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Integrated Lifing Analysis of a Film-Cooled Turbine Blade
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Tel. +31 527 248727, Fax. +31 527 248210, email: tinga@nlr.nl

Abstract
A method to predict gas turbine component life based on engine performance analysis is
demonstrated on a hot section gas turbine component. The mechanical and thermal loading of the
first stage high pressure turbine rotor blade of the F100-PW-220 engine, one of the most severely
loaded components in the engine, is analyzed and a life assessment is performed. For this analysis,
engine performance history is obtained from in-flight monitored engine parameters and flight
conditions and downloaded for processing by a tool integrating a number of software tools and
models. Data acquisition is performed by the FACE system installed in a large number of RNLAF F-
16 fighter aircraft. Data then is processed by a thermodynamical engine system model, calculating
gas properties like pressure and temperature at the required station in the engine. A computational
fluid dynamics model, including the blade film cooling, is used to calculate the heat transfer to the
blade. A thermal finite element model calculates the temperature distribution in the component and
the stress distribution is obtained with a structural finite element analysis. Finally a life consumption
model is used to determine the creep and fatigue damage accumulation in the component. The tool
has significant potential to enhance on-condition maintenance and optimize aircraft operational use.

Acronyms
NLR National Aerospace Laboratory
RNLAF Royal Netherlands Airforce
FACE Fatigue and Autonomous Combat

Evaluation
GSP Gas Turbine Simulation Program
CFD Computational Fluid Dynamics
FE Finite Element
FMU Flight Monitoring Unit
DRU Data Recording Unit
LDS Logistic Debriefing Station
SCF Set-up Configuration File
DEEC Digital Electronic Engine Control
PLA Power Lever Angle
HPT High Pressure Turbine
TIT Turbine Inlet Temperature
LCF Low Cycle Fatigue

Symbols
Q heat flux [W/m2]
h heat transfer coefficient [W/m2K]
Taw adiabatic wall temperature [K]
Tw wall temperature [K]
η film cooling efficiency
ω rotational frequency [rad/s]
L characteristic length [m]
Cp specific heat [J/kgK]
Tt total temperature [K]
pt total pressure [bar]
ω~ dim.less rotational frequency
µ~ dim.less fluid viscosity
p~ HPT pressure ratio

1. Introduction
Maintenance costs form a major part of total aircraft engine operating costs. A significant reduction
in these costs would be obtained if inspection intervals could be extended and component service life
increased. Inspection intervals and service life are commonly based on statistical analysis, requiring a
limited probability of failure (a certain level of safety) during operation. However in many cases this
approach leads to conservative inspection intervals and life limits for the majority of parts or
components. The analysis tool developed at the NLR [1],[2] offers a way to attempt to reduce
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maintenance costs and improve safety by applying usage monitoring to predict operational
component condition and lifetime consumption and thereby facilitating �on-condition maintenance�.
The next section will describe the several constituents of the analysis tool.  The third section then
describes the gas turbine component that is analyzed, a first stage turbine rotor blade of the F100-
PW-220 engine of a Royal Netherlands Airforce (RNLAF) F-16 fighter aircraft. In section four the
tool is demonstrated and evaluated on this component and in the final section some conclusions are
drawn and the potential of the tool to support a gas turbine operator is shown

2. Description of the integrated analysis tool
The integrated analysis tool consists of a sequence of software tools and models. An overview of this
sequence is given in Fig. 1. The algorithms and system models incorporated in this tool represent the
relation between operational usage of the engine and component condition. Optimally, the system is
able to accurately determine component condition and predict life consumption based on operational
data obtained from a number of sensors.
The developed analysis tool predicts engine component (or part) life based on analysis of engine
performance. Engine performance history is obtained from in-flight monitored engine control
parameters and flight conditions and downloaded for processing by a number of software tools and
models. Most of the models and tools used to determine engine performance, component usage and
condition (health) and to predict life consumption were already commonly applied at the National
Aerospace Laboratory (NLR) as stand-alone. The benefit of the integrated tool is the direct relation
between engine performance and component life. The following tools must subsequently be applied
to process the data:

FACE Fatigue and Air Combat Evaluation (FACE) system for monitoring flight /
engine data.

GSP Gas turbine Simulation Program (GSP) for calculating engine system
performance data.

CFD model Computational Fluid Dynamics (CFD) model for calculating the heat transfer to
hot section components.

FE model Finite Element (FE) model for calculating temperature and thermal and
mechanical stress in hot section components.

Lifing model for deriving life consumption data from the stress history data.

Flight data acquisition (FACE)
The FACE system used to measure flight data is based on the Autonomous Combat Evaluation
(ACE) system of RADA Electronic Industries, which is used for pilot debriefing purposes. The NLR
has developed a fatigue analysis system that has been combined with ACE to form the FACE system
[3]. The FACE system consists of both on-board and ground-based hardware. In the aircraft two
electronic boxes are installed: the Flight Monitoring Unit (FMU) and the Data Recording Unit
(DRU). The ground-based hardware relevant for maintenance purposes is the Logistic Debriefing
Station (LDS).
The FMU is a programmable unit that determines which signals are stored and how they are stored.
By generating a Set-up Configuration File (SCF) and uploading it into the FMU, the data collection
process can be adapted to all requirements. In this way several data reduction algorithms (e.g. peak
and through, time at level) can be selected and the sampling frequency can be adapted. The relevant
signals stored by the DRU are engine parameters from the engine�s Digital Electronic Engine Control
(DEEC) and avionics data. The DEEC signals can be sampled at a maximum frequency of 4 Hz. The
following signals, which together fully describe engine usage, are stored:
- Fuel flow to the combustor
- Fuel flow to the afterburner
- Exhaust nozzle position
- Flight conditions: Mach, altitude and air temperature
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These parameters, as functions of time, are used as input for the GSP model, which is the next tool in
the sequence. The first three parameters could also be substituted by the Power Lever Angle (PLA)
signal, provided that the GSP model contains a control unit, which translates the PLA to the
appropriate fuel flows and nozzle area. A data reduction algorithm is applied to reduce the amount of
operational data before it is used as input for GSP.

Engine system performance (GSP)
The Gas Turbine Simulation Program (GSP) is a tool for gas turbine engine performance analysis,
which has been developed at the NLR [4],[5]. This program enables both steady state and transient
simulations for any kind of gas turbine configuration. A specific gas turbine configuration is created
by arranging different predefined components (like fans, compressors, and combustors) in a
configuration similar to the gas turbine type to be simulated. An example of a model for a twin spool
turbofan engine like the Pratt & Whitney F100-PW-220 is given in Fig. 2. The simulation is based on
one-dimensional modeling of the processes in the different gas turbine components with
thermodynamic relations and steady-state characteristics ("component maps").
For implementation in the integrated analysis tool, GSP can be used to calculate gas temperatures,
pressures, velocities and composition at relevant engine stations from measured engine data. This
particularly applies to stations for which no measured data is available such as the critical high-
pressure turbine entry temperature. Also, GSP is able to accurately calculate dynamic responses of
these parameters (critical to engine life) where measured data is not available or has unacceptable
high time lags or low update frequencies.
The GSP model input obtained from FACE includes all measured flight conditions and engine power
setting data. With GSP, the entire engine transient (usually an entire mission) is calculated with an
integration step size of 0.05 seconds. With a smallest input step size of 0.2 seconds, this is sufficient
to accurately calculate the critical effects such as typical severe acceleration / deceleration
temperature transients in the hot section. A GSP report (ASCII format) is used to output data for
further processing by the fluid dynamics (CFD) and finite element (FE) models.

Computational Fluid Dynamics analysis (CFD)
The Computational Fluid Dynamics (CFD) model is used to accurately calculate the heat transfer
from the hot gas stream to the component. The FINE/Turbo code of Numeca is used to construct the
model and perform the calculations, solving the Reynolds-averaged Navier-Stokes equations. For
these calculations it is important to have detailed information on the geometry of both the flow
channel and the different components (blades, vanes). Real components have been measured with a
scanning device and this information is combined with information from drawings and other
technical documents to define the model geometry. From CFD analysis of the gas flow through the
gas turbine values for the heat transfer coefficient h and adiabatic wall temperature Taw (≈ gas
temperature) are obtained along the surface of the component. Values of h and Taw are used to
calculate the heat flow Q from the fluid to the structure (with a wall temperature Tw).

Q = h (Taw � Tw)

It is hereby assumed that the heat transfer coefficient is not dependent on the blade temperature. The
blade temperature is calculated with the thermal FE model and is still unknown when the CFD
analysis is performed. Assuming no dependence of h on blade temperature allows for decoupling of
the CFD and FE analysis. For every condition two CFD analyses have to be performed: firstly a
calculation with adiabatic conditions (no heat flow from fluid to structure) is performed, yielding the
adiabatic wall temperature (Tw) distribution. After that a calculation is done with either a constant
heat flux Q or a constant wall temperature Tw. In combination with the known adiabatic wall
temperature this yields the heat transfer coefficient (h) distribution. Note that the h value varies
significantly along the flow path, due to variations in the flow conditions (gas velocity, type of flow
(laminar, turbulent), viscous effects, etc).



-7-
NLR-TP-2001-402

Finite element analysis (FE)
The Finite Element (FE) model consists of two interrelated models. The thermal model calculates the
temperature distribution in the component, based on the heat input from the hot gas stream. The
mechanical model calculates the stresses and strains in the component, caused by the varying
temperature distribution and the externally applied loads. The finite element code used is MSC.Marc,
which is a commercially available, multipurpose finite element package. Definition of the geometry
and mesh generation is performed with the pre-processor MSC.Patran. MSC.Patran is also used as
postprocessor to view and analyze the results.

In the mechanical model, there are two sources for stress in a rotating component: centrifugal forces
due to rotation of the component and temperature gradients in the material. The gas bending forces
are in most blade designs counterbalanced by geometric measures like blade leaning. The resulting
stresses are therefore much smaller than the stress due to the other two sources, and are thus not
considered here.

Lifing analysis
A lifing model defines the relation between loading level and lifetime. It generally calculates either
total time to failure or number of cycles to failure for a certain component subjected to a specific
load sequence. A large number of specific life prediction models have been developed over the last
forty years, where each model is appropriate for a specific application. The major division in lifing
models is between total life models and crack growth models. Total life models, like the Palmgren-
Miner model [6],[7], only calculate the time to failure, not considering the way failure is reached.
These models are representative for the Safe Life philosophy, aiming to retire a component before a
crack originates. On the other hand, crack growth models represent the Damage Tolerance
philosophy, which accepts the presence of material defects and aims to monitor crack growth and
remove the component before the crack becomes unstable. In addition, several different mechanisms
can cause the failure of a component, for example fatigue, creep or oxidation. Every failure
mechanism requires a specific lifing model. In the end, the actual choice of the lifing model(s)
depends on the expected failure mechanism of the component under consideration.

3. Description of the turbine blade
The component under consideration is the first stage high pressure turbine blade of the Pratt &
Whitney F100-PW-220 engine (Fig. 3). This blade operates in very severe conditions due to its
location just behind the combustion chamber. Because of the severe loading, much effort is put in
measures to keep the blade from degrading. The blade is fabricated as a single crystal, having a
relatively low elastic modulus in radial direction and having good creep properties due to the absence
of grain boundaries. Furthermore several cooling mechanisms are applied to keep the blade
temperature acceptably low. Firstly the blade is cooled internally by cooling gas flowing through a
number of cooling channels inside the blade (see figure 4). Inside the cooling channels turbulators
are positioned to increase the heat transfer. The cooling gas is obtained from one of the last stages of
the high-pressure compressor and enters the blade through a number of entries in the root of the
blade. Secondly the blade is film-cooled which means that cooling gas is injected into the hot gas
stream from orifices in the airfoil. This cooling air forms a relatively cool film between the blade
surface and the hot gas, resulting in a decreased blade heating.

4. Integrated analysis of 1st stage turbine blade
This section describes how the integrated tool is applied to the real component described in the
previous section.

FACE / GSP
The FACE system is used to measure the flight data for a number of missions flown with F-16 fighter
aircraft of the Royal Netherlands Airforce (RNLAF). One arbitrary mission has been selected to be
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used for the current lifing analysis. The gas turbine simulation program GSP is used to translate the
flight data to appropriate gas flow properties, which can be used as input for the fluid dynamics and
finite element analyses.

CFD analysis
During the transient analysis of a mission it is impossible to do a separate CFD analysis for every
occurring engine operating condition. The following simplification is therefore used. By carefully
analyzing the fluid dynamics equations, it is observed that under certain assumptions only three
dimensionless groups are needed to characterize any dimensionless flow property in the engine for
any operating condition. These dimensionless groups are:

tpTc
Lωω ≡~ ,

( )
Lp

TcT

t

tptµ
µ ≡~ ,

tp
pp ≡~

where ω~  can be seen as a dimensionless rotational frequency, µ~  as a dimensionless fluid viscosity
and p~  expresses the pressure ratio over the high pressure turbine (HPT). With GSP the variation of
these three groups during a representative mission is analyzed. This results in the definition of seven
operating points which cover the complete operating envelope of the engine: one center point and
two more points in each dimension are defined. Then for each of the seven points CFD analyses are
performed and a tri-linear interpolation function is used to obtain the results for any other condition.
In this way only CFD analyses for seven conditions have to be performed to obtain the results for any
arbitrary condition. During the transient mission analysis the values of the dimensionless groups for
every time step are calculated by GSP, and the corresponding heat transfer and gas temperature
values are obtained from the interpolation function.
The CFD model also allows for incorporating the effects of blade film cooling on heat transfer. Cold
air is injected through cooling orifices into the outer flow to provide a cooling air layer with effective
temperature Tfilm between the blade surface and the outer hot gas flow. The film temperature Tfilm
depends on the film cooling efficiency ɖ and the injection temperature Tinj in the following way:

Tfilm = Tgas � ɖ(Tgas- Tinj)

Modeling all separate cooling orifices in the airfoil would require a very fine computational grid,
resulting in very long calculation times. Therefore a row of orifices is simulated by a cooling slot
with the same width as the local grid and covering the blade from root to tip. The cooling efficiency
of such a slot is much higher than that of an orifice row (0.8 compared to 0.15 [8]), so a correction is
made by increasing the injection temperature, resulting in a more realistic film temperature and heat
transfer.

Finite Element analysis
The thermal analysis for the current component is quite complex. The blade is heated from outside by
the hot gas and at the same time cooled from inside by the cooling gas. Moreover, the cooling gas is
eventually injected into the hot gas stream through cooling orifices to establish film cooling. The
blade temperature is therefore dependent on hot gas temperature and cooling gas temperature, but on
the other hand the cooling gas temperature is dependent on the blade temperature. Such a coupled
fluid-structure problem must be solved in an iterative way.  Because it would take too much
computation time to solve the complete transient problem in an iterative way, a simple model is used
to derive an approximation. This model, which is shown in figure 5, is used to derive a relation
between the blade temperature distribution and the turbine inlet temperature (TIT). During the
transient analysis this approximated blade temperature distribution is used to calculate the cooling
gas temperature distribution, which together with the hot gas temperature distribution is used as input
for the thermal analysis. This eliminates the coupling between fluid and structure.

The thermal model is thus used to calculate the temperature distribution in the component. For each
finite element on the airfoil of the turbine blade, the heat transfer coefficient and the local gas
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temperature follow from interpolation in the CFD results. In the cooling channels inside the blade,
the heat transfer coefficient is assumed to be constant. The cooling gas is heated while it flows
through the hot blade and the local gas temperature is calculated from an approximated blade
temperature distribution as explained above. With the thermal conductivity α of the material, the
temperature distribution in the component can be calculated. A transient thermal analysis is
performed for the complete flight under consideration with the time-varying dimensionless groups
(used to determine h and Taw), cooling gas inlet temperature and turbine inlet temperature (used to
approximate the cooling gas temperature rise) obtained from GSP as input. An example of the
temperature distribution in an internally cooled turbine blade at some point during a flight is shown
in Fig. 6. A limited number of CFD packages, having the ability to incorporate fluid-structure
interaction, can perform both the heat transfer coefficient and temperature distribution calculation.
This would make the MARC thermal model calculation redundant and would allow for a coupled
fluid-structure analysis.

The mechanical model calculates the stress and strain distribution in a component. Again a transient
analysis is performed for the complete mission. In this case the rotational frequency and the
temperature distribution, both as function of time, are the input for the model and the stress and strain
distributions in time appear as output. The temperature distribution is obtained from the results of the
thermal analysis and the values of the rotational frequency are read from the GSP report file. An
example of the stress variation at 3 different locations on a turbine blade is shown in Fig. 7.

Lifing model
For the first stage turbine blade both creep and Low Cycle Fatigue (LCF) are important damage
mechanisms. Therefore a combined creep / fatigue lifing model is applied. The strain history of the
mission, calculated with the mechanical FE model, is used to determine the fatigue damage. The
fatigue damage according to Miner�s rule is given by

∑=
i if

i
fatigue N

n
D

,

where ni is the number of cycles at a certain load level and Nf,i is the number of cycles to failure at
that load level. End of life is reached when the damage becomes 1. This rule is applied to the
maximum principal strain sequence for every node in the FE model, yielding the fatigue damage
distribution in the blade after one mission. The result is in Figure 8. The creep damage is calculated
with Robinson�s rule:

∑=
i ir

i
creep t

t
D

,

Equivalent to Miner�s rule ti is the time at a certain stress and temperature and tr,i is the corresponding
rupture time. This rule is applied to the equivalent stress and temperature sequence for every node.
The calculated creep damage is shown in figure 9. Combining these two results yields the total life
time distribution (Fig. 10). This number is obtained by adding the creep and fatigue damage
contributions and inverting the number. As the damage in Figs 8 and 9 is calculated for one mission,
the total life in Fig. 10 is also given in number of missions. As can be seen in these figures, the
shortest life is located at the spots with the highest creep damage, indicating that creep is the critical
failure mechanism for this component.

5. Discussion
An important point of discussion for this tool is the accuracy of the calculated results. The accuracy
of the integrated tool is obviously dependent on the accuracy of the separate tools and models. The
measurements of the FACE system combined with the data reduction algorithm introduce a
maximum error of about 1%. The GSP model inaccuracy is considered to be less than 2%, provided
that a suitable integration time step has been chosen. The accuracy of the temperatures calculated
with the thermal FE model is mainly determined by the accuracy of the heat transfer coefficient and
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adiabatic wall temperature obtained from the CFD analysis. It must be noted that the problem under
consideration is at the edge of the capabilities of current CFD codes and a number of assumptions
and approximations must be made to even get a solution. Firstly slot cooling is used in stead of
orifice cooling and h is assumed to be independent on wall temperature (decoupling of CFD and FE).
Furthermore tri-linear interpolation between 7 standard conditions is used to obtain results for any
arbitrary condition and finally the thermal interaction between (internal) cooling gas and blade
material is removed by approximating the cooling gas heating (no iterative solution of FE problem).
Off coarse, these assumptions decrease the accuracy, but still the adiabatic wall temperature can be
calculated within about 10% and the heat transfer within a factor 2. The uncertainty in heat transfer
coefficient will cause uncertainty in the temperatures during transients. However, the steady state
temperatures are unaffected by the heat transfer rates. This means that for creep life calculations the
value of the heat transfer coefficient is not very important, but for fatigue life calculations it is of
much more importance. The mechanical FE model has an inaccuracy of less than 2%, provided that
the right and accurate material data is used. For the 1st stage turbine blade analysis, the single crystal
material data were not available, and data for an isotropic superalloy were used. Obviously the
inaccuracy of the FE calculations will be larger when an inaccurate geometry or a course mesh is
used, but this can be improved rather easily and is therefore not considered to be a limitation of the
tool. Note however that refining the FE mesh rapidly increases the computation time and the required
memory.

All together this means that the loading of a component can be calculated with an inaccuracy of
about 10%, provided that sufficient (aerodynamic) information about the specific component is
available. However, performing the actual life prediction will introduce an additional inaccuracy of
20 to even 50%. This large inaccuracy is due to the large scatter in experimentally determined
material data used for the life prediction. The actual inaccuracy depends on the type of material data
used by the model. For example S,N-curves representing the relation between number of cycles to
failure and applied stress level, show a higher scatter than crack growth curves and creep rupture
curves. It is therefore a fundamental material property phenomenon, which has its effect on the lifing
model inaccuracy. Development of lifing models must be focussed on model types, which are based
on material data with little scatter (like crack growth data). Another problem is the strong sensitivity
of calculated life on deviations in stress and temperature, especially for creep life (see figure 11). A
small deviation in stress and especially temperature is therefore amplified in the life prediction.

Due to the assumptions in the CFD analysis and the unavoidable inaccuracy in the life prediction, the
tool is not yet suitable to do absolute life predictions. However, the tool is very useful for relative life
predictions or sensitivity studies.

6. Conclusions and Potential
An integrated lifing analysis on a complex gas turbine component has been demonstrated. The
internally and film-cooled turbine blade has been analyzed with a sequence of software tools and
models. Especially the CFD model used is state-of-the-art for current CFD codes, using a slot-cooling
model to represent the blade film cooling.  It has been demonstrated that the mechanical and thermal
loads of the turbine blade can be calculated from operational flight data, and that subsequently a
combined creep and fatigue life prediction can be performed. As the overall life prediction
inaccuracy of the tool is dominated by the relatively high inaccuracy of lifing models and the large
scatter in the associated material behavior, future work must be focussed on improving those models.
A more accurate CFD model, having the possibility to model orifice cooling, can improve the
accuracy further. The present tool, with its limited accuracy can be used to perform relative life
assessments and sensitivity studies.
The potential of the analysis tool presented here is twofold. Firstly the tool can be used to apply on-
condition maintenance. The load history of every individual component could be tracked and could
be used to determine the inspection interval or actual life limit of that specific component. The
general and mostly very conservative life limits supplied by the manufacturer are based on a certain
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assumed usage, on top of which a safety factor has been applied to account for heavier usage. This
safety factor can now be quantified and probably decreased, which leads to a huge saving in spare
parts and inspection costs.
Secondly, the tool can be used to compare different missions with respect to life consumption. The
results can for example be used to optimize the planning of operational deployment of the aircraft.
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Figure 1:  Overview of the integrated analysis tool.

Figure 2: GSP model of the Pratt & Whitney F100-PW-220 turbofan engine.
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    Figure 3: 1st stage turbine blade Figure 4: Overview cooling ducts and orifice rows

Figure 5:  Model to approximate cooling gas temperature increase
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Figure 6:  Temperature distribution (oC) in the lower half of an internally cooled turbine blade.
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Figure 7: Variation of stress in time for three different locations on the blade.
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Figure 8:  Fatigue damage distribution. Figure 9:  Creep damage distribution.
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Figure 10:  Predicted total life distribution.
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Figure 11:  Temperature and stress sensitivity of creep life.


