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Summary

The standard way of applying particle filteringhigbrid systems is to make use of hybrid
particles, where each particle consists of two camepts, one assuming Euclidean values, and
the other assuming discrete mode values. This phpelops a novel particle filter for a
discrete-time stochastic hybrid system. The noJ@tyin the use of the exact Bayesian
equations for the conditional mode probabilitiegegi the observations. Therefore particles are
needed for the Euclidean valued state componewt ®hk novel particle filter is referred to as
the Interacting Multiple Model (IMM) particle filtebecause it has a switching/interaction step
which is of the same form as the switching/intdoacstep of the IMM algorithm. Through
Monte Carlo simulations, it is shown that the IMBrficle filter has significant advantage over
the standard particle filter, in particular forusitions where conditional switching rate or
conditional mode probabilities have small values.
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1 Introduction

The Sampling Importance Resampling (SIR) basedcafiitering approach of [1] has shown
to form an elegant and general approach towardsutrerical evaluation of Bayesian
nonlinear filtering equations [2], [3]. Most coneing are the applications where established
non-linear filtering approaches do not work atatereas particle filtering does, such as the
track-before-detect particle filter of [4].

For nonlinear filtering of a hybrid stochastic pess{x, 8} , with % assuming values iiR",
and g assuming values il ={1,...,N}, the SIR particle filter uses particles from ttydiid

state spac®" x M . Successful applications of this hybrid state sparsion of the SIR

particle filter have been shown for target tracKibl [6], signal processing [7] and failure
monitoring and diagnosis [8].

In the hybrid state space version of the SIR parfitter, each particle has two components
(x/,8)), with x) assuming an Euclidean value, afiiassuming a discrete mode value. This

approach works well as long as the conditional nadéabilities and/or switching rates do not
assume very small values. Otherwise, there mayebefew (or zero) particles for one or more
of the mode values, and then the empirical dessiginned by all particles with such a mode
value does not form an accurate approximation @ttirresponding exact conditional density.
A brute force approach to compensate for thissgficient increase of the number of particles.

A more elegant approach is to evaluate the exattgility function onM analytically, and to
use perd -condition, R" -valued particles only. This approach is elaboratetiis paper for a
discrete time stochastic hybrid system. The rasyiltiovel particle filter has a
switching/interaction step which is of the samarfas the switching/interaction step of the
Interacting Multiple Model (IMM) filter algorithm9], [10]. For this reason, the novel particle
filter is referred to as the IMM patrticle filterhfough Monte Carlo simulations, it is shown that
the IMM particle filter performs better than tharstlard particle filter, in particular for
situations where conditional switching rate andfnditional mode probabilities have small
values.

The paper is organized as follows. First, in sectipwe develop the exact Bayesian filter
equations for the discrete time stochastic hybygilesn considered. Subsequently, in section I,
we develop the IMMPF. Next, in section IV, we comgthe IMMPF with the standard PF and
the IMM through Monte Carlo simulation. In sectidnwe draw conclusions.
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2 State-dependent mode switching

2.1 Problem formulation

In this section we develop the exact Bayesianrfitie hybrid state estimation for a discrete-
time stochastic hybrid system. We consider the¥alhg system of stochastic difference
equations, on [0,T], Teq,

% =a(G, %)+ b8, xq) W (1)
6 =c(f-1%-1.4) (2)
Yo =h(4.%)+ 94 x) v 3)

where {w}, { u} and {v} are independent sequences of i.i.d. standard skausariables of
dimension p, 1 and g respectively, the initial diganass of Xo, &) is Pxo.60 and {w, v, W}is
independent ofx, &). Furthermorex, & andy; have respectivelR" -, M - and R™- valued
realizations, withM = {1,...,N, while a, b, ¢, handg are measurable mappings of appropriate
dimensions such that system (1-3) has a uniquéiaolfor each initial X, &). The mappings,

b, ¢, h andg are time-invariant for notational simplicity only.

In this model, the pairx( &) represents the hybrid system state, whilepresents the
measurement. Since equations (1) and (2) are metomly used as a hybrid state model, we
give a short introduction to them, starting with. (2

Since {4} assumes values in a discrete 3&t while cis a mapping ofMI xR" xR into M ,
equation (2) induces state-dependent mode trangtimbabilitiesl,4(x) as follows:

M,6(X) £ Paja 1% (€17, X)=
ZI)((H,C(H,X, u)) R, (Yd (4)
R

with y a O-1 indicatory(6,n7)= 1 iff 8=n. From (1) and (4) it follows thatd x} is a hybrid
state Markov proces.

2.2 Bayesian filter equations

Bayesian filtering asks for recursive equationgffier evolution of the conditional density-mass
function p, 4 , With ={y,; s< } . To develop such equations, we decompose adijiele

into a sequence of transitions:

Pa 1% -1 O~ pay,

Px_qlt-1.%-1 ot~ Px_14 .¥-1



-7-
NLR-TP-2005-684

Py D0 Py Y1
Pave, O by (5)

Py D0 Pxat ¥

which may be combined for evetys andu through

Py 651y (CF) = Prpps, v, (CP) Py gv, ()

Transitions l.c-e in (5) are known from the Marlgwitching and non-switching situations.
Characterizations for l.a,b in (5) are given in Theorem below.

Theorem:
Of the sequence of elementary transitions in (&fitlst two transitions satisfy:

Paris ()= 2 M 10 Pg_yx_ (1) (l.a)
nOM

with:

ﬁt—l/]@ 2 p@( B —1 ,Yt_l(‘9|/7) = J- p){_lﬂ_lx_l( XI’])“I]@ (X) dx
]Rn
and if pgy,_, (6)>0,

Py % (H0) = Z ( P81y T 0 ORg_ gy 1('7)) IRy 1 @) (1-b)

M

Proof: Sinceé, is conditionally independent of_; given §_; and x_;, we get

P11 @M= [ Py sy () By gy @17, )b
Rn

= | Praitoaoa XIMNa (Y= g
Rn

From this (l.a) follows directly. For (I.b) see tAppendix.

Remark:If the condition pg . _, (6) >0 is not satisfied, them,,_, 4y_, (L¥) in eq. (A.2) of

Appendix A characterizes an unnormalized versiorp)gt)jllg( NH(E]]H).
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Obviously, the non-Markovian character of the shiitg mode process{ } is reflected by the
appearance dﬁt’ng in (l.a) and off1,4(l} in (1.b). If b, c andg arex-invariant anca andh are

linear inx, then {4 } is a Markov process and (1,3) is jump lineartHis casepy g (.16) isa
mixture of N** Gaussian densities [11]. Because of the appeadiribe termr o (0 in (I.b),

however, this does not hold true for the state-ddert switching case.
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3 IMM ParticleFilter

One cycle of the IMM Particle Filter consists o thollowing five steps, where a particle is
defined as a paify, x), ©#0[0,1], and xOR".

IMM Particle Filter Step 1Each filter starts per mode value with a seSof S/ N particles in
[0,1]xR":

with for t =0, ,ug'j = Py, (@/S and ng independently drawn fronpxdgo([]]H).

IMM Particle Filter Step 2jnteraction based re-sampling:
Based on eq. (l.a), the mode probabilities become:

S’ . .
Pt (0) = Visa(8) = DD T ()

n j=1
For eachdO M, draw S' random vectors‘qg'j

eg. (I.b):

, 10[1,S'], from the particle spanned density in
S’ . .
Putasx 10)= 2 32N (418, 0) 7a©)
nOM j=1

or, if ;(6) =0, draw from an unnormalized version, e.g. the jdemsity in eq. (A.2):

S’ . .
P (B = D Z(Hne(ﬂ'JW"fS ,,-(Dl)

M j=1
This yields for eacl#OM the following set of particles
_911 _gyj .- J
{(m%4 01):i001s]}, o0M

with 7% =%.,,(8)/S for anyj.
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IMM Particle Filter Step 3Determine the new set of particles (the weighesrat changed)
{(A% ¢4): iolus]}, oom

by running for each particle a Monte Carlo simaatiromt to t +1 according to eq. (1):
Xl =al0.%1 )+ oK) wy

IMM Particle Filter Step 4Measurement update of the new weights for thefgaarticles, i.e.:
(41 5¢4):500sT), oo

with for the new weights

Hod = A T Fea(X0.6)
+1

where

N~

Fa(x.60)=((2m)"Def{ Q., (x6}) Dex;{—éﬁtil ®6 Qi1 XO )'Vis (xe}>

with

Vet (%, 6) = Vg = NG, X)
Qa(x6)2 g6, % g8, ¥’

and ¢, such that

S’ .
D> =1

oM j=1
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IMM Particle Filter Step 5MMSE output equations:
S,
Ba(6) =D
j=1

S’ .
P (0)%:0(0) =D e X
j—l

Ja(O)R.1(6) = ZM+1 A - sa@ | £ - 36+1(9)]T

j=1

%1 = Y 141(0) %41(6)
60M

Bu= 5@ Pa@+ 10 - X[ %40~ X.{7)
M

Notice the differences with the standard PF forrtdybystems [5], [7], [8]:

Fixed number of particles per mode.
Probabilities fo{ g} instead of particles fofé} ,

Resampling after interaction/mixing rather thareafheasurement update.
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4 Monte Carlo ssimulations

In this section some Monte Carlo simulation resaitsgiven for the IMM Particle Filter
(IMMPF), the standard Particle Filter (PF) and likié1 algorithm. In addition we also give
simulation results for a Hybrid Particle Filter (FlPwhich differs from the standard PF by using
a fixed number of particles per mode as introdumefll 2]. For each of the particle filters we
used a total o= 10000 and5= 1000 particles respectively. The simulations prily aim at
gaining insight in the behavior and performancéheffilters in case of rare switching. In the
example scenarios there is an object moving withpassible modes. One mode is constant
velocity and the other mode is constant accelaratithe object starts with zero velocity and
continues this for 40 scans. After scan 40 theallgtarts to accelerate with at a value equal to
the standard deviatioa, of acceleration values. In scenarios 1 and 2 kijeco continues with
constant velocity after scan 60, while in scenaBi@sd 4 the object continues accelerating.
Each simulation the filters start with perfect esttes and run for 100 scans. The hybrid model
considered is a Markovian jump linear system:

% =A@ %+ B&)w (6)
Y =H(@)x +G&) v (7)

with parameterizatior®, [J{L, 2} and

1T, 0 1T 378 0 0
AD=l0 1 0, A®=l0 1 T.| B@®=0,0|, B@=0,] O©
00 0 00 a 1 o7

HO=[1 o d, GD=o,,

T T
% =
M=
Is 1-Ts
2 2

where g, represents the standard deviation of acceleratise ando,, represents the

standard deviation of the measurement error. Tladilees the scenario parameter values that
are being used for the Monte Carlo simulations.
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A
Table I. Scenario parameter values
Scenario & Oa n L Ts
1 0.9 50 50 1
2 0.9 50 5000 5 1
3 0.9 1 50 5 1
4 0.9 1 5000 500 1

For each of the scenarios Monte Carlo simulati@maining 100 runs have been performed for

each of the filters. To make the comparison moramimgful, for all filters the same random

number streams were used. The results of the Moat® simulations of the four scenarios are

shown in figures are shown in tables and figureolbmws:
The position RMS errors in figures 1,2,3 and 4.

The computational load in Table 1.
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Figure 1. Scenario 1
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Figure 2. Scenario 2
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Figure 3. Scenario 3
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Figure 4. Scenario 4

Table Il. Computational load per scdi)® s)

# particles IMM PF HPF IMMPF
10 4 138 115 96
10° 4 19 13 11
Scenario 1:

With 10" particles, all three particle filters perform sianly well; they converge to a lower

value during uniform motion than IMM does. As aesgffect, the peak RMS error at the start of
acceleration is for the patrticle filters slightligher than it is for IMM. These results agree well
with those in [6]. Reduction of the number of paes to 16 affects PF dramatically, but has
negligible impact on HPF and IMMPF.
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Scenario 2:

With 10" particles, IMMPF performs marginally better tha#M does, while PF performs
dramatically worse. HPF performs significantly weduring the initial acceleration period

only. Reduction of the number of particles td hs a negative effect on the convergence
during UM for all three patrticle filters. Moreovetyring the period of acceleration, PF and HPF
worsen dramatically in performance.

Scenario 3:

With 10" particles, all three particle filters perform etipavell, and significantly better than
IMM does. Reduction of the number of particles @ Has a clear negative effect for the
standard PF, but does not affect IMMPF and HPF.

Scenario 4:

With 10" particles, all four filters, except the standaRj Perform similarly well. The standard
PF performs dramatically worse during CA. Reductibthe number of particles to ¥bas a
clear negative effect for the standard PF and tRE,Hbut not for the IMMPF.

Summary of Monte Carlo simulation results:

With 10" particles, all three particle filters perform teetthan IMM for scenarios 1 and 3. For
scenarios 2 and 4 however, IMM and IMMPF performikirly well, while the standard PF
performs less good on sudden acceleration, andRtteresponse is less good for acceleration
in scenario 2 only. With £(articles the performance of PF degrades forcatharios, of HPF
for scenarios 2 and 4, and of IMMPF for scenaranB.
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5 Concluding remarks

In this paper we developed a novel particle fifterdiscrete time stochastic hybrid systems.
Because of its similarity with the switching/intetian step of IMM, this novel particle filter is
referred to as IMM Patrticle Filter. Through MC silations for four scenarios; IMMPF has
been tested and compared with standard PF and IMM.

With 10 particles, the IMMPF performs well for all foureswarios. The computational load is
25 times the load of IMM. The computational loadlté standard PF is even higher. As
expected, the IMMPF works well for all four scemarincluding ones where standard PF or
IMM has problems. Hence IMMPF is the preferredipbeffilter for stochastic hybrid systems.
For the scenarios with a small switching rate (ades 2 and 4), the IMM performs similarly
well as the IMMPF.

However, for the regular switching scenarios 1 anithe IMMPF has some performance
advantage over IMM, also when the number of paics down to 10 The computational load
of IMMPEF is then three times higher than the loatMM. Because IMMPF can easily be
combined with various kinds of deviations from t#arkovian jump linear mode (i.e. non-
lineara or h, orx-dependenb, ¢ or g) this means that IMMPF is a strong competitor\di.
Follow-up research is to combine IMMPF with compéettary methods (e.g. [13]) to mitigate
sensitivity to divergence for scenario 2 in casé@fparticles, and to gain analytical insight in
convergence characteristics.



17-
NLR-TP-2005-684

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

D.B. Rubin, “Using the SIR algorithm to simulatesperior distributions,” Eds. J.M.
Bernardo, M.H. de Groot, D.V. Lindley, A.F.M. SmijtBayesian Statistics 3, Oxford Univ.
Press, 1988, pp. 395-402.

N. J. Gordon, D. J. Salmond and A. F. M. Smith, VBleapproach to nonlinear/non-
Gaussian Bayesian state estimatidBE Proceedings$-, Vol. 140, pp. 107-113, 1993.

A. Doucet, “On sequential simulation-based metHfod8ayesian filtering,” Technical
report CUED / F-INFENG / TR-310, Univ. of CambriddéK, 1998.

Y. Boers, J.N. Driessen, F. Verschure, W.P.M.H.Hels, and A. Juloski, A multi target
track before detect application, SPIE Conf. Smaligéts Tracking, 2003.

S. McGinnity and G. W. Irwin, “Multiple Model Bodisip Filter for Maneuvering Target
Tracking,”IEEE Tr. on Aerospace and Electronic Syste¥ol. 36, 2000, pp. 1006-1012.
S. McGinnity and G. W. Irwin, “Maneuvering Tar-getacking using a Multiple-Model
Bootstrap Filter,” Eds. A. Doucet, N. de Freitasl & GordonSequential Monte Carlo
Methods in Practie, Springer 2001, pp. 479-497.

A. Doucet, N. J. Gordon and V. Krishnamurthy, “IRaet Filters for State Estimation of
Jump Markov Linear SystemdEEE Tr. on Signal ProcesginVol. 49, 2001, pp. 613-
624.

X. Koutsoukis, J. Kurien, and F. Zhao, “Monitoriagd Diagnosis of hybrid systems using
particle filtering methods,” Proc. Mathematical ©ngof Networks and Systems (MTNS),
2002.

H.A.P. Blom, “An efficient filter for abruptly chajing systems,Proc. of the 23rd IEEE
CDC, 1984, pp.656-658.

[10]H.A.P. Blom and Y. Bar-Shalom, “The Interacting Mple Model algorithm for systems

with Markovian switching coefficienfSIEEE Tr. on Automatic ContrelVol. 33 (1988),
pp. 780-783.

[11]J.K. Tugnait, A.H. Haddad, “A detection-estimatgsheme for state estimation in

switching environments,” Automatica, Vol. 15 (19/8p. 477-481.

[12]H.A.P. Blom and E.A. Bloem, “Joint IMMPDA Particféter,” Proc. 6th Int. Conf. on

Information Fusion, July 8-11, 2003, Vol. 1, pp5782.

[13]C. Musso, N. Oudjane, and F. Le Gland, “ImproviregRarised Patrticle Filters,” Eds. A.

Doucet, N. de Freitas and N. Gord&@gquential Monte Carlo Methods in Praetic
Springer 2001, pp. 247-271.



=

-18-
NLR-TP-2005-684

Appendix A Appendix A

In this appendix we derive characterizations ofdleenentary transitions I.b in the Theorem.
From the law of total probability follows:

pxt—119[|Yt—l(X’ 0)= Z Px_14 a-1¢- 1( x8.1)=
n
= Z Pai1 81011 X7 Py_y4_gy_o(¥7)=
n
=ZI'I,,9(X) Pa-1.8-a1%-1(%/7) (A.8)
n

Hence,

Pacr s (%0 =D Ma (N By_ya_y v o X7 B gy @) (A.9)
1

If pém_l(e) >0 for all 80M, then (A.2) yields (I.b).



