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Summary 

The standard way of applying particle filtering to hybrid systems is to make use of hybrid 

particles, where each particle consists of two components, one assuming Euclidean values, and 

the other assuming discrete mode values. This paper develops a novel particle filter for a 

discrete-time stochastic hybrid system. The novelty lies in the use of the exact Bayesian 

equations for the conditional mode probabilities given the observations. Therefore particles are 

needed for the Euclidean valued state component only. The novel particle filter is referred to as 

the Interacting Multiple Model (IMM) particle filter because it has a switching/interaction step 

which is of the same form as the switching/interaction step of the IMM algorithm. Through 

Monte Carlo simulations, it is shown that the IMM particle filter has significant advantage over 

the standard particle filter, in particular for situations where conditional switching rate or 

conditional mode probabilities have small values. 
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1 Introduction 

The Sampling Importance Resampling (SIR) based particle filtering approach of [1] has shown 

to form an elegant and general approach towards the numerical evaluation of Bayesian 

nonlinear filtering equations [2], [3]. Most convincing are the applications where established 

non-linear filtering approaches do not work at all, whereas particle filtering does, such as the 

track-before-detect particle filter of [4].  

 

For nonlinear filtering of a hybrid stochastic process { , }t tx θ , with tx  assuming values in nR , 

and tθ  assuming values in {1,..., }N=M , the SIR particle filter uses particles from the hybrid 

state space n ×R M . Successful applications of this hybrid state space version of the SIR  

 

particle filter have been shown for target tracking [5], [6], signal processing [7] and failure 

monitoring and diagnosis [8].  

 

In the hybrid state space version of the SIR particle filter, each particle has two components 

( , )j j
t tx θ , with j

tx  assuming an Euclidean value, and j
tθ  assuming a discrete mode value. This 

approach works well as long as the conditional mode probabilities and/or switching rates do not 

assume very small values. Otherwise, there may be very few (or zero) particles for one or more 

of the mode values, and then the empirical density spanned by all particles with such a mode 

value does not form an accurate approximation of the corresponding exact conditional density. 

A brute force approach to compensate for this is a sufficient increase of the number of particles.  

 

A more elegant approach is to evaluate the exact probability function on M  analytically, and to 

use per θ -condition, n
R -valued particles only. This approach is elaborated in this paper for a 

discrete time stochastic hybrid system. The resulting novel particle filter has a 

switching/interaction step which is of the same form as the switching/interaction step of the 

Interacting Multiple Model (IMM) filter algorithm [9], [10]. For this reason, the novel particle 

filter is referred to as the IMM particle filter. Through Monte Carlo simulations, it is shown that 

the IMM particle filter performs better than the standard particle filter, in particular for 

situations where conditional switching rate and/or conditional mode probabilities have small 

values. 

 

The paper is organized as follows. First, in section II, we develop the exact Bayesian filter 

equations for the discrete time stochastic hybrid system considered. Subsequently, in section III, 

we develop the IMMPF. Next, in section IV, we compare the IMMPF with the standard PF and 

the IMM through Monte Carlo simulation. In section V, we draw conclusions. 
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2 State-dependent mode switching 

2.1 Problem formulation 

In this section we develop the exact Bayesian filter for hybrid state estimation for a discrete-

time stochastic hybrid system. We consider the following system of stochastic difference 

equations, on [0,T], T<∞, 

 

( ) ( )1 1, ,t t t t t tx a x b x wθ θ− −= +  (1) 

( )1 1, ,t t t tc x uθ θ − −=  (2) 

( ) ( ), ,t t t t t ty h x g x vθ θ= +  (3) 

 

where {wt}, { ut} and {vt} are independent sequences of i.i.d. standard Gaussian variables of 
dimension p, 1 and q respectively, the initial density-mass of (x0,θ0) is ,0 0xp θ , and  {wt, vt, ut} is 

independent of (x0,θ0). Furthermore xt,θt and yt have respectively n
R -, M - and m

R - valued 

realizations, with M  = {1,...,N}, while a, b, c, h and g are measurable mappings of appropriate 

dimensions such that system (1-3) has a unique solution for each initial (x0,θ0). The mappings a, 

b, c, h and g are time-invariant for notational simplicity only.  

In this model, the pair (xt,θt) represents the hybrid system state, while yt represents the 

measurement. Since equations (1) and (2) are not commonly used as a hybrid state model, we 

give a short introduction to them, starting with (2). 

Since  {θt } assumes values in a discrete set M , while c is a mapping of n× ×R RM  into M , 
equation (2) induces state-dependent mode transition probabilities ( )xηθΠ  as follows:  

 

( )
| ,1 1

( ) ( | , )

, ( , , ) ( )

xt t t

ut

x p x

c x u p u du

ηθ θ θ θ η

χ θ η
− −Π =

= ∫

≜

R

 (4) 

 

with χ a 0-1 indicator; χ(θ,η)= 1 iff θ =η. From (1) and (4) it follows that {θt, xt} is a hybrid 

state Markov proces.  
 

2.2 Bayesian filter equations 

Bayesian filtering asks for recursive equations for the evolution of the conditional density-mass 
function , |t t tx Yp θ , with { };t sY y s t= ≤ . To develop such equations, we decompose a filter cycle 

into a sequence of transitions:  

 
I.a

| |1 1 1

I.b
| , | ,1 1 1 1 1

Y Yt t t t

x Y x Yt t t t t t

p p

p p

θ θ

θ θ

− − −

− − − − −

→

→
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I.c

| , | ,1 1 1

I.d
| |1

I.e
| , | ,1

x Y x Yt t t t t t

Y Yt t t t

x Y x Yt t t t t t

p p

p p

p p

θ θ

θ θ

θ θ

− − −

−

−

→

→

→

 (5) 

 

which may be combined for every t, s and u through 

 

, | | , |( , ) ( , ) ( )x Y x Y Yt s u t s u s u
p p pθ θ θθ θ θ⋅ = ⋅  

 

Transitions I.c-e in (5) are known from the Markov switching and non-switching situations. 

Characterizations for I.a,b in (5) are given in the Theorem below.  

 

Theorem:  

Of the sequence of elementary transitions in (5) the first two transitions satisfy: 

 

 | 1, |1 1 1
ˆ( ) ( )Y t Yt t t t

p pθ ηθ θ
η

θ η−− − −
∈

= Π∑
M

 (I.a) 

with:  

 

( ) ( )1, | , | ,1 1 1 1 1
ˆ | | ( )t Y x Yt t t t t t

n

p p x x dxηθ θ θ θ ηθθ η η− − − − − −Π = Π∫≜

R

 

and if | 1
( ) 0Yt t

pθ θ− > , 

  

 ( )| , | , | |1 1 1 1 1 1 1 1
( | ) ( | ) ( ) ( ) / ( )x Y x Y Y Yt t t t t t t t t t

p p p pθ θ ηθ θ θ
η

θ η η θ− − − − − − − −
∈

⋅ = ⋅ ⋅ Π ⋅∑
M

 (I.b) 

 
Proof: Since tθ  is conditionally independent of 1tY−  given 1tθ −  and 1tx − , we get 

 

| , | , | ,1 1 1 1 1 1 1

| , 1,1 1 1

( | ) ( | ) ( | , )

ˆ( | ) ( )

Y x Y xt t t t t t t t t
n

x Y tt t t
n

p p x p x dx

p x x dx

θ θ θ θ θ

θ θη ηθ

θ η η θ η

η

− − − − − − −

−− − −

= =

= Π = Π

∫

∫
R

R

 

 

From this (I.a) follows directly. For (I.b) see the Appendix. 

 
Remark: If the condition | 1

( ) 0Yt t
pθ θ− >  is not satisfied, then , |1 1

( , )x Yt t t
p θ θ− − ⋅  in eq. (A.2) of 

Appendix A characterizes an unnormalized version of | ,1 1
( | )x Yt t t

p θ θ− − ⋅ . 
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Obviously, the non-Markovian character of the switching mode process {θt } is reflected by the 

appearance of ,
ˆ

t ηθΠ  in (I.a) and of ( )ηθΠ ⋅  in (I.b). If b, c and g are x-invariant and a and h are 

linear in x, then {θt } is a Markov process and (1,3) is jump linear. In this case | , (. | )x Yt t t
p θ θ  is a 

mixture of Nt+1 Gaussian densities [11]. Because of the appearance of the term ( )ηθΠ ⋅  in (I.b), 

however, this does not hold true for the state-dependent switching case. 
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3 IMM Particle Filter  

One cycle of the IMM Particle Filter consists of the following five steps, where a particle is 

defined as a pair ( , )xµ , [0,1]µ ∈ , and nx∈R . 

 

IMM Particle Filter Step 1; Each filter starts per mode value with a set of /S S N′ =  particles in 

[0,1] n×R : 

 

( ) [ ]{ }, ,, ; 1,j j
t tx j Sθ θµ ′∈ , {1,..., }Nθ ∈ =M�  

 

with for 0t = , ,
0 0

( ) /j p Sθ
θµ θ ′=  and ,

0
jxθ  independently drawn from |0 0

( | )xp θ θ⋅ .  

 

IMM Particle Filter Step 2; Interaction based re-sampling: 

Based on eq. (I.a), the mode probabilities become: 

 

, ,
| 11

1

( ) ( ) ( )
S

j j
Y t t tt t

j

p xη η
θ ηθ

η
θ γ θ µ

′

++
=

≈ = Π∑∑  

 

For each θ ∈M , draw S′  random vectors , j
txθ , [ ]1,j S′∈ , from the particle spanned density in 

eq. (I.b): 

 

( ), ,
| , , 11

1

( | ) ( ) ( ) / ( )
S

j j
x Y t t j tt t t xtj

p xη η
θ ηθ η

η
θ µ δ γ θ

′

++
∈ =

⋅ ≈ Π ⋅∑∑
M

 

 
or, if ( ) 0tγ θ = , draw from an unnormalized version, e.g. the joint density in eq. (A.2): 

 

( ), ,
, | ,1

1

( , ) ( ) ( )
S

j j
x Y t t jt t t xtj

p xη η
θ ηθ η

η
θ µ δ

′

+
∈ =

⋅ ≈ Π ⋅∑∑
M

 

 

This yields for each θ ∈M  the following set of particles 

 

( ) [ ]{ }, ,
1 , ; 1,j j

tt x j Sθ θµ + ′∈ , θ ∈M  

 

with ,
11 ( ) /j

tt Sθµ γ θ++ ′=  for any j. 
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IMM Particle Filter Step 3; Determine the new set of particles (the weights are not changed) 

 

( ) [ ]{ }, ,
1 1, ; 1,j j

t tx j Sθ θµ + + ′∈ , θ ∈M  

 

by running for each particle a Monte Carlo simulation from t  to 1t +  according to eq. (1):  

 

( ), , ,
1 1, ( , )j jj j

t tt tx a x b x wθ θ θθ θ+ += +  

 

IMM Particle Filter Step 4: Measurement update of the new weights for the set of particles, i.e.: 

 

( ) [ ]{ }, ,
1 1, ; 1,j j

t tx j Sθ θµ + + ′∈ , θ ∈M  

 

with for the new weights 

 

, , ,
11 1 1

1

1
( , )j j j

tt t t
t

F x
c

θ θ θµ µ θ++ + +
+

= ⋅  

where 

 

{ }( ) { }1
12

1 1 1 1 1
1

( , ) (2 ) Det ( , ) exp ( , ) ( , ) ( , )
2

m T
t t t t tF x Q x x Q x xθ π θ ν θ θ ν θ

− −
+ + + + += ⋅ −ɶ ɶɶ ɶ  

 

with 

 

1 1

1

( , ) ( , )

( , ) ( , ) ( , )

t t

T
t

x y h x

Q x g x g x

ν θ θ

θ θ θ
+ +

+

−ɶ ≜

ɶ ≜
 

 
and 1tc +  such that 

 

,
1

1

1
S

j
t

j

θ

θ
µ

′

+
∈ =

=∑∑
M
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IMM Particle Filter Step 5: MMSE output equations: 

 

,
1 1

1

ˆ ( )
S

j
t t

j

θγ θ µ
′

+ +
=

=∑  

, ,
1 1 1 1

1

ˆ ˆ( ) ( )
S

j j
t t t t

j

x xθ θγ θ θ µ
′

+ + + +
=

=∑  

, , ,
1 1 1 11 1 1

1

ˆˆ ˆ ˆ( ) ( ) ( ) ( )
S Tj j j

t t t tt t t
j

P x x x xθ θ θγ θ θ µ θ θ
′

+ + + ++ + +
=

   = − −   ∑  

1 1 1ˆˆ ˆ( ) ( )t t tx x
θ

γ θ θ+ + +
∈

= ∑
M

 

[ ][ ]( )1 1 1 1 1 1 1
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

T
t t t t t t tP P x x x x

θ
γ θ θ θ θ+ + + + + + +

∈
= + − −∑

M

 

 

Notice the differences with the standard PF for hybrid systems [5], [7], [8]: 

– Fixed number of particles per mode. 
– Probabilities for { }tθ  instead of particles for { }tθ , 

– Resampling after interaction/mixing rather than after measurement update. 



  
-12- 

NLR-TP-2005-684 

 

  

 
 

4 Monte Carlo simulations 

In this section some Monte Carlo simulation results are given for the IMM Particle Filter 

(IMMPF), the standard Particle Filter (PF) and the IMM algorithm. In addition we also give 

simulation results for a Hybrid Particle Filter (HPF) which differs from the standard PF by using 

a fixed number of particles per mode as introduced by [12]. For each of the particle filters we 

used a total of S = 10000 and S = 1000 particles respectively. The simulations primarily aim at 

gaining insight in the behavior and performance of the filters in case of rare switching. In the 

example scenarios there is an object moving with two possible modes. One mode is constant 

velocity and the other mode is constant acceleration.  The object starts with zero velocity and 

continues this for 40 scans. After scan 40 the object starts to accelerate with at a value equal to 
the standard deviation aσ  of acceleration values. In scenarios 1 and 2 the object continues with 

constant velocity after scan 60, while in scenarios 3 and 4 the object continues accelerating. 

Each simulation the filters start with perfect estimates and run for 100 scans. The hybrid model 

considered is a Markovian jump linear system: 

 

1( ) ( )t t t t tx A x B wθ θ−= +  (6) 

( ) ( )t t t t ty H x G vθ θ= +  (7) 

 
with parameterization {1,2}tθ ∈ and 

 

1 0

(1) 0 1 0

0 0 0

sT

A

 
 =  
  

,    

21
21

(2) 0 1

0 0

s s

s

T T

A T

α

 
 

=  
 
 

,    

0

(1) 0

1
aB σ
 
 =  
  

,  

2

0

(2) 0

1

aB σ

α

 
 =  
 − 

 

 

[ ]( ) 1 0 0H ⋅ = ,  ( ) mG σ⋅ =  

 

1 1

2 2

1

1

T Ts s

T Ts s

τ τ

τ τ

 −
 Π =
 −  

 

 
where aσ  represents the standard deviation of acceleration noise and mσ  represents the 

standard deviation of the measurement error. Table I gives the scenario parameter values that 

are being used for the Monte Carlo simulations. 
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Table I. Scenario parameter values 

Scenario α σa τ1 τ2 TS 

1 0.9 50 50 5 1 

2 0.9 50 5000 5 1 

3 0.9 1 50 5 1 

4 0.9 1 5000 500 1 
 

For each of the scenarios Monte Carlo simulations containing 100 runs have been performed for 

each of the filters. To make the comparison more meaningful, for all filters the same random 

number streams were used. The results of the Monte Carlo simulations of the four scenarios are 

shown in figures are shown in tables and figures as follows: 

The position RMS errors in figures 1,2,3 and 4. 

The computational load in Table II. 
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a. 104  particles b. 103  particles 

Figure 1. Scenario 1 
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Figure 2. Scenario 2 
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Figure 3. Scenario 3 
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a. 104  particles b. 103  particles 

Figure 4. Scenario 4 

 

Table II. Computational load per scan (10-3 S) 

# particles IMM PF HPF IMMPF 

104 4 138 115 96 

103 4 19 13 11 

 

 

Scenario 1: 

With 104 particles, all three particle filters perform similarly well; they converge to a lower 

value during uniform motion than IMM does. As a side effect, the peak RMS error at the start of 

acceleration is for the particle filters slightly higher than it is for IMM. These results agree well 

with those in [6]. Reduction of the number of particles to 103 affects PF dramatically, but has 

negligible impact on HPF and IMMPF. 
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Scenario 2: 

With 104 particles, IMMPF performs marginally better than IMM does, while PF performs 

dramatically worse. HPF performs significantly worse during the initial acceleration period 

only. Reduction of the number of particles to 103 has a negative effect on the convergence 

during UM for all three particle filters. Moreover, during the period of acceleration, PF and HPF 

worsen dramatically in performance. 

 

Scenario 3: 

With 104 particles, all three particle filters perform equally well, and significantly better than 

IMM does. Reduction of the number of particles to 103 has a clear negative effect for the 

standard PF, but does not affect IMMPF and HPF. 

 

Scenario 4: 

With 104 particles, all four filters, except the standard PF, perform similarly well. The standard 

PF performs dramatically worse during CA. Reduction of the number of particles to 103 has a 

clear negative effect for the standard PF and the HPF, but not for the IMMPF.  

 

Summary of Monte Carlo simulation results: 

With 104 particles, all three particle filters perform better than IMM for scenarios 1 and 3. For 

scenarios 2 and 4 however, IMM and IMMPF perform similarly well, while the standard PF 

performs less good on sudden acceleration, and the HPF response is less good for acceleration 

in scenario 2 only. With 103 particles the performance of PF degrades for all scenarios, of HPF 

for scenarios 2 and 4, and of IMMPF for scenario 2 only. 
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5 Concluding remarks 

In this paper we developed a novel particle filter for discrete time stochastic hybrid systems. 

Because of its similarity with the switching/interaction step of IMM, this novel particle filter is 

referred to as IMM Particle Filter. Through MC simulations for four scenarios; IMMPF has 

been tested and compared with standard PF and IMM. 

With 104 particles, the IMMPF performs well for all four scenarios. The computational load is 

25 times the load of IMM. The computational load of the standard PF is even higher. As 

expected, the IMMPF works well for all four scenarios including ones where standard PF or 

IMM has problems. Hence IMMPF is the preferred particle filter for stochastic hybrid systems. 

For the scenarios with a small switching rate (scenarios 2 and 4), the IMM performs similarly 

well as the IMMPF.  

However, for the regular switching scenarios 1 and 3, the IMMPF has some performance 

advantage over IMM, also when the number of particles is down to 103. The computational load 

of IMMPF is then three times higher than the load of IMM. Because IMMPF can easily be 

combined with various kinds of deviations from the Markovian jump linear mode (i.e. non-

linear a or h, or x-dependent b, c or g) this means that IMMPF is a strong competitor of IMM. 

Follow-up research is to combine IMMPF with complementary methods (e.g. [13]) to mitigate 

sensitivity to divergence for scenario 2 in case of 103 particles, and to gain analytical insight in 

convergence characteristics. 
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Appendix A Appendix A 

In this appendix we derive characterizations of the elementary transitions I.b in the Theorem. 

From the law of total probability follows: 

 

, | , , |1 1 1 1 1
( , ) ( , , )x Y x Yt t t t t t t

p x p xθ θ θ
η

θ θ η− − − − −= =∑  

| , , , |1 1 1 1 1 1
( | , ) ( , )x Y x Yt t t t t t t

p x p xθ θ θ
η

θ η η− − − − − −= =∑  

, |1 1 1
( ) ( , )x Yt t t
x p xηθ θ

η
η− − −= Π∑  (A.8) 

Hence, 

 

, | | , |1 1 1 1 1 1 1
( , ) ( ) ( | ) ( )x Y x Y Yt t t t t t t t

p x x p x pθ ηθ θ θ
η

θ η η− − − − − − −= Π∑  (A.9) 

 
If | 1

( ) 0Yt t
pθ θ− >  for all θ ∈M , then (A.2) yields (I.b). 

 


