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Summary

Physical database design can be marked as a crucial step in the overall design process of databases.
The outcome of physical database design is a physical schema which describes the storage and
access structures of the stored database. The selection of an efficient physical schema is an NP-
complete problem. A significant number of efforts has been reported to develop tools that assist
in the selection of physical schemas. Most of the efforts implicitly apply a number of heuristics to
avoid the evaluation of all schemas. In this paper, we present an approach, based on the Dempster-
Shafer theory, that explicitly models a rich set of heuristics —used for the selection of an efficient
physical schema— into knowledge rules. These rules may be loaded into a knowledge base,
which, in turn, can be embedded in physical database design tools.
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1 Introduction

The design of databases takes place on several levels. One of these levels is the so-called phys-
ical level, and the design of databases at this level is called physical database design. Physical
database design aims to achieve efficient physical schemas by organizing data in such way that the
operations defined on the data can be quickly processed and with low cost. Typical problems at
the physical level are the assignment of efficient storage structures to certain amounts of data and
the allocation of secondary indices to attributes. A storage structure may be considered as a file
arrangement, whether or not clustered on a certain attribute, providing a way to access data. The
clustering attribute is known as the primary index. Secondary indices, also known as access struc-
tures, can be regarded as auxiliary files that allow to retrieve parts of the data satisfying a certain
selection predicate without having to examine all available data. Updating the database, causes
an index to be updated to remain consistent with the new database state. So, an index speeds up

retrieval and slows down maintenance.

In general, bad choices for a physical schema will lead to poor performance, and, therefore, the
database system may become less valuable. Thus, physical database design can be marked as an

important step in the overall design process of databases.

The number of physical schemas among which database designers have to select a schema is enor-
mous. The evaluation of a physical schema is a tedious and error-prone process. One should
understand the workings of a particular database management system. Therefore, there is a prac-
tical need to develop tools that assist database designers in the selection of physical schemas.
In the literature, a significant number of efforts has been reported to develop such tools [Ref
2,4,6,7,8, 11, 18]. Most of the efforts implicitly apply a number of heuristics to avoid the evalu-
ation of all schemas. Uncertainty and ignorance, which characterize many of these heuristics, are

not taken into account.

In this paper, we present an approach that explicitly models a rich set of heuristics —used for
the selection of an efficient schema— into production rules to which a measure of uncertainty
is attached. These heuristics can be loaded in a knowledge base that might be used in physical

database design tools.

We have studied about 60 heuristics that are used by database administrators in various companies
in the Netherlands and observed that most of the rules contain a degree of uncertainty, ignorance,

and qualitative notions. An example of a typical heuristic is: ”A Heap storage structure is in 90%
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of the cases adequate for small relations”. The percentage 90% in this heuristic implies a certain
degree of uncertainty and small is a qualitative notion. If we asked the database administrators
what storage structure is a candidate in the case that a Heap is not chosen for a small relation, it
appeared that all possible storage structures might be a choice. This implies that ignorance also

plays a role in the field of physical database design.

To capture uncertainty and ignorance in the heuristics, we have used the Dempster-Shafer theory.
This theory, also known as the theory of belief functions, has been introduced by Dempster [Ref
9] and mathematically founded by Shafer [Ref 19]. It can be regarded as a generalization of
probability theory and also as a theory for dealing with evidence [Ref 12]. For our purpose, we

regard to the theory as a theory of evidence.

The theory offers an attractive formalism to represent relevant notions as “The belief in A on the
basis of evidence E’. A central instrument in the Dempster-Shafer theory is the rule of Dempster,
which is used to combine several evidences. In Artificial Intelligence, Dempster-Shafer theory has
attracted much attention. Variants of the theory have been applied as a tool to handle uncertain
information in many applications, see among others {Ref 3, 10, 16, 17]. In the field of Database
technology, the theory is also receiving attention. In [Ref 1, 14, 15], it has been used to extend the
relational model. We note that the authors in [Ref 1] take the view that their extension of the rela-
tional model is based on probability theory and on the so-called concept of ‘missing probabilities’.
However, they are presumably not aware that their concept of ‘missing probabilities’ is covered

by the Dempster-Shafer theory.

The remainder of this paper is organised as follows. In two consecutive sections, the problem of
physical database design and the notion of physical schema will be discussed in more detail. In
Section 4, we study a set of heuristics that are used by database administrators to select a physical
schema. In Section 5, we model the heuristics into knowledge rules with the Dempster-Shafer
theory and propose a Dempster-Shafer approach for physical database design. Finally, Section 6

concludes the paper.
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2 Physical database design

As already noticed, the outcome of physical database design is a physical schema. In the selection
of a physical schema, the operations defined on the data, called the workload, play a crucial role.
A physical schema that may be good or optimal for a certain workload, may be bad for another

workload.

Basically, we may distinguish four kinds of database operations on a relational schema® namely,
insertions, deletions, updates, and queries. Insertions are used to insert new tuples in a relation,
deletions are used to delete tuples, updates are used to change the values of some attributes, and

queries are used to derive a relation .

In general, a number of operations of each type are defined on a relational schema. To each oper-
ation a weight is assigned, which is based on the frequency and the importance of the operation.
A high weight implies that once an operation is started to be processed, this should be done fast,

while a low weight implies that there are hardly any conditions for the processing time.

Based on the relational schema, the workload, and some other database characteristics, such as
the cardinality of a relation, length of a tuple, number of pages to store a relation, etc., a storage
structure and a set of indices should be selected for each relation. A storage structure determines
the order of the tuples of a relation on disk. If this order is determined by an attribute, this attribute
is called the ordering attribute. An index is a set of pairs (key value, TID-list). The key values
are a subset of the domain of the indexed attribute, and a tuple identifier (TID) in the TID-list

identifies a tuple possessing the key value.

An index on an ordering attribute is called a clustering index and an index on a non-ordering
attribute is called a secondary index. We note that a storage structure is also associated with each

index.

In Figure 1, we depict how the notions storage structure, ordering attribute, and clustering index
are related. Furthermore, for a number of storage structures, we have indicated between brackets
whether they have an ordering attribute or not. If a storage structure has an ordering attribute, we
have indicated whether the ordering attribute is indexed or not. For example, the storage structure
Heap does not have an ordering attribute, and, therefore, it is unordered. Storage structures that

have an ordering attribute are Isam, Btree, and Hashing [Ref 13].

L A relational schema is a set of relations. A relation R is defined over some attributes cuy, v, ..., e, and is a subset

of the Cartesian product dom(a;) x dom(as) % ... X dom(a,), in which dom(a;) is the domain of attribute ;.



-8 -
NLR-TP-2000-422

clustering index
(Btree)

ordering attribute
(Isam, Hash, Btree)

storage structure no clustering index
( Heap, Isam, Btree, Hash) (Isam, Hash)

no ordering attribute
(Heap)

Fig. 1 Several kind of storage structures

In general, the way a clustering index is organized depends on the storage structure to which the
clustering index is related. For example, the storage structure Btree in Ingres allocates an index to
the ordering attribute (resulting into a clustering index), and to this clustering index a pre-defined

storage structure is assigned

In the remainder of this paper, we focus on the selection of a storage structure and a set of indices
for each relation, and refer to it as physical database design. Although our description does not

cover the overall problem of physical design, it covers the most difficult and crucial parts [Ref 0].
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3 Physical schema

In this section, we formalize the notion of physical schema. First, we outline the assumptions on

which the definition of a physical schema is based.

We assume that either a secondary index or a clustering index can be allocated on an attribute (but

not both). The way a clustering index is stored is assumed to be fixed.

Exactly one storage structure can be assigned to a relation. The storage structures that are consid-
ered are Heap, Isam, Btree, and Hashing. Since these storage structures are concerned with the
arrangement of tuples of a single relation on disk, we do not consider the possibility to absorb a
relation in another relation. As a consequence, we assume that a page contains tuples of exactly

one relation.

A last assumption is that indices and ordering attributes concern single attributes. A physical

schema for a single relation is now defined as follows,

Def. 1 Let R be a relation with attributes oy, v, ..., . A physical schema pR corresponding to

R is an element of P, in which

PR = [(z0(Ap), {z:(4) |i=1,2,..,m}) | m € IN;

Vi,j €{0,1,2,.m} 1 i # j = A, NA; = 0;

Ao S L;Vi>0: A =1,Vi>0: A4; C{ar,ag,...,an};

o, ; are storage structures; |Ag| = 0 => 29 = Heap}
The expression zo(Ap) means that a relation is stored as z¢ and ordered on the set of attributes
Ap. We note that if a relation is stored as Heap, then Ay is the empty set, else Ag contains
exactly one element. The expression z;(A;) represents that a secondary index is allocated to
the set of attributes A; and is stored as z;. Note, A; consists of exactly one element, since we

restrict ourselves to single attribute indices. So, extension of Def. 1 by multi-attribute indices is

straightforward.

An (overall) physical schema for a set of relations is defined as the union of the selected physical

schema for each relation.
We note that the selection of physical schemas per relation is justified in [Ref 20, 6].

The following example illustrates the notion of physical schemas. Since the number of elements
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of a set A;,7 > 0, is zero or one, we write z;() and z;(c;) instead of z;({}) and z;({«; }) respec-

tively. For convenience’s sake, the set brackets are omitted.

Example 1 Let us consider the following relational schema:
Person(per#, first_name, last_name, birth_date, city),
Vehicle(veh#, model, color, doors, body, manufacturer)

Owns(per#, veh#, money_paid)

Two overall physical schemas for the above-mentioned relational schema are given below.

In the first overall physical schema, the relation Person is stored as Heap and two secondary
indices, both stored as Btrees, to the attributes city and last_name respectively are allocated. The

relation Vehicle is hashed on the attribute veh#. The relation Owns is stored as Heap.

In the second overall physical schema, the relations Person and Vehicle are stored as Heap. The
relation Owns is stored as Btree, ordered on attribute per#, and a secondary index, stored as Btree,
to money_paid is allocated.

1. ( (Heap(),{Btree(city), Btree(last_name)}), (Hash(veh#), {}), (Heap().{}) )

2. ((Heap(),{}), (Heap(),{}), (Btree(per#), {Btree(money_paid)}) ) O
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Heuristic 1:
IF a relation is small (< 6 pages)
THEN  Heap is often (90%) an adequate storage structure

Heuristic 2:
IF the more the percentage of operations that changes
the value of an attribute in a workload exceeds 10%

THEN  the more this attribute is not an index candidate
Fig. 2 Examples of some heuristics

4 Heuristics

After analysing about 60 heuristics used by experts for physical database design, we have ob-
served the following. First, the heuristics consist of a condition and conclusion part (see Figure
2). Second, experts have apparently no difficulties to translate qualitative notions into quantitative
measures. In general this is a tough task. In Heuristic 1 of Figure 2, a quantification of the notion
small is given between brackets. Third, heuristics have an uncertain character. A heuristic works
well in many cases but not in all cases. Database administrators are able to estimate in how many
percent of the cases a heuristic may be successfully applied. For example, applying Heuristic |
of Figure 2 results in 90% of the cases into Heap as storage structure. The heuristic says nothing
about the remaining 10% implying ignorance in these cases. We note that the latter information is
not explicitly captured in Heuristic 1. Fourth, we may distinguish two types of heuristics.

1. The belief in the conclusion(s) is based on the fact whether the condition part is true or not.
For example, in Heuristic 1 of Figure 2, the belief that a Heap storage structure is chosen
for a small relation is independent of how small the relation is.

2. The belief in the conclusion(s) is dependent of the extent to which a condition part is satis-
fied. For example, the idea behind Heuristic 2 of Figure 2 is that if the number of operations
in a workload that changes an attribute ¢, increases, then the belief that oy, is not an in-
dex candidate grows. To represent this uncertain character, it is not sufficient to represent
heuristics only with a condition and conclusion part.

For the time being, we represent the heuristics of type 2, thus for which holds that the belief in
the conclusion increases (or decreases) if the extent to which the conditions are satisfied increases

(decreases), as follows.

IF (conditions(y%)) A (y > yo) THEN conclusion with belief f(y — yo) (D
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We note that y is the actual percentage to which the conditions are satisfied, g is the minimal re-
quired percentage in order to draw conclusion, and f(y) is a function of y. The belief in conclusion

increases (or decreases) if the value of y — yg becomes higher (smaller).

In the next section, we discuss the Dempster-Shafer theory to capture the uncertain character of

both type of heuristics in order to achieve knowledge rules.
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S5 A Dempster-Shafer approach to select physical schemas

We feel that the Dempster-Shafer theory is a suitable theory to capture the uncertainty contained
in the heuristics used by database designers. Before illustrating this, we give a brief description
of the theory in the context of physical database design. We start with defining what should be
understood by all permitted overall physical schemas for a relational schema in which r relations

are involved.

Def. 2 Let P (see Def. 1)be the set of all permitted physical schemas corresponding to a rela-
tion R having attributes o, &g, ..., . The set of permitted overall physical schemas for
a relational schema in which r relations, Ri, Ra, ..., R,, are involved, called the frame of
discernment, is PRz = plyy pR2 x5 PR In the following, PRuR2fr ig

abbreviated as PPB,

The following example lists all permitted physical schemas corresponding to a single relation.

Example 2 Consider the relation Owner(per#, veh#, money_paid), which has been introduced
in Example 1. We assume that a relation is either stored as a Heap or hashed on a single attribute.

A secondary index is stored as a Btree.

In the following, we write p; for the i-th physical schema of relation Owner instead of pZ-OW”"". The
set of all permitted physical schemas for Owner, is pOwner — {p1,p2,P3,....,p20}. The schemas
D1, P2, P3, ..., P2o are listed in Table 1. The physical schema p; means that Owner is stored as Heap
and no secondary indices are allocated, while p,2 means that Owner is hashed on the attribute per#
and secondary indices —both stored as Birees— are allocated to attributes veh# and money_paid.
|
Def. 3 Let PP be the set of all permitted overall physical schemas for a relational schema. Let
IP(PPB) be the power set of PPB, then a function m : IP(PPB) — [0,1] is called a basic

probability assignment (bpa) whenever

m(@) =0 and Y m(P)=1
PCPDB
The quantity m(P) is called P’s basic probability number and it is understood to be the measure
of belief that is exactly committed to the set of overall physical schemas P. The fotal belief in
P, (Bel(P)), is the sum of the basic probability numbers of all subsets PP of P. The following
definition describes the relation between belief and basic probability assignment in a formal way.

We note that in the definition for P holds that P C IP(PP®).

Def. 4 A function Bel is called a belief function over PPP if it is given by the following equation
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pr = (Heap(, {}

D2 = (Heap(), {Btree(per#)})

ps = (Heap(). {Btree(veh#)})

P4 = (Heap(), {Btree(money_paid)})

s = (Heap(), {Btree(per#), Btree(veh#)})

Pe = (Heap(), {Btree(per#), Btree( money_paid)})

p7 = (Heap(), {Btree(veh#), Btree( money_paid)})

P8 = (Heap(), {Btree(per#), Btree(veh#), Btree( money_paid)})
ps = (Hash(per#), {})

pio = (Hash(per#), {Btree(veh#)})

p1i = (Hash(per#), {Btree(money.paid)})

piz = (Hash(per#), {Btree(veh#), Btree( money_paid) })
piz = (Hash(veh#), {})

pia = (Hash(veh#), {Btree(per#)})

pis = (Hash(veh#), {Btree(money_paid)})

pis = (Hash(veh#), { Btree(per#), Btree( money.paid) })
piz = (Hash(money_paid), {})

pis = (Hash(money_paid), {Btree(veh#)})

p1g = (Hash(money_paid), {Btree(money_paid)})

p2o = (Hash(money._paid), { Btree(per#), Btree(veh#)} )

Table 1  All permitted physical schemas for the relation Owner

for some bpa m : IP(PPB) — [0,1].

Bel(P) = > m(PP) ()
PPCP
We note that a basic probability assignment induces a belief function and conversely. In the fol-

lowing, we illustrate how to compute a belief function from a given bpa.

Example 3 Assume that the following bpa is defined on the set of physical schemas listed in Table
L:m({p1}) = 0.2, m({p1o}) = 0.2, m({ps, P10, p18}) = 0.4 ,m(PO*") = 0.2, and m(P) = 0
otherwise. Therefore, the corresponding belief function is: Bel({p1}) = 0.2, Bel({p10}) =
0.2, Bel({ps, p10,p1s}) = 0.6, and Bel(PYP""¢") = 1. Note that the expression Bel({ps, p10, P13 })
0.6 means that the total belief in the set of schemas {pg, p19, p1s} is 0.6. However, we are not able

to distribute this belief among the schemas in the set. O

Two other notions that are related with a belief function are plausibility and ignorance. The plau-
sibility in a set of physical schemas P expresses the maximal belief in this set, and is defined as

PI(P) =1 — Bel(P®), in which P is the complement of P relative to PPB. The ignorance with
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regard to a set of overall physical schemas P, is defined as Ig(P) = PI(P) — Bel(P).

In Section 5.1, we illustrate how the two types of heuristics discussed in Section 4 may be modelled
as knowledge rules. Then, in section 5.2, we discuss how these rules may contribute in solving the

problem of physical database design.

5.1 Knowledge rules

In Section 4, it was noted that database experts use heuristics that contain uncertainty and igno-
rance for the design of physical schemas. We continue by illustrating how to model the heuristics
into knowledge rules. A knowledge rule has an antecedent and a consequent. With the consequent,

a bpa is associated that expresses the belief that is committed to the consequent.

Since the conclusion(s) of both types of heuristics of Section 4 actually support a number of over-
all physical schemas, the consequent part of a knowledge rule should support this property. In the

following example, we derive the knowledge rule corresponding to Heuristic 1 of Figure 2.

Heuristic 1 Suppose that the belief in a Heap storage structure for small tables is 0.9 and let
P}ﬁ’ap be the set of all permitted physical schemas storing relation R; as Heap whatever the set of

secondary indices —and their storage structures— is. We note that Pfelap formally means:
{(Heap(), {@i(4) | i = 1,2,...m}) | m € IV;
Vi, j € {0,1,2,..m} i #j= A NA =0
Vi > 1:(A; €{ay,00,...,an} A4 =1);
x; is a storage structure }
We note that oy, a, ..., «p, are attributes of relation R;.

The knowledge rule (k1) corresponding to Heuristic 1 is given below. In this rule nﬁl’g represents

the number of pages required to store relation R;.

ki IF nfa’g < 6 pages
THEN
R . R
Pygdyp X PPBVRL (Pl PPBVRY) = 0.9
PPB; m(PPB) = 0.1

x PPB\R s an abbreviation for:

x PR+ x| x pi

We note that P}ilap

R R R;.. Ry
PRox PR oxx PR X Py
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Let us explain the belief value committed to PPB. Heuristic 1 of Figure 2 tells us that if a physical
table is small we choose to store relation I; as Heap with a belief of 0.9. However, no statement
is made for the remaining belief of 0.1. In this case, no preference is given to any overall physical
schema. Therefore, this belief is committed to the whole frame of discernment. In this way igno-

rance is modelled. O

Let us recall the meaning of the heuristic of type 2 in Section 4, before giving the corresponding

bpa
1.0

! [

100%
actual percents y

Fig. 3 A possible function between the fraction satisfying a condition and the bpa

knowledge rule. Suppose that y is the actual percentage that satisfies the condition and yg the
required percentage that has to be satisfied for committing a non-zero belief to a set of overall
physical schemas. Then, the heuristic of this type implies that the belief in a set of overall physical
schemas depends on y. In general, the larger y — yg, the stronger the belief in this set of overall
physical schemas. Thus, the bpa in modelling heuristics of type 2 will be a function of y, which

generally have the form of Figure 3. In the following, we model Heuristic 2 of Figure 2.

Heuristic 2 Let Chyy(«y) be the percentage of changes on an attribute «y, of relation R; by
workload W and f(Chw (ay)) is a function like the one in Figure 3. Then, Heuristic 2 can be

modelled as knowledge rule ko:

ko: IF Chy () > 10%
THEN
PR x PPBR (PR x PPBARY) = f(Chyy ()

'ﬂah

PDB; rn(PDB) =1- f(ChW(ah»



@

- 17 -
NLR-TP-2000-422

The expression PR , 1s a shorthand for:

{(zo(Ao), {zi(4i) |1 =1,2,..,m}) | m € IV;
Vi,j € {0,1,2, .m} i = ANA =0
Aol S LiVi>0: A =15V >0: A4; C{ag, a9, ..,ant \ {an};

xg, T; are storage structures; |Ag| = 0 = z¢ = Heap}

We note that the expression P L X PPB\: represents the set of physical schemas storing relation
R, in such a way that R, is neither ordered on attribute «, nor a secondary index is allocated on

ap. O

Modelling mathematical properties in knowledge rules is straightforward. Since mathematical
properties are exact under certain conditions, these properties should be given full belief. This
means that a knowledge rule that represents a mathematical property will be associated with a bpa

having the value 1.0. An example is given below.

Example 4 Suppose we have derived the following property under some conditions Con for phys-
ical schemas consisting of single relations: ‘If the addition of a secondary index on attribute oy, to
a physical schema with regard to relation R; decreases the cost (in handling the workload defined
on the schema), then this index should be added to the set of secondary indices [Ref 51", Let us

assume that secondary indices are stored as Btree. Then this property can be modelled as follows:

ks: IF Con AND C(p™, Ua,) < C(p™,)
THEN
R . R
P—'olchUah,Btree’ m(PﬁOléhUah,,Btree) =1.0

We note that C(.) is a cost function that computes the cost of a physical schema, p% , 18 a physical
schema that neither has «, as ordering attribute nor as index, and pf& ,Uay, 18 the physical schema
pflah to which oy, is added as secondary index. For pfﬁ}lh and pﬁghwh holds, pi{gh € szh‘,Btree
and pf}thah € P—}?clthah,Btree’ in which the sets P—]\zolzh,Btree and PféhUamBmC represent the physical
schemas

{(zo(Ap), {Btree(A4;) | ¢ = 1,2,..,m}) | m € IN;

Vi,j €{0,1,2,.m}:i#j=> A NA =0

[Aol S LiVi>0: Al =1;Vi > 0: A4, C {1, 0, ...,an} \ {an};

xg is a storage structure; |Ag| = 0 = z¢ = Heap}
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and
{(zo(Ag), {Btree(A;) UBtree(A4,) | i = 1,2, ..,m}) | m € IV;
Vi,j € {0,1,2,..m} i #j=ANA; =0
Ap = {on}; |Ag) S 1;Vi > 0 A = Vi 2 0: A; C {an, a9, .0y an };

T is a storage structure; |Ag| = 0 = z¢ = Heap}
respectively. O

We assume that experts are able to give a reliable belief function for a knowledge rule. If ex-
perts are not able to estimate a belief function for a knowledge rule corresponding with a heuristic
that is used by them, then the heuristic probably has not taken shape yet. Such a rule might be

better omitted from a knowledge base.

We are aware of the fact that a belief function proposed by an expert will be an approximation
rather than an exact function. For example, it is not unlikely that in knowledge rule k; the belief
in Pht,, x PPE\R should be 0.86 or 0.93 instead of 0.9. Consequences of variations in belief

functions is a topic for further research.

5.2 Combining knowledge rules

Each knowledge rule supports or rejects a set of overall physical schemas with a certain belief.
Intuitively, if two rules support the same set of overall physical schemas P, then the combination
of these rules should result into a higher belief for P, while if one of the rules supports P and
the other rule rejects P, then this should result into a lower belief for P. The combination rule of
Dempster possesses these properties. We discuss this combination rule and illustrate how it may

be applied.

The rule of Dempster is most accessible when it is expressed in terms of the basic probability
numbers, and especially when these basic probability numbers are depicted geometrically. To
make the discussion about the combination rule easier, we introduce the notion of focal overall

physical schemas. A set of overall physical schemas P is called a focal set if m(P) > 0.

Suppose m; is the bpa for a belief function Bel; and my the bpa for a belief function Bely, both
defined over a set PPB. The focal sets of m, are represented by P!, i = 1,2,...,k and the focal
sets of my are represented by P]Z, j = 1,2,...;,1. In Figure 4, a graphical representation of both
bpa’s is given. The bpa’s of the focal sets are depicted as segments of a line segment of length one

and it is shown how m and ms can be orthogonally combined to obtain a square.
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2
my(P }) mI(Pi) mz(P“l) my(P jl)
l | l
| | [ l | | [ | I l | ]
0 1.0 my 0 1o my
my
1.0
1“2(sz) —

2
my (P P —
0

0 T T LO my

ml(Pi) ml(PiI)

Fig. 4 Combination of my and my

The total surface of the square is one. The surface of a subsquare is the bpa assigned to the
intersection of the focal sets P} and P]»Q. If the intersection between two focal sets is empty, the
value zero should be assigned to the bpa according to Def. 3. This is realized by discarding all the
subsquares corresponding to an empty intersection and normalizing the remaining surfaces of the
subsquares such that the sum of the surfaces of these subsquares is one. This process is realized

by the following combination rule of Dempster [Ref 19], in which K is called the normalization

constant.
m @ma(P) =K' 3 mi(B)ma(P})
0 J
in which P is a non empty set and
K= > mi (P )ma(F})
4]
PIOP?#D

We write Bel; @ Bels for the belief function induced by m, & mo. The following example illus-

trates the use of the combination rule.

Example 5 Consider a relational schema consisting of the relation Owner(per#, veh#, money_paid)
(introduced in Example 1). We note that all physical schemas for relation Owner, PO" =

{p1,p2,p3, ..., P20 } are listed in Table 1.
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Let us assume that the workload W defined on the schema is such that the percentage of modifi-
cations on veh#, Chy (veh#), is 15%. This fact induces the execution of rule ks (see Section 53),
which neither supports a secondary index on veh# nor an ordering on veh#. Suppose this results
in the following bpa:

ma({p1, P2, P4, Pe, P9, P11, P17, P1o}) = ma(PE) = 0.6 and my(P"") = 0.4.

Suppose that another rule, e.g., k3, results in (a secondary index on veh#):

ma({p3, ps, 7, P8, P10, P12, P18, P20 }) = m3(PY) = 0.9 and s (PP"7) = 0.1.

m3
1.0
0.06 0.04
P Owner 9
P | p Owner
0.9
0.54 0.36

P % P3

p % 0.6 pOwner 1.0 my

Fig. 5 Combining the bpa’s ms andmg

A third rule, e.g., k4, supports hashing on the attributes veh# an d per# with the following bpa:

my({pg, P10, P11, P12}) = ma(P) = 0.6, ma({p13,p14,p15,p16}) = ma(P}) = 0.3, and
ma (POWr) = 0.1,

Combining rules ky and k3, which are conflicting, results in Figure 5. The normalization con-
stant is 0.46 and the combined bpa is: ms @& m3(P}) = 0.36/0.46 = 0.78 my @ m3(P?) =
0.06/0.46 = 0.13 my @ mz(P"") = 0.04/0.46 = 0.09

The combination of ms @ mgs with my can be carried out in the same way, and gives the following

results.
ma ® m3 @ ma({pro,p12}) = 0.64  Bel({p1o,p12}) = 0.64 PI({p10,p12}) = 0.83
mo ®mg ®my({pe,p11}) =0.11  Bel({py,p11}) = 0.11 Pl({pg,pu} =0.20
ma ® ma ® mq(P}) = 0.11 Bel(P}?) = 0.75 PI(P}) = 0.8
mo @ ma & my(P}) = 0.07 Bel(P}) = 0.71 PI(P}) = 0.9
ma ® m3 ® mg(Py) = 0.04 Bel(Py) = 0.04 PI(P$) = 0.0
ma ® m3 ® mq(P?) = 0.01 Bel(P?) = 0.12 PI(P}) =0.2
my @ m3 & ma(PO") =0.01  Bel(P9") =0.99  PI(P?") =0.99
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We note that the normalization constant is 0.73 and due to roundings Bel( PO""¢") and PI(PO""¢")

take the value 0.99 in stead of 1.0.

The highest belief, after combining the three rules, is assigned to the set of schemas {pig,p12}-
We note that the high fotal belief in the sets P}, P} and P?*"" is due to the fact that these sets

contain the schemas pyg and pyo. O

The combination of three rules has resulted into the support of several physical schemas with
different belief values. If the bpa’s assigned to the three knowledge rules are the real bpa values,
there is a high belief that a good physical schema is among the schemas p1o and pi2. By passing

both schemas to the optimizer, we may decide which physical schema of two is the best one.
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6 Conclusions & further research

Since the selection of efficient physical schemas is a tough process, there is a practical need for
tools that assist database administrators in this process. A significant number of research has been
reported to develop such tools. Most of the efforts implicitly apply a few heuristics to avoid the
evaluation of all schemas, while database administrators in real-life apply a rich set of heuristics
to select physical schemas. Our goal is to exploit this rich set of heuristics in tools for physical
database design. Therefore, we have analysed about 60 heuristics used by database administrators
in real-life. These heuristics contain a degree of uncertainty and ignorance. We have proposed an
approach to model explicitly these heuristics into knowledge rules by using the Dempster-Shafer
theory, which appeared to be a suitable theory for our purposes. These knowledge rules may be
loaded in a knowledge base, which, in turn, can be embedded in physical database design tools
as has been demonstrated in [Ref 6, 7]. On the basis of our approach, we have implemented a
prototype tool [Ref 6, 7] and we have compared our results with other approaches. The results

obtained by our tool are promising,



@
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