can be represented as an expression or a disjunction of expressions.

Table 1 Snapshot of the database Driver

Tuple

Identifier

gender age Town category price damage

1 male 20 Almere leased 70K yes

2 female 35 Amsterdam not leased 80K yes

3 male 24 Amsterdam leased 75K yes

4 male 28 Almere not leased 40K yes

5 female 28 The Hague leased 50K no

… … … … … … …

Note that the following disjunction (gender = “male” ∧ age = 20 ∧ town = “Almere” ∧ category

= “leased”∧ price = 70K ∧ damage = “yes”) ∨ (gender = “female” ∧ age = 35 ∧ town =

“Amsterdam” ∧ category = “not leased”∧ price = 80K ∧ damage = “yes”) is a straightforward

way to select the first and the second tuple from Table 1.

Data mining may now be regarded as the search for useful, previously unknown expressions

from a space of expressions without inspecting the whole space. The search space is formed by

all possible expressions with regard to a database. Note that the number of expressions grows

exponentially with the number of attributes and the number of tuples in the database.

Although the usefulness of an expression generally depends on the application, we know

beforehand that the following three categories of expressions will not be interesting.

1. Expressions that select zero tuples. An example of such an expression is age = 20 ∧ age =

36. Since age is a single valued attribute, no tuples will qualify for this expression.

2. Expressions that select a set of arbitrary tuples that do not have any common characteristics.

Such a set can easily be obtained by a disjunction of an arbitrary number of expressions.

3. Expressions that consist of a single predicate. Knowledge with regard to these expressions

is stored in the data dictionary, which is easily accessible for database administrators.

-9-
NLR-TP-2000-198

Therefore, we discard these categories from the search space by imposing the following

restrictions to expressions.

1. An attribute appears at most once in an expression.

2. Disjunctions of expressions are not allowed in the search space.

3. An expression should contain at least one conjunction.

So, the elements of the search space are expressions that satisfy above-mentioned restrictions.

The challenge is to come up with search strategies that are able to find the interesting elements

by inspecting a relatively small part of the search space. In the next section, we discuss a

genetic-based search strategy.

3 Genetic-based mining algorithm

Genetic algorithms are heuristic search strategies inspired by natural genetics and evolutionary

principles [Holl75, Mich95]. They have been proven to be promising in a wide variety of

applications. In some cases it is shown that genetic algorithms converge to an optimum, while in

other cases experience show that they converge. However it is still an open question why

convergence occurs.

A genetic algorithm randomly generates an initial population. Traditionally, individuals in the

population are represented as bit strings. The quality of each individual, i.e., its fitness, is

computed. On the basis of these qualities, a selection of individuals is made (individuals may be

chosen more than once). Some of the selected individuals undergo a minor modification, called

mutation. For some pairs of selected individuals a random point is selected, and the substrings

behind this random point are exchanged; this process is called cross-over. The selected

individuals, modified or not, form a new population and the same procedure is applied to this

generation until some predefined criteria are met. So, a genetic algorithm is characterised by the

representation, the fitness function, and the manipulation operators. In the following, we briefly

discuss these characterisations in the context of data mining. For a more detailed discussion, we

refer to [Choe98].

-10-
NLR-TP-2000-198

3.1 Representation

A population is defined as a set of individuals. We represent an individual as an expression to

which a few restrictions are imposed with regard to the notation. The notation of an elementary

expression, i.e., the expression consists of exactly one predicate, depends on the domain type of

the involved attribute. If there exists no ordering relationship between the attribute values of an

attribute att, we represent an elementary expression as follows:

expression := att is (v1, v2,...,vn), in which vi ∈ dom(att), 1 ≤ i ≤ n. In this way, we express that

an attribute att assumes one of the values in the set { v1, v2,...,vn }. If an ordering relationship

exists between the domain values of an attribute, an elementary expression is denoted as

expression := att in [vi, vk], i ≤ k, in which [vi, vk], represents the values within the range of vi

and vk .

We note that an individual represents a class or group in the database. In the following, the

terms individual and class are used interchangeably.

3.2 Fitness function

A central instrument in a genetic algorithm is the fitness function. Since a genetic algorithm is

aimed to the optimization of such a function, this function is one of the keys to success.

Consequently, a fitness function should contain all issues that play a role in the optimization of

a specific problem. We note that three issues have been implicitly incorporated in the notion of

expressions. First, we have demanded that classes are not empty. Second, we have demanded

that the tuples within a class meet some common properties (see Section 2). Third, we have

demanded that a class should be described by at least one conjunction.

Before introducing two other issues that play a role in searching interesting classes, we

introduce the notion of cover and target class. The number of tuples that corresponds to an

individual is called the cover of the individual. A target class is the set of tuples within

interesting expressions should be search for. This may be the whole database or a part of the

database. Suppose that we want to expose the profiles of risky drivers from the database

Driver(gender, age, town, category, price, damage), i.e., the class of persons with (more than

average) chances of causing an accident. Then, these profiles should be searched for in a class

that records the characteristics of drivers that caused accidents. Such a class may be described as

damage = “yes”.

-11-
NLR-TP-2000-198

We feel that the following issues should be modelled explicitly in a fitness function.

• The cover of the target class. Since results from data mining are used for informed decision

making, knowledge extracted from databases should be supported by a significant part of

the database. This increases the reliability of the results. So, a fitness function should take

into account that small covers are undesired.

• The ratio of the cover of an individual p to the cover of the target class t. If this ratio is close

to 0, this means that only a few tuples of the target class satisfy individual p. This is

undesired for the same reason as a small cover for a target class. If this ratio is close to 1,

almost all tuples of the target class satisfy p. This is also undesirable because this will result

in knowledge that is often known. A fitness function should take these properties into

account.

We have modelled these issues in a fitness function. The fitness grows linearly with the number

of tuples satisfying the description of an individual and the description of a target class above a

threshold value α, and decreases linearly with the number of tuples satisfying the description of

an individual and the description of a target class after reaching a user defined value β. For a

detailed description of the function, we refer to [Choe98].

Our goal is to reward those individuals that approximate a fitness of β. Consider the target class

damage = “yes” that consists of 100.000 tuples. Assume that according to the domain experts a

profile is considered risky if about 30.000 persons satisfy this profile. This means that

β ≈ 30.000. Assuming that 33.000 of the persons that caused an accident are young males, the

algorithm should find individuals like (gender is (`male') ∧ age in [19,28]).

3.3 Manipulation operators

Genetic algorithms provide two operators to manipulate an individual, mutation and cross-over.

A mutation takes care of a minor modification of an individual, and is therefore, responsible for

locally inspecting a search space. The effect of a cross-over may be that a completely different

part of the search space is inspected. In this section, we briefly discuss the meaning of mutation

and cross-over operators for data mining.

-12-
NLR-TP-2000-198

Mutation In defining the mutation operator, we take into account the domain type of an

attribute. If there exists no ordering relationship between the domain values, then we select

randomly an attribute value and we replace it by another value, which can be a NULL value as

well, in an expression that contains this attribute. For example, a mutation on attribute town of

an individual p = age in [29,44] ∧ town is (“Almere”, “The Hague”, “Rotterdam”) ∧ category is

(“leased”) may result into p′ = age in [29,44] ∧ town is (“Amsterdam”, “The Hague”,

“Rotterdam”) ∧ category is (“leased”).

If there exists a relationship between the domain values of an attribute, the mutation operator

acts as follows in the case that a single value is associated with this attribute in an expression,

i.e., the expression looks, as att is (vc). Let [vb,ve] be the domain of attribute att. In order to

mutate vc, we choose randomly a value δv ∈ [0, (ve - vb)µ], in which 0 ≤ µ ≤ 1. The parameter µ
is used to control the maximal increase or decrease of an attribute value. The mutated value vc'

is defined as vc' = vc + δv or vc' = vc - δv as long as vc' ∈ [vb,ve]. To handle overflow, i.e., if vc' ∉
[vb,ve], we assume that the successor of ve is vb, and, consequently the predecessor of vb, is ve.

To compute a mutated value vc' appropriately, we distinguish between whether vc will be

increased or decreased, which is randomly determined.

In the case vc is increased

[]
()




−−+

∈++
=′

otherwisevvv

vvvifv
v

cevb

ebvcvc

c δ
δδ ,

and in the case vc is decreased

[]
()




−+−

∈−−
=′

otherwisevvv

vvvifv
v

bcve

ebvcvc

c δ
δδ ,

Let us consider the situation in which more than one value is associated with an attribute att in

an expression. If a list of non successive (enumerable) values is associated with att, we select

one of the values and compute the new value according to one of the above-mentioned

formulas. If a range of successive values, i.e., an interval, is associated with att, we select either

the lower or upper bound value and mutate it.

We note that the partitioning of attribute values, i.e., the selection of proper intervals in an

expression, is simply adjusted by the mutation operator. As noted before, partitioning of

attribute values is in general a tough problem [SrAg].

-13-
NLR-TP-2000-198

Cross-over The idea behind a crossover operator is as follows; it takes as input two expressions,

selects a random point, and exchanges the subexpressions behind this point. To illustrate this

idea, we consider a relation R(att1, att2,..., attn) and two expressions, ei and ej, in which all

attributes are involved. Let ei be defined as (n
i

k
i

k
i

k
iiii eeeeeee LL 11321 +− ∧∧∧∧), in which

k
ie represents an elementary expression in which attribute atti is involved. And, let ej be defined

as (n
j

k
j

k
j

k
jjjj eeeeeee LL 11321 +− ∧∧∧∧). Then, a cross-over between ei and ej at point k

results into the following two expressions: (n
j

k
j

k
i

k
iiii eeeeeee LL 11321 +− ∧∧∧∧) and

 (n
i

k
i

k
j

k
jjjj eeeeeee LL 11321 +− ∧∧∧∧).

In general, not all attributes will be involved in an expression, which may cause undesired

effects after a cross-over. Therefore, an expression is completed with the missing attributes

before it undergoes a cross-over [Choe98].

4 SHARVIND: A prototype data mining tool

In this section, we discuss the architecture and the implementation of a prototype data mining

tool based on a genetic algorithm as described in the previous section. We start with the

description of SHARVIND. Then, we discuss some implementation issues.

4.1 Architecture

Currently, we may distinguish three modules in SHARVIND, a user interface, a genetic-based

mining algorithm, and a query generator. These modules and the architecture of SHARVIND

are depicted in Figure 1.

-14-
NLR-TP-2000-198

Figure 1: Architecture of SHARVIND

In Figure 1, the input consists of a mining question and additional requirements that may be

posed by the user. For example, a user may demand that an attribute in a database should not be

involved in the mining process for reasons of privacy (e.g., income of pilots). The user is

allowed to request intermediate mining results, and if desired, the user is able to modify the

input. We note that this is a useful feature of a mining tool, since, in practice, a user starts a

 Data Mining Tool

Genetic-Based Mining Algorithm

 Query generator

 MS ACCESS DBMS

 Mining question

User

User requirements

Answers

Additional

input
Individuals

ResultsQueries

Databases

U
se

r
In

te
rf

ac
e

……

-15-
NLR-TP-2000-198

mining session with a rough idea of the information that might be interesting, and during the

mining session the user more precisely specifies, based on, amongst others, the mining results

obtained so far, which information should be searched for.

Once SHARVIND receives the input, it invokes the genetic-based mining algorithm. This

algorithm starts with the initialization of a population consisting of an even number of

individuals. The individuals in this population are shuffled. Then, the cross-over operation is

applied on two successive individuals. We note that the cross-over operator is applied exactly

once for an individual. After completion of a cross-over, the fitness values of the parents are

compared; the parent with the highest value is selected and it may be mutated with a probability

c. This parent, is added to the next generation, and in the case it is mutated its fitness value is

computed. After possible mutation of the offsprings, their fitness values are computed and

compared. The fittest offspring is added to the new generation as well. This process is repeated

for all individuals in a generation.

Once the new population has been built up, the total fitness of the existing as well as of the new

population is computed, and compared. The algorithm terminates if the total fitness of the new

population does not significantly improve compared with the total fitness of the existing

population, i.e., that the improvement of the total fitness of the new population is less than a

threshold value.

In order to compute the fitness value of an individual, the number of tuples that satisfies the

description of the individual is required. Therefore, the database should be interrogated. An

individual should be translated into queries that is understood by the underlying database

management system (dbms), in our case the MS ACCESS dbms. This is the task of the Query

Generator.

Since in our case an individual is an expression, the translation of an individual in an equivalent

set of SQL queries is straightforward. Note that the individual already forms the WHERE clause

of a SQL query. Therefore, the Query generator is relative simple. Suppose that we require the

number of tuples in the database Driver that satisfies the description of an individual p: (gender

is “male” ∧ age ∈ [18, 24]). Then the corresponding SQL query is:

SELECT COUNT (*) FROM Driver WHERE (gender = “male”) AND (age BETWEEN 18

AND 24).

-16-
NLR-TP-2000-198

4.2 Implementation

Currently, SHARVIND is running in a Microsoft Access 97 environment that uses the

Microsoft Jet Engine. The genetic-based algorithm is implemented in Visual Basic and consists

of approximately 2000 lines of code. We have chosen this environment for three reasons. First,

this environment is available at our laboratory. Second, the database that we want to mine is a

Microsoft database. Third, this environment is suitable for rapid application.

As discussed in the previous section, major components in developing a genetic-based

algorithms are the representation of individuals, manipulation operators, fitness function, and

the translation of an individual into a query that is understood by the MS ACCESS database

management system (dbms).

Individuals, which are regarded as a conjunction of predicates over attributes, are implemented

as binary tables. An ordered attribute, att is implemented as two tuples: < att, lower bound value

> and < att, upper bound value >. An unordered attribute having n values is implemented as n

tuples, having the form < att, value >, in the table. For each individual, a binary table is built up

in this way. So, the individual (gender is “male” ∧ age in [18, 24] ∧ category is “leased”) is

implemented as follows:

Attribute name Attribute value

gender male

age 18

age 24

category leased

Once the data structure of an individual was defined, the implementation of the manipulation

operators was straightforward. A cross-over is obtained by selecting two tables, splitting each

table into two subtables, let's say a head and a tail table. Then, the tail tables are exchanged. A

mutation is obtained by deleting and/or inserting one or more tuples. Suppose that in the above-

mentioned individual gender is “male” should be mutated in gender is “female”. This obtained

by removing the tuple < gender, male > from the table and inserting the new tuple < gender,

female >.

Due to mutations it may occur that the range interval of an attribute grows to the domain of that

attribute. In such a case, the whole database will be covered by the attribute, which is undesired

for the search process. To prevent this situation, we have decided that an interval corresponding

-17-
NLR-TP-2000-198

to an attribute may not grow harder than a user defined threshold value, e.g., (upper bound

domain value - lower bound domain value)* x, in which x ∈ (0, 1].

The implementations of the fitness function as well as the query generator were straightforward.

For each generation, we keep track of the average fitness, and the individuals with the highest

and lowest fitness. These values are stored in tables as well. From these tables, the progress of

the search is plotted, i.e., the average fitness, best and worst fitness, with primitives of MS

Graph.

5 Mining two databases

In this section, we give an overview of two databases that we have mined with SHARVIND and

the results that we have obtained. The first database, called ECCAIRS is located at the Joint

Research Centre (JRC) in Italy. Currently, this database contains serious incident and accident

data that is converted from the Scandinavian accident- and incident reporting system. This

database grows with approximately 4% per year. Detail information about ECCAIRS can be

found on the web site of JRC, which http://eccairs-www.jrc.it, and in [Groe00].

The second database, called the FAA database, contains aircraft incident data that have been

recorded from 1978 to 1995. Incidents are potentially hazardous events that do not meet the

aircraft damage or personal injury thresholds as defined by American National Transportation

Safety Board (NTSB). For example, the database contains reports of collisions between aircraft

and birds while on approach to or departure from an airport. This database can be obtained from

the Internet, http://www.asy.faa.gov/asp/asy_fids.asp.

Both databases are implemented in MS ACCESS and contain NULL values and redundant data.

Furthermore, integrity rules (e.g., for domain values) are hardly implemented.

In the following we discuss these databases in more detail and the mining results that we have

obtained.

5.1 ECCAIRS

The ECCAIRS database consists of 36 relations and about 300 attributes. Two major relations

of the database are the ACS and the OCCS relations. The ACS relation contains information

with regard to aircraft, such as manufacturer, motor, speed of the aircraft, etc., and information

about the environment in which the aircraft is involved, such as weather conditions. The OCCS

relation describes in general terms an occurrence (incident or accident) and contains general

information with regard to an occurrence, for example, time and location of an occurrence, etc.

-18-
NLR-TP-2000-198

The relation ACCS contains 5202 tuples and 186 attributes and OCCS contains 5202 tuples as

well and 27 attributes. Although the number of tuples is not large, mining might be interesting

due to the large number of attributes.

However, currently 17 relations do not contain any tuples, while other relations consist of tuples

having many NULL values. To gain insight in the number of NULL values in each relation, we

define a filling factor as follows:

%100
))(max(

)(#
)(×=

Rvalues

Rvalues
Rfilling , in which max(values(R))= # tuples(R) × # attributes(R).

We note that # values(R) is the number of values in relation R, # tuples(R) is the number of tuples in R,
etc.

It appears that filling(ACCS) = 19% which is a bad score especially for mining and

filling(OCCS) = 72%. In order to make the database suitable for mining we have removed

• All attributes that have less than 2000 entries filled in.

• All attributes whose values consist of natural language. Although these attributes may

expose interesting knowledge, they are removed, since our algorithm is not yet able to

handle them adequately. A major revision of the algorithm is required if we allow such

attributes in the mining process.

• Attributes that are fully functional dependent on another attribute. For example, from the

latitude/longitude the city name can be derived. So, city name is a redundant attribute

• Attributes with a high selectivity factor, i.e. equal to one. The selectivity factor of an

attribute att is defined as
)(card

1

att
, in which card(att) is the number of distinct values that

att assumes.

• Attributes with a very low selectivity factor, i.e., close to 52021 . Note that attributes that

serve as identifiers typically have selectivity factors close to 1/5202.

After performing the removals 64 attributes were left and the filling factors for ACCS and

OCCS become 81% and 84% respectively. Then, we join these relations into a single relation.

-19-
NLR-TP-2000-198

Since the amount of tuples is relatively small, we have mined the whole joined relation. So, we

have not defined any specific target classes.

5.2 FAA

At our laboratory, this database is implemented as a single table that is sorted on an attribute,

called report number, which served as primary key. We note that the data in this database has

been copied from the database that is accessible from Internet and is made available by FAA. In

the following, we mean by the FAA database, the database as it is implemented and filled at our

laboratory.

The FAA database consists of more than 70 attributes and about 60.000 tuples. As in the case of

ECCAIRS, this database contains also NULL values, redundant data, and attributes with very

high and low selectivity factors. Therefore, we have cleaned this database in the same way as

ECCAIRS, in order to make it suitable for mining. After cleaning 30 attributes were left and

60.000 attributes.

5.3 Mining results

We have mined above-mentioned database with different values for a number of parameters

such as number of individuals of a population, average length of an individual, mutation

probability, and the maximal interval to which an attribute is allowed to grow. For the influence

of different parameter settings, we refer to [Groe00] and [PeSu98]. It appears to be reasonable

to set the number of individuals around 50, the average length between 2 and 5 attributes,

mutation probability between 0.1 and 0.4, and the maximum interval to which an attribute may

grow around 10%.

Since the amount of tuples in the ECCAIRS database is relatively small, we have mined the

joined relations. So, we have not defined any specific target classes. So, the mining question

was: “What are profiles of risky flights?” We have proposed this question to SHARVIND with

different β values. Recall that β defines the fraction of tuples that an individual should represent

within a target class (in this case the whole database) in order to obtain the maximal fitness. The

results that we obtain were correct but most of them were trivial. For example, when we set β to

0.2, it appears that male pilots and scattered (1/8 to 4/8) sky conditions are involved in 19% of

the incidents. Although the most of the results were trivial, it helped to gain insight in the

database. For example, we have observed that about 50% of the database consist of incidents

where no serious injury occurs and the pilot satisfies the required license.

-20-
NLR-TP-2000-198

Setting β to 0.3 delivers the following (more complex) association:

aircraft_type is “fixed wing” AND power-type is “reciprocating” AND license_class is

“required rating” AND highest_degree_of _injury is “none” → accident.

This rule says that pilots who hold the required licenses and are flying with fixed wing aircraft

and a reciprocating power-type cause about 30% of the accidents. However, these incidents do

not cause any injury.

We have mined the FAA database by posing several mining questions to SHARVIND. Our

initial mining question was: search for the class of flights with (more than average) chances of

causing an incident, i.e., profiles of risky flights. We have searched for this class with different

input values. These searches resulted in (valid) profiles that could easily be explained by our

safety experts. An example of such a profile is that aircraft with 1 or 2 engines are more often

involved in incidents. The explanation for this profile is that these types of aircraft perform

more flights.

Therefore, we have refined our mining question into a number of questions, such as

• Given the fact that an incident was due to operational defects not inflicted by the pilot, what

is the profile of this type of incident?

• Given the fact that an incident was due to mistakes of the pilot, what is the profile of this

type of incident?

• Given the fact that an incident was due to improper maintenance, what is the profile of this

type of incident?

The cardinality of the target classes associated with the questions posed to SHARVIND varied

from 2500 to 30000 tuples. The value of β varied from 0.10 to 0.20.

The answers to the proposed questions were correct and most of them contained no surprise to

our domain expert. In one case the tool came up with an interesting and unexpected result. In

this case, we had chosen as target class = "pilot induced". We had chosen to mine this target

class in order to find out what type of pilots was causing incidents. The target class contains

26000 tuples. Mining the target class with β = 0.15 resulted in the following association:

-21-
NLR-TP-2000-198

aircraft_damage is “minor” AND primary_ flight_type is “personal” AND type_of_operation

is “general operating rules” AND flight_plan is “none” AND pilot_rating is ”no rating” →
pilot_induced.

This association means that pilots without flight certificates and flight plans who are flying in

private aircraft are causing more incidents than other groups. This result was on the first glance

a bit strange for our safety expert, since pilots without flight certificates are not allowed to fly.

After a while it appears that the association was correct and our safety expert was able to

explain the association. The pilots without certificates appeared to be students whose incidents

were recorded in the FAA database as well.

6 Conclusions and further research

It has been recognised by several researchers that genetic algorithms might be suitable for data

mining tasks. In the literature, a number of efforts can be found that describe frameworks to

tailor genetic algorithms for data mining. However, many of these frameworks are neither

implemented nor evaluated. We have implemented vital parts of a prototype data mining tool

that is based on a genetic algorithm. We have coupled the tool to an MS ACCESS environment

in order to mine two aircraft incident databases. Given the large number and various types of

attributes involved in these databases, conventional data analysis tools are inadequate for a

thorough analysis of these databases. Our overall conclusions are:

• Both databases could be significantly reduced, especially in the number of attributes, due to

NULL values, text attributes, etc.

• Although both databases are relatively small after cleaning, we feel that data mining is a

promising direction for analysing aircraft incident databases. The mining results helped

safety experts to gain insight in these databases. We expect that data mining may expose

knowledge from these databases in future, if more and better data will be loaded. We note

that data is recently started to be loaded in the ECCAIRS database.

• With regard to the genetic algorithm, our conclusion is that a genetic algorithm may rapidly

be implemented for data mining, yielding reasonable results. However, to build an

operational tool, there is still a significant effort required.

-22-
NLR-TP-2000-198

Since many real-life databases, including aircraft incident databases, contain many unstructured

data, i.e., natural language, a topic for further research is to extend our tool with this type of

data. Furthermore, to get insight in the results and performance provided by a genetic-based

data mining tool, a large scale evaluation is required, which is a topic for further research as

well.

Acknowledgements. The author is grateful to the Royal Netherlands Navy which sponsored this

research. Furthermore, the author is grateful to Drs. W. Pelt, Ir. B. Bruggeman and Dr. Hein

Veenhof for his valuable comments on earlier drafts of this paper and to his students Erik

Groenheiden, Leo de Penning, and Martijn Suurd for analysing the databases and their

implementation efforts.

Biographical sketch. Sunil Choenni is a principal scientist in the Data and Knowledge Systems

group at the National Aerospace Laboratory (NLR) and an assistant professor in the computer

science department at the University of Twente, both in the Netherlands. He holds a M.Sc

(1990) degree in theoretical computer science from Delft University of Technology and a Ph.D

(1995) in databases from the University of Twente. Before joining NLR and the University of

Twente, he held research positions at the Joint Administration Office (GAK) and the National

Centre of Mathematics and Computer Science (CWI), both in the Netherlands. Furthermore, he

held visiting research positions at the University of Genoa and the State University of Milan,

both in Italy. His current research interests are knowledge discovery in databases, multi-media

databases, military information systems, and optimisation aspects of databases.

-23-
NLR-TP-2000-198

7 References

[AgGI92] Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., Swami, A., An Interval Classifier for
Database Mining Applications, in Proc. of the 18th Very Large Data Base, pp. 560-573.
[AgIS93] Agrawal, R., Imielinski, T., Swami, A., Mining Association Rules between Sets of
Items in Large Databases, in Proc. ACM SIGMOD '93 Int. Conf. on Management of Data, pp.
207-216.
[AgSr94] Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules, in Proc. Int.
Conf. on Very Large Databases, pp. 487-499.
[AgSr95] Agrawal, R., Srikant, R., Mining Sequential Patterns, in Proc. 11th Int. Conf. on Data
Engineering, pp. 3-14.
[AuVK95] Augier, S., Venturini, G., Kodratoff, Y., Learning First Order Logic Rules with a
Genetic Algorithm, in Proc.
1st Int. Conf. on Knowledge Discovery and Data Mining, pp. 21-26.
[Choe98] Choenni, R., On the Suitability of Genetic-Based Algorithms for Data Mining, in
Proc. ER98 Workshops Advances in Database Technologies, pp.55-67.
[Frei97] Freitas, A., A Genetic Programming Framework for two Data Mining Tasks:
Classification and Generalized Rule Induction, in Proc. Int. Conf. on Genetic Programming, pp.
96-101.
[Grae93] Graefe, G., Query Evaluation Techniques for Large Databases, in ACM Computing
Surveys 25(2), pp73-170.
[Groe00] Groenheiden, E., A Genetic Data Mining Feasibility Study, To appear as internal
report, University of Twente, The Netherlands.
[HaCC92] Han, J., Cai, Y., Cerone, N., Knowledge Discovery in Databases: An Attribute-
Oriented Approach, in Proc. of the 18th Very Large Data Base, pp. 547-559.
[Holl75] Holland, J.H., Adaption in Natural and Artificial Systems, Ann Arbor: University of
Michigan Press, USA, 1975.
[HoKe94] Holsheimer, M., Kersten, M., Architectural Support for Data Mining, in Proc. AAAI-
94 Workshop on Knowledge Discovery, pp. 217-228.
[KeAK96] Kemenade van, C., Akker van den, M., Kok, J., Evolutionary Air Traffic Flow
Management for large 3D-problems, in Proc. Int. Conf. Parallel Problem Solving from Nature,
pp. 910-919.
[Mich95] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, USA.
[PeSu98] Penning, H. de, Suurd, P., NLR Genetic Search Base, internal report, University of
Twente, The Netherlands.
[Ullm89] Ullman, J.D., Principles of Database and Knowledge-Base Systems, Vol.1, Computer
Science Press, New York, USA.
[ZaYa99] Zhang, C., Yang, J., Genetic Algorithm for Materialized View Selection in Data
Warehouse Environments, in Proc. DaWaK99, 1st Int. Conf. on Data Warehousing and
Knowledge discovery, pp. 116-125.

