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ON THE USE OF CHARACTERISTICS IN COMPUTATIONAL
AEROACOUSTICS

Johan B.H.M. Schulten*
National Aerospace Laboratory NLR, 8300 AD Emmeloord, The Netherlands

Abstract
Although most CAA schemes for the numerical
simulation of sound propagation in flows offer
significant superiority compared to standard CFD
methods, their performance still crucially depends
on a sufficient number of grid points per wave-
length. For a given grid density only waves of a
length scale beyond a certain limit can be resolved
accurately. Even for harmonic sound the shortest
wavelengths are not always known in advance of
solving the problem and accuracy has to be estab-
lished by systematic grid refinement. For non-
smooth wave shapes most numerical schemes
suffer from spurious dispersion. This behavior
occurs even under the ideal conditions of small
amplitude, plane sound waves in a uniform back-
ground fluid. The present paper outlines an alter-
native method that is able to model the propaga-
tion under these conditions exactly, irrespective of
the number of points per wavelength or wave
shape. The method is based on the concept of
characteristics, i.e. the propagation directions of
the pressure waves. Unlike fixed grid methods,
the coordinates of the data points are found by
tracking the characteristics during the solution
process. The implementation of non-reflecting
boundary conditions is exceptionally straightfor-
ward. The method is illustrated by two- and three-
dimensional benchmark cases.

Nomenclature
c = speed of sound
i = unit vector
M = vector mean flow Mach number
M = scalar mean flow Mach number
p = pressure
r = radial coordinate
t = time
u = axial velocity
v = velocity
W = reference system velocity

x = absolute position vector
x,! = axial coordinate

" = mass density

Subscripts
0 = mean value
a = acoustic
h = hydrodynamic
r = normal to wave front
q, s = parallel to wave front

Superscript
∗ = dimensional quantity

Introduction
Traditionally, the theoretical modeling of sound
propagation is based on analytical methods. Only
in the last decade computers have become suffi-
ciently powerful to consider a fully numerical ap-
proach of real life problems. Attempts to use
standard second order accurate CFD (Computa-
tional Fluid Dynamics) numerical schemes for
sound propagation almost invariably yield disap-
pointing results. Unless a large number of grid
points (typically 50 or more) per wavelength is
adopted, the simulations suffer from severe spuri-
ous dissipation and dispersion.
This shortcoming of CFD methods promoted the
rise of Computational AeroAcoustics (CAA) in
the nineties of the last century. This discipline
studies the efficient and accurate numerical simu-
lation of sound propagation and generation in
flows.
One of the most successful CAA methods that
emerged is Tam & Webb’s DRP (Dispersion Re-
lation Preserving) scheme1. It is a high order ex-
plicit finite difference method that can be easily
applied to a variety of aeroacoustic problems. The
DRP-scheme yields accurate results for only 8
grid points per wavelength. Compared with some
50 points required for common CFD methods
this implies a reduction factor of 6 in 1D prob-
lems and a spectacular factor of more than 200 in
3D problems. Reviews on the state of the art in
CAA can be found in references2,3,4.

 
 *Research Fellow, Aeroacoustics Department P.O.Box
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Generally speaking, CAA numerical schemes are
dissipation-free, high order schemes, optimized
for minimum numerical dispersion. Although
these methods require much less points per
wavelength to achieve a certain level of accuracy
than the standard CFD methods, they still have
their limits. Sometimes the wave shapes to be
studied are not smooth and contain higher har-
monics, for which the grid density is still too
coarse.
The present paper addresses the possibilities of
using characteristics (propagation directions in
space-time) for numerical modeling of sound
wave propagation. Unlike the CAA-methods
mentioned above, the method of characteristics
does not use a fixed grid. Instead, the propagation
vector of the wave fronts is tracked in space-time
for all initial data points. This approach is similar
to the concepts of wave fronts and rays that were
developed by Huygens and Fermat5 in the 17th

century. However, in the present study we will not
need the high frequency assumption of ray acous-
tics.
The method also follows the basic ideas of Rie-
mann’s theory6 to solve the general nonlinear
problem of gas dynamics in one space dimension.
Along the characteristics the so-called Riemann
invariants, or characteristic variables, are constant.
The extension to multiple space dimensions is
non-trivial, since the characteristic variables are no
longer constant along the characteristic (hyper)
surfaces. It will be shown that their variation
readily follows from the flow equations.
After some simple examples to introduce the
method, the general formulation in two and three
dimensions will be derived. In this paper only lin-
ear problems with a uniform background flow will
be addressed. In the numerical simulation a stan-
dard 4th order Runge-Kutta scheme7 is used for
integration along the characteristic direction. An

important advantage of the present method is that
the implementation of non-reflective boundary
conditions, as well as outflow conditions is almost
trivial, also in higher dimensions. The method will
be illustrated by two- and three-dimensional
benchmark cases.

Simple 1D theory and examples
Let us consider a perturbed homentropic fluid
without mean flow in one space dimension. Ig-
noring thermal conductivity and viscosity, the
flow equations reduce to the Euler equations.
Using the mean fluid density and speed of sound
and some arbitrary length (or time step) to make
the Euler equations nondimensional, we obtain:

0p u
t x
# #+ =
# #

(1)

0u p
t x
# #+ =
# #

(2)

As can be readily verified, this set of equations has
the following analytical solution

( , ) ( , 0) ( , 0)R Lp x t p x t p x t= $ + + (3)
and

( , ) ( , 0) ( , 0)R Lu x t p x t p x t= $ $ + (4)

where pR(x,0) and pL(x,0) are the initial values of
the right running and left running pressure waves.
As first step in the method of characteristics
Eq.(1) and Eq.(2) are summed, which yields:

( ) ( )
0

p u p u
t x

# + # ++ =
# #

(5)

Similarly, the subtraction of Eq.(1) and Eq.(2)
yields:

Fig.2 Gaussian pulse t = 400, present methodFig.1 Gaussian pulse t = 400, DRP scheme
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( ) ( )
0

p u p u
t x

# $ # $$ =
# #

(6)

Now, from Eq.(5) it is obvious that the increase
of quantity (p+u) in time dt is compensated by an
equal decrease in space dx . In other words the
quantity is constant along lines dx/dt = 1, which
are called the forward characteristics because they
advance with time.
As a result, along the forward characteristics:

d 1d

d( )
0

d x
t

p u
t =

% + & =' (
' () *

(7)

i.e., quantity (p+u) propagates forward with (non-
dimensional) unit velocity. It can be shown that
this quantity is the nondimensional, linear pertur-
bation equivalent of the forward Riemann invari-
ant6:

2 2
01 1u c M u p c! !

+ + +
$ $

% &+ = + + +' () * (8)

where ,  is the ratio of specific heats of the me-
dium. Quite similarly, we have along the backward
characteristics:

d 1d

d( )
0

d x
t

p u
t =$

% $ & =' (
' () *

(9)

Let us illustrate this result by means of the first
Cat.1 benchmark problem of the first CAA
Workshop8 : the propagation of a forward propa-
gating Gaussian pulse with the exact solution:

( )2( , ) 0.5 exp (ln 2)
3

x tu x t
% &$' (= $
' () *

(10)

The problem is given as an initial value problem
at t = 0 with p(x,0) = u(x,0).  As follows from
Eq.(1) or Eq.(2), then there is only a right running
wave. In Fig.1 the result of Tam & Webb’s
scheme with unit spacing and a time step ∆t = 0.2
is shown for t = 400. The time step is scaled on
unit spacing of the data points and the speed of
sound. Therefore, ∆t is identical to the CFL num-
ber in this case. Obviously, the result is quite good
with only some weak dispersion.
The result of solving Eq.(7) for the advancing
characteristic variable, given in Fig.2, is independ-
ent of the time step and can be obtained from a
single time step of 400. Indeed, this problem is so
simple that the numerical solution by Runge-
Kutta integration of Eq.(7) seems to be pointless.
Apart from being discrete it perfectly mimics the
analytical solution given by Eqs.(3) and (4). Also,
it clearly demonstrates the difference with fixed
grid methods since the original data points are
shifted to the right over a distance of 400. As may
be expected, the result is accurate to machine pre-
cision.
As shown in Fig.3 things dramatically change for
the DRP scheme if a discontinuous waveform is
taken. It is clear that the DRP scheme is unfit to
handle the halved Gaussian pulse properly. In fact
the large content of short waves in this shape
cannot be resolved with the present grid spacing.
In contrast to this, the characteristics method
simulates the propagation of half a Gaussian pulse
equally well as the complete pulse, as demon-
strated in Fig. 4. The method does not try to ap-
proximate time or space derivatives of the wave,
but directly uses the characteristic directions to
propagate the signal, irrespective of its shape. Our
goal will be to preserve this outstanding quality of
the characteristics method in higher dimensions
and for more general flow conditions. A modeling
is sought that will automatically yield the accuracy
observed in this section, at least when the wave

Fig.3 Half a Gaussian pulse t = 400, DRP
scheme

Fig.4 Half a Gaussian pulse t = 400 , present
method
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fronts tend to become planar and the background
uniform.

Extension to multi-dimensions
In Arbitrary Lagrangian-Eulerian (ALE) formula-
tion9 the equations for small perturbations of an
inviscid compressible flow with a uniform back-
ground read as follows.

Continuity:

( ) 0
t
" "# + $ - + - =
#

M W vi i (11)

Momentum:

( ) p
t
# + $ - + - =
#
v M W v 0i (12)

Energy:

( ) 0p p
t
# + $ - + - =
#

M W vi i (13)

where W is the  reference system velocity and M
the vector background flow Mach number. The
variables are made dimensionless in the same way
as in the previous section.
Obviously, for W = 0 the Euler equations are
obtained, while for W = M the Lagrangian flow
description is recovered. It will prove useful to
make use of both flow descriptions.
Note that the presence of an energy equation im-
plies that we do no longer require a homentropic
flow. In the latter case the energy equation be-
comes identical to the continuity equation. As a
result, the system of equations will, besides
acoustic waves, also describe entropy perturba-
tions, which are convected with the mean flow.
Formally, we have as many scalar momentum
equations (12) as there are spatial dimensions.
Now consider for a moment a system of plane
waves in three dimensions. Of course, physically
this is completely equivalent to the situation of
the 1D waves in the previous section. A coordi-
nate rotation such that the x-axis becomes normal
to the wave fronts, i.e. in the direction of p- , is
sufficient to make this perfectly clear.
However, unlike the one-dimensional problem,
the flow equations Eqs.(11) through (13) for the
multi-dimensional problem admit the existence of
nontrivial zero-pressure velocity fields vh , corre-
sponding to vorticity perturbations. For a vanish-
ing pressure perturbation Eqs.(12) and (13) reduce
to

0h- =vi (14)
and

( )h
ht

#
+ $ - =

#
v

M W v 0i (15)

Clearly, any velocity field satisfying Eqs. (14) and
(15) can always be added to the complete system
given by Eqs.(11) through (13). Eq.(14) expresses
the incompressibility of these velocity fields which
are therefore also called “hydrodynamic”. The
purely convective character of this hydrodynamic
velocity is stated by Eq.(15). In general the am-
plitude of the hydrodynamic field has to be set by
the boundary (inflow) conditions or the initial
values.
Usually, we have a non-zero pressure gradient and
then we can introduce a local, coordinate system
(r,q,s):

,

0, 0, 0

r

r q r s s q

p
p
-=
-
= = =

i

i i i i i ii i i
(16)

Now let us denote the “acoustic velocity” coupled
with pressure perturbation by va . It can be readily
shown that va  must be irrotational.
Substitution of v = va + vh in the momentum
equation Eq. (12) reveals that va = va ir . Then, in
the Lagrangian description (W = M), normal to
the wave front the momentum equation Eq.(12)
reduces to the scalar equation:

0av p
t r
# #+ =
# #

(17)

The divergence of the acoustic velocity becomes:

a
a a r

v v
r
#- = + -
#

v ii i (18)

Now, Eq.(13) + Eq.(17) yields:

( ) ( )a a
a r

p v p v
v

t r
# + # ++ = $ -
# #

ii (19)

 and similarly Eq.(13) − Eq.(17) yields:

( ) ( )a a
a r

p v p v
v

t r
# $ # $$ = $ -
# #

ii (20)

As a result we have along the advancing charac-
teristic:

d
d

d( )
d

r

a
a r

t

p v
v

t =

% + & = $ -' (
' () * x M+i

ii (21)

and along the receding characteristic:
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d
d

d( )
d

r

a
a r

t

p v
v

t = $

% $ & = $ -' (
' () * x M i

ii (22)

Along the convective characteristic (dx/dt = M)
Eq.(13) − Eq.(11) yields:

d
d

d( )
0

d
t

p
t
"

=

% $ & =' (
' () * x M

(23)

and Eq. (15) :

d
d

d
d

h

t
t =

% &
=' (

' () * x M

v
0 (24)

Note that the characteristic variables in Eqs. (23)
and (24) are invariants (also in multi-dimensions!).
Just like the original Eqs.(11) through (13) for the
five primitive variables, Eqs.(21) through (24)
form a system of six scalar equations for six char-
acteristic variables. However, the three compo-
nents of vh are not mutually independent because
they have always to satisfy the incompressibility
condition of Eq.(14).
Figure 5 gives a picture of the three types of char-
acteristics in an Eulerian r,t-plane. Note that the
skewness of the system depends on the r-
component of the background flow velocity vec-
tor. In the Lagrangian frame the acoustic charac-
teristics become symmetric about the convective
characteristics which then are vertical. Note that
primitive variables can only be evaluated at the
intersection points of three characteristics. Hence,
time step and spatial step (in r) are necessarily
equal. Since the background flow vector in general
does not point in the direction normal to the
wave fronts this triple intersection only occurs in
the Lagrangian frame.
In the degenerate case of a vanishing pressure
field it is no longer possible to determine a normal

to the wave fronts and Eqs.(21) and (22) become
irrelevant. Inspection of the remaining Eqs.(23)
and Eq.(24) shows that in that case the solution of
these equations is trivial and can be performed in
any convenient coordinate system.
In general the right hand sides of Eqs.(21) and
(22) have to be computed numerically. However
for cylindrically (ndim = 2) and spherically (ndim =
3) symmetric waves they can be evaluated analyti-
cally and then Eqs.(21) and (22) reduce to :

dimd 1d

d( )
(1 )

d Mt

p u un
t Mt# #=

% + & = $' ( $' () * +
(25)

and

dimd 1d

d( )
(1 )

d Mt

p u un
t Mt# #= $

% $ & = $' ( $' () *
(26)

where ! is a coordinate axis through the center.
The radius of curvature of the wave fronts is
given by Mt# $ .

Non-reflecting boundary conditions
Boundary conditions play a crucial role in CAA
and often are more difficult to model than the
sound dynamics inside the domain. A compre-
hensive review on boundary conditions in CAA
has been given by Tam10.
In the present method boundary conditions at
domain boundaries are very easily imposed.
Acoustically non-reflective boundaries are ob-
tained by just requiring the incoming characteris-
tic variable to be zero.
Note that for acoustic waves incident from out-
side the domain the wave front orientation is im-
plied in the components of the acoustic velocity
va, which is also to be prescribed at the exposed
boundaries.
As shown by Eqs.(23) and (24), inflow conditions
are given by simply prescribing p - " and vh at the
inflow boundary. Outflow conditions are auto-
matically satisfied by the solution.

Numerical implementation
Initial conditions
In the present method a problem is basically
solved as the evolution in time from a given
situation to the situation some time later. If a
harmonic problem is to be solved, it has to be
treated as a transient problem in which the situa-
tion changes from some trivial steady situation to
a fully periodic situation. The ‘situation’ is given as
a set of data in a given domain. For the present
method the initial data have to be given in the

r

t

Fig.5 Characteristics in Eulerian frame;
     advancing,      receding,     convective
(projected)
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form of the characteristic variables, see Eqs.(21)
through (24). For programming it is convenient if
the data points are positioned along isobars (s,q)
and normal directions (r). Figure 6 gives an exam-
ple of a (part of a) circular system that could be
the result of a cylindrical or spherical expansion.
In any case the unit normal vector on the wave
fronts ir has to be available or computable from
the data.
It is not necessary to fill the whole domain with
data points at the starting time. This is because
the method constructs its own coordinates during
the time stepping procedure to follow. In a pure
initial value problem the data are given in a certain
subdomain (for instance a central pulse) from
which the full domain is gradually filled as time
proceeds.
A slightly different type of problem is to be
solved when the medium within the domain is at
rest in the beginning and perturbations enter the
domain from outside. Then, there are no data
points at all inside the domain at the start but the
domain is gradually filled from the exposed sides.
Again, it is convenient if the data points of the
incident field are wave front oriented.

Time stepping
Before a time step can actually be taken, the pos-
sible change of the wave front orientation has to
be evaluated and the unit propagation vector ir
has to be updated. To this end, a second order
accurate central difference pressure gradient is
taken for all data points.
Next, the divergence of the updated vector field ir
has to be established in all data points. Instead of
trying to compute the divergence from its defini-
tion by numerical differentiation we will use
Gauss’ divergence theorem:

d d
V S

v s- =. .A n Ai i! (27)

Here A is a vector field, V a volume, S the en-
closing surface and n the outward unit normal
vector. Applying the 2D version of Eq. (27) to
vector field ir and a small volume enclosing the
point (i,j) considered we obtain:

i 1 i-1dr
V

v s s+- = / $/. ii (28)

where ∆s is the arc length between characteristics
j+1 and j-1. Since the volume is approximated by
( )1 1 ii is s R+ $/ $ / , with Ri the local radius of
curvature of the isobar, the average value of the
divergence of ir is given by

1r
iR- 0ii (29)

which is exact for cylindrically symmetric cases as
shown by the result found earlier in Eqs.(25) and
(26). However, in general the radius of curvature
of the isobars is not known in advance and has to
be found numerically. Therefore in the imple-
mentation of the method Ri is computed from the
intersection of neighboring vectors ir  .
The actual time integration of Eqs.(21) through
(24) is performed by the classical fourth order
Runge-Kutta method7 . As shown in Fig.5, the
initial spacing in r  determines the time step,
which necessarily results in a unit CFL number in
r-direction. For convenience only uniform spacing
of isobars is considered in this paper.

Renumbering of characteristics
From Fig.5 it is quite clear that after each time
step the advancing characteristic RR (Right run-
ning) has moved a corresponding step forward in
r and the receding characteristic LR (Left running)
a step backward. To reallocate the characteristic
variables to the same spatial coordinates, a re-
numbering is necessary after each time step as
follows:

1 1

1

1

,i ii i

i i

i i

RR RR LR LR
x x
y y

$ +

$

$

= =
=
=

(30)

Note that for every characteristic direction j two
data points travel out of the domain in each time
step. This is essentially the radiation from the
domain into the outside world. To keep the num-
ber of data points constant, at the same time a
new advancing characteristic RRimin is added at the
lower r-boundary of the domain and a receding
characteristic LRimax at the upper r-boundary. The

i+1i, ji -1

r

j-1

j+1
s

Fig.6 Isobars ( −−−−−−−−−−−− ) and projected  characteristics
( −−−−−−−−−−−− ) for curvilinear wave fronts
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corresponding values of the characteristic vari-
ables follow from the boundary conditions.
Finally, the transformation to fixed frame of ref-
erence is established by shifting the data points
over the distance covered by convection. Similarly
to the above, new data points are introduced at
the upstream boundary whenever data points are
convected out of the domain at the downstream
boundary.

Quasi-1D problems in 2D and 3D
Vibrating sphere
As an example of the potential of the present
method we give here the solution of the second
Cat.1 benchmark problem of the first CAA
Workshop8. This is a problem in which the sound
field of a vibrating sphere is simulated. The radius
of the sphere is 5 units and the vibration is
switched on at t = 0. For comparison with the
state of the art in CAA, Fig.7 gives the results of
the Tam & Webb Dispersion Relation Preserving
(DRP) scheme for t = 400. The frequency has
been chosen such that there are 8 grid points per
wavelength. Obviously, the results are quite good
at some wavelengths behind the advancing front.

However, in the vicinity of the outer front dis-
crepancies appear. In Fig.8 the results of the pres-
ent characteristics method are given. Clearly, there
is no visible difference with the exact solution.
As shown in Fig.9, the results of the DRP scheme
degrade considerably when the frequency is in-
creased such that there are 6 points per wave-
length left. In contrast to this, the results of the
present method shown in Fig.10 still coincide per-
fectly with the exact solution. Indeed, the method
is insensitive to the number of points per wave-
length.

Gaussian pulse in 2D
The Category 3 benchmark problem of the first
CAA workshop8 has become a very popular test
case. Basically it is the two-dimensional, symmet-
ric variant of the Gaussian pulse in one dimen-
sion, discussed earlier. Besides a Gaussian pulse in
the pressure, the full benchmark problem also
contains perturbations in density and velocity cor-
responding to a vortex. The analytical solution
can be found in references 1 or 8. Here we will
use only the pressure pulse to check the present
method. One of the interesting aspects of this
initial value problem is that both inward and out-

Fig.7 Spherical waves at t = 400, ωωωω =ππππ/4, Tam &
Webb DRP scheme

Fig.8 Spherical waves at t = 400, ωωωω =ππππ/4, present
method

Fig. 10 Spherical waves at t = 400, ωωωω =ππππ/3, present
method

Fig. 9 Spherical waves at t = 400, ωωωω =ππππ/3, Tam &
Webb DRP scheme



-10-
NLR-TP-2002-223

ward running waves occur. Because u = 0 at t = 0,
they start with equal strength, see Eqs.(25) and
(26).
Figure 11 shows the results of the method after
30 time units from the start in the center. Due to
a mean flow Mach number of 0.5 the pulse is
convected downstream whilst expanding. Again,
there is no visible difference between the numeri-
cal and the exact results. It must be noted that the
DRP-scheme is also quite capable to produce very
good results1,8 for this smooth problem. However,
the present method typically is a factor of 30
faster than the DRP-method for this problem.
There are two obvious reasons for this. First, the
unit time step is much larger than the maximum
time step for stability in the DRP-scheme (∆t ≈
0.2). Secondly, the spatial stencil used to compute
the pressure gradient is much more compact (only
four neighboring points) than in the DRP-
scheme.

Gaussian pulse in 3D
Another test case is the expansion of a spherical
Gaussian pulse. The general exact solution for any
spherically symmetric pressure pulse is given by

[ ]

[ ]

(1 )
( , ) (1 ) , 0

2( )
(1 )

(1 ) , 0
2( )

M t
p t p M t

Mt
M t

p M t
Mt

## #
#

# #
#

$ += $ +
$

+ $+ + $
$

(31)

Starting with the same pulse as in the 2D example,
we solve Eqs.(25) and (26) numerically .The solu-
tion for M=0.5 after 30 time units is presented in
Fig.12. Compared to the cylindrical pulse in Fig.11
the amplitude has decreased much faster and also
the inner region has virtually returned to undis-
turbed conditions.

Triangular pulse in 3D
A more challenging problem is the expansion in
three dimensions of a triangular pressure pulse.
Let the pressure at t = 0 be given by:

1 /10, 10

0, 10

p

p

# #

#

= $ 1

= >
(32)

Then the exact solution is readily obtained from
Eq.(31). As shown in Fig.13, the method of char-
acteristics produces a result of similar quality as
for the smooth pulse in Fig.12. Note that the
original discontinuity in the pressure derivative in
x = 0 completely disappears during the expansion.

Some propagation problems in 2D
All problems in the previous section were sym-
metric and could be solved from Eqs.(25) and
(26). These equations have a simple right hand
side, which can be readily computed. Usually,
problems do not exhibit symmetry and we will
have to solve the more general Eqs.(21)
through.(24). As discussed in a previous section
the right hand side in Eqs. (21) and (22) involves
serious computation.

ξ

p

Fig. 11 Cylindrical Gaussian pulse t = 30, M =  0.5

!

p

Fig. 12 Spherical Gaussian pulse, t = 30, M = 0.5
!

p

Fig.13 Spherical wave from triangular pulse, t = 30,
M = 0.5
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Oblique plane waves in 2D
A well-known situation is a domain in which we
have to compute the sound field for given bound-
ary conditions. One of the simplest problems pos-
sible is a rectangular domain exposed to a system
of plane waves propagating through the domain.
The present method is tested on this problem and
the results are shown in Fig.14. A system of plane
waves propagating at an angle of 30 degrees with
the horizontal axis enters the lower left corner of
the domain at t = 0. As shown in Fig.14, at t = 40
the left and lower boundaries are fully exposed to
the wave system. At the right and upper faces
nonreflecting boundary conditions are imposed.
Figure 15 presents the pressure along the propa-
gation direction passing through the origin. It is
clear that there is a perfect agreement with the
exact solution. This problem may look an over-
simplified test case, but most numerical schemes
have great difficulty to compute this transient

problem for a comparable grid density.

Cylindrical Gaussian pulse
A similar test case can be constructed for a cylin-
drical Gaussian pulse, as discussed before, but
now propagating through a rectangular domain
whilst expanding. As shown in Fig.16, we con-
sider a domain with a lower left corner (50,50).
The pulse has its center at the origin outside the
domain and the time starts at t = 0. The exact
characteristic variables along the exposed faces are
computed every time level (dt = 1). The field
propagates freely into the domain and computes
its own propagation vector at every time level.
From Figs.16 (t = 100) and 17 (t = 130) it appears
that the pulse indeed expands without any reflec-
tion from the boundaries. Also the circular sym-
metry is impeccably maintained.
The pressure field along the diagonal given in
Fig.18 confirms the very good agreement with the
exact solution.

r

Fig. 15 Pressure along normal to oblique wave fronts
in Fig.12, four points per wavelength

Fig. 16 Gaussian pulse in 2D, t = 100, M = 0, incident
field prescribed at left and lower boundaries

Fig.17 Gaussian pulse in 2D, t = 130, M = 0, incident
field prescribed at left and lower boundaries

Fig.14 Oblique plane wave, incident field pre-
scribed at left and lower boundaries, t =40, M = 0
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Concluding remarks
In this paper the method of characteristics is used
to compute sound propagation and radiation nu-
merically. Unlike traditional CAA schemes the
present method is not based on a fixed grid. In-
stead the solution is marched in time by following
the propagation vectors, i.e. the characteristics. In
this respect the method has some similarity with
classical ray acoustics. However, the present
method is more general and does not require the
high frequency assumption.
As shown by two- and three-dimensional bench-
mark examples, the total absence of numerical
dispersion and dissipation leads to very accurate
numerical results. The interesting point is that this
property also holds for waves of highly irregular
shape, including discontinuities.
Exact non-reflecting boundary conditions are eas-
ily implemented in a most natural way. This fea-
ture alone would already justify further research
on the application of the method in more com-
plex problems.
Computationally, the method is very efficient:
typically a factor of 30 faster than the DRP-
method in the 2D Gaussian pulse benchmark8.

At the same time it is fair to say that still consider-
able difficulties have to be surmounted before the
method will be applicable to more complex
problems. These problems may concern a non-
uniform background flow, reflection on hard ob-
stacles, diffraction effects and nonlinearity.
Nevertheless it may be concluded that the method
of characteristics has properties that make them
very attractive for application in computational
aeroacoustics. Its most promising features are the
insensitivity to the wave shape, the absence of
dissipation and dispersion errors, and the imple-
mentation of non-reflecting boundary conditions.
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Fig. 18 Pressure along the diagonal in Figs.14 and 15


