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Problem area
There is a need for new concepts
and technologies that reduce the
noise levels of future aircraft. An
important noise source on mod-
ern aircraft is the fan and turbine
noise radiating from the engine ex-
haust. The intensity of this sound
that is perceived by an observer on
the ground depends on the way the
sound propagates through the non-
uniform flow surrounding the en-
gine. For example, the sound may
be deflected by the shear layer be-
tween the exhaust jet and the outer
flow. Thus, the design of low-noise
aircraft can be supported by com-
putational methods to analyze the
sound propagation through non-
uniform flows. Such computations
can be based on the linearized Euler
equations.

Description of work
In this report, the linearized Euler
equations are solved to determine
the radiation of sound from cylin-
drical ducts carrying flow. These
test cases form idealizations of the
radiation of sound from engine ex-
haust. For these test cases, analyt-
ical solutions are available, so that
the accuracy of the computational
method can be verified. The lin-
earized Euler equations are solved
in the time domain using a high-
order finitie-volume method. Par-
ticular attention is paid to possible
instabilities of the computations
along the vortex sheet between the
exhaust jet and the outer flow.

Results and conclusions
Numerical solutions of the sound
propagation from cylindrical ducts
are presented for three flow con-
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ditions representative of different
engine conditions during take-off
and landing of aircraft (approach,
cutback, and sideline). The sound
pressure levels and the directivities
of the sound in the far field com-
pare well to the analytical solutions.
Stability issues along the vortex
sheet are successfully resolved by
replacing the vortex sheet with a

gradually spreading artificial shear
layer.

Applicability
The computational method for solv-
ing the linearized Euler equations
can be applied to determine the
far-field directivity and intensity
of tonal noise radiating from the
exhaust of turbofan engines.
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Summary

To calculate sound radiation from the exhaust of ducts carrying flow, the linearized Euler equa-

tions are solved in the time domain with a high-order finite-volume method. The numerical so-

lutions are compared to the analytical solutions for a hollow duct and for an annular duct with

an infinite centre body. Particular attention is paid to unstable modes occurring along the vortex

sheet between the uniform jet and outside flows. The computations are stabilized by replacing

the vortex sheet with a gradually spreading artificial shear layer.
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1 Introduction

To determine the far-field directivity and intensity of engine fan and turbine noise radiating from

exhaust nozzles, the propagation of the sound through the non-uniform flow surrounding the en-

gine must be considered. In particular, the sound passes through the shear layer between the ex-

haust jet and the outer flow. Sound propagation in non-uniform flows can be computed using the

linearized Euler equations. In this paper, the linearized Euler equations are solved for the radia-

tion of sound from cylindrical ducts using a high-order finite-volume method (see Kok (Ref. 1)).

The radiation of sound from a cylindrical duct may serve as a canonical test case for the verifi-

cation of numerical methods for the radiation of fan and turbine noise from exhaust nozzles. In

this idealization, the mean flow field consists of two uniform flows: the jet emanating from the

duct and the outer flow. The two uniform flows are separated by a vortex sheet. For the case of a

semi-infinite hollow duct with subsonic jet, an analytical solution was derived by Munt (Ref. 2).

This solution was used by, for example, Zhang et al. (Ref. 3) to verify their numerical method

for the linearized Euler equations. Recently, extensions of the Munt solution were presented for

an annular duct with an infinite centre body by Gabard et al. (Ref. 4) (acoustically hard centre

body) and by Demir & Rienstra (Ref. 5) (lined centre body). Here, only the hard centre body is

considered.

The linearized Euler equations are solved in the time domain for both the hollow and the annu-

lar duct using a high-order finite-volume method and the results are compared to the analytical

solutions. The finite-volume method is based on the conservative form of the equations, which

are discretized in space on multi-block structured grids. The method is fourth-order accurate on

non-uniform, curvilinear grids, has low numerical dispersion, and has no numerical dissipation

unless explicitly added. On a uniform grid, it is essentially equivalent to the DRP scheme of Tam

& Webb (Ref. 6). The equations are integrated in time by the four-stage Runge–Kutta scheme.

To compute the far-field sound from the near-field solution, Kirchhoff surface integration is used.

The linearized Euler equations do not only support acoustic waves, but also vorticity and entropy

waves. This has as advantage that at sharp trailing edges (such as the trailing edges of the ducts)

the physics can be captured correctly. At a sharp trailing edge, the fluid velocity is required to

be zero (Kutta condition). An acoustic wave passing the edge induces an oscillatory non-zero

velocity at the edge. To maintain the Kutta condition, a vorticity wave is generated at the trailing

edge, counterbalancing the non-zero velocity due to the acoustic wave. Typically, this will lead

to a vortex street downstream of the edge and this vortex street, in its turn, induces sound through

pressure oscillations on the duct walls.
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A disadvantage of including vorticity and entropy waves is the intrinsic instability of the vortex

sheet, which forms a critical problem for numerical computations in the time domain. For com-

putations on a sufficiently fine grid, an unstable mode is produced along the vortex sheet that

grows both in space and time. As the unstable mode is not an acoustic mode, it is still possible to

compute the far-field sound after a limited time interval. In practice, however, the computation

may break down before the acoustic part of the solution has become sufficiently periodic.

To remove the unstable mode, one could consider modifying or simplifying the linearized Euler

equations. For example, the acoustic perturbation equations could be solved (Ref. 7), excluding

non-acoustic perturbations. In that case, however, the Kutta condition is not enforced at the trail-

ing edge and therefore the sound induced by vortex shedding will be neglected. Alternatively,

specific terms could be dropped from the equations (in particular, the gradient of the mean flow

normal to the vortex sheet (Ref. 3)), but this does not seem to be a generally applicable approach.

In this paper, the vortex sheet is replaced by a gradually spreading artificial shear layer. This

shear layer is obtained by solving the non-linear Euler equations with a second-order finite-

volume method including fourth-order artificial diffusion. As shown by Michalke (Refs. 8, 9),

disturbances in an inviscid shear layer will be stable provided the Strouhal number (based on the

momentum thickness and the jet velocity) is large enough.

2 Model equations

To determine the near-field sound propagation, the linearized Euler equations (LEE) are solved

in the time domain. In conservative form, these equations are given by

∂ρ′

∂t
+

∂

∂xj

(
ujρ

′ + ρu′j
)

= 0, (1a)

∂(ρui)′

∂t
+

∂

∂xj

(
uj(ρui)′ + (ρui)u′j

)
+

∂p′

∂xi
= 0, (1b)

∂(ρE)′

∂t
+

∂

∂xj

(
uj(ρH)′ + (ρH)u′j

)
= 0, (1c)

with ρ the density, u the velocity vector, E the total energy per unit mass, p the pressure, and

H = E+p/ρ the total enthalpy per unit mass. Variables with prime represent the time-dependent

perturbations; variables without prime represent the mean flow field (obtained by solving the

full non-linear Euler equations or Reynolds-averaged Navier–Stokes equations). Assuming a

calorically perfect gas, the pressure is given by

p = (γ − 1) (ρE − 1
2ρuiui), (2)
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with γ = cp/cv the ratio of specific heats. The perturbations of conservative and primitive vari-

ables are related to each other by the following (linearized) equations:

(ρu)′ = ρu′ + uρ′, (3a)

(ρE)′ = ρE′ + Eρ′, (3b)

p′ = (γ − 1)
(
(ρE)′ − ui(ρui)′ + 1

2(uiui)ρ′
)
, (3c)

(ρH)′ = (ρE)′ + p′. (3d)

The test cases considered here consist of sound emanating from the exhausts of cylindrical ducts.

The ducts contain uniform mean flow fields leading to jets downstream of the exhaust. The acous-

tic field prescribed inside the duct consists of so-called duct modes, which are eigensolutions of

the linearized Euler equations, containing only acoustic waves (no vorticity or entropy waves).

Consider an annular cylindrical duct with outer radius R1 and inner radius R2 = hR1 (h < 1). A

single duct mode is given by

ρ′

ρ
=

p′

ρc2
= Re(Fm,n(t, x, r, φ)), (4a)

Fm,n(t, x, r, φ) = Am,nUm,n(s)ei(ωt−mφ−km,nx), (4b)

using cylindrical coordinates (x, r, φ), with c the speed of sound, Am,n the amplitude, ω the

angular frequency, km,n the axial wave number, and Um,n a radial eigenfunction depending on

s = r/R1. The mode, labelled as (m, n), is characterized by the azimuthal order m ∈ Z and the

radial order n ∈ N+. The mode (0, 1) is a plane wave. The velocity components in cylindrical

coordinates are given by

u′x
c

= Re
(

km,n

k −Mkm,n
Fm,n

)
, (5a)

u′r
c

= Re
(

i
k −Mkm,n

∂Fm,n

∂r

)
, (5b)

u′φ
c

= Re
(

m

k −Mkm,n

1
r
Fm,n

)
, (5c)

with wave number k = ω/c and Mach number M = ux/c. The radial functions Um,n are eigen-

functions of the Bessel equation of order m with appropriate boundary conditions (hard walls,

i.e., u′r = 0 at s = h and s = 1) and are given by

Um,n(s) = A(Jm(εm,ns)− J ′
m(εm,n)Ym(εm,ns)/Y ′

m(εm,n)), (6)

with Jm and Ym the Bessel functions of the first and second kind and with A > 0 such that∫ 1
h sUm,n(s)2ds = 1. The eigenvalues εm,n satisfy

Y ′
m(εm,n)J ′

m(εm,nh)− J ′
m(εm,n)Y ′

m(εm,nh) = 0 (7)

Unclassified 11



Unclassified

NLR-TP-2007-514

(which follows from the boundary conditions). Only the positive eigenvalues need to be consid-

ered and are ordered such that they are increasing with n. The axial wave numbers are given by

the equation

k2
m,n − (k −Mkm,n)2 + α2

m,n = 0, (8)

with αm,n = εm,n/R1 and with the solutions

k±m,n =
−Mk ± ξm,n

β2
(9)

where β2 = 1−M2 and

ξm,n =


√

k2 − β2α2
m,n , |βαm,n| ≤ |k|

−i
√

β2α2
m,n − k2 , |βαm,n| ≥ |k|

. (10)

For km,n = k+
m,n the mode travels downstream (assuming ux > 0), whereas for km,n = k−m,n

the mode travels upstream. The mode is called cut-on if the axial wave number km,n is real, i.e.,

if |βαm,n| ≤ |k|, and it is called cut-off otherwise. Finally, the acoustic intensity or energy flux

in axial direction I is defined as

I

ρc3
=

(ρux)′H ′

ρc3
=

(
u′x
c

+ M
ρ′

ρ

) (
ρ′

ρ
+ M

u′x
c

)
. (11)

Averaged over one time period and over the duct cross section, the intensity of one duct mode

travelling downstream is given by

〈I〉
ρc3

=
A2

m,n

1− h2

kξm,n

(k −Mkm,n)2
. (12)

If the intensity is given, this defines the amplitude Am,n of the mode.

The linearized Euler equations are solved to determine the acoustic field in the region where the

mean flow is not uniform. To determine the far-field sound from this near-field solution, a Kirch-

hoff surface integral is employed, formulated in the Fourier domain. Consider an integration sur-

face S enclosing the duct and the jet. Outside this surface the mean flow field is uniform. The

Kirchhoff formulation of Farassat(Ref. 10) gives the solution of the wave equation in an observer

point x outside a moving, closed surface S, given the solution on the surface. Here, however,

the solution of the wave equation in a uniform flow is required, while the surface S is stationary.

This solution is obtained by letting the surface and the observer in Farassat’s formulation move

with a constant velocity equal but opposite to the velocity u of the uniform flow. After Fourier

transformation in time, one then finds the following integral formulation. Given the Fourier
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transform of the pressure perturbation p̂ and its gradient ∇p̂ on the surface S (obtained from

the LEE solution), the Fourier transform of the pressure perturbation field outside S at angular

frequency ω is given by

p̂(x, ω) =
∫

y∈S

1
R

(
(MnM − n) · ∇p̂ + ik

(
Mn +

rn

R

)
p̂ + β2 rn

R2
p̂
)

e−ikr∗dS, (13)

with n the outward unit normal on S, k = ω/c the wave number, M = u/c the Mach vector,

Mn = M · n, β2 = 1 − M2, r = x − y, r = ‖r‖, rn = r · n, R =
√

(M · r)2 + β2r2, and

r∗ = (R−M · r)/β2.

Given the pressure perturbation in the far field, the (overall) sound pressure level is defined by

SPL(x) = 20 log
(
‖p′(x)‖

pref

)
, (14)

with ‖p′‖ the RMS value of p′ in time and with pref = 2 · 10−5 Pa.

3 Numerical method

The conservative linearized Euler equations are discretized on multi-block structured grids us-

ing a cell-centred, finite-volume method. The method is fourth-order accurate on non-uniform,

curvilinear grids and has low numerical dispersion. The fourth-order accuracy has been obtained

by extending the approach of Verstappen & Veldman (Ref. 11), which uses Richardson extrap-

olation, from Cartesian grids to curvilinear grids. The low dispersion has been obtained by ex-

tending the DRP scheme of Tam & Webb (Ref. 6) to finite-volume methods. A small amount of

sixth-order numerical diffusion is added to ensure stability. The equations are integrated in time

with the standard four-stage Runge–Kutta scheme. The method is summarized here; details of its

derivation can be found in Kok (Ref. 1).

For each cell centre, consider two control volumes: the control volume Ωh consisting of one grid

cell (with mesh size h in the computational domain) and the control volume Ω3h consisting of

three grid cells in each direction (with mesh size 3h in the computational domain), as illustrated

in figure 1 in 2D. For both control volumes, the same second-order finite-volume scheme is ap-

plied. Combining the schemes with Richardson extrapolation in order to cancel the leading-order

error results in a fourth-order accurate finite-volume scheme, given by

dUi,j,k

dt
+

Bi,j,k

Vi,j,k
= 0, (15)
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ii−1 i+1

j

j+1

j−1

Ω i,j

Ω i,j

h

3h

Fig. 1 Control volumes Ωh
i,j and Ω3h

i,j around cell centre (i, j) in 2D.

with U the vector of dependent variables, B the flux balance, V the grid-cell volume, and (i, j, k)

the grid-cell indices. The high-order flux balance and cell volume are given by

Bi,j,k =
9
8
Bh

i,j,k −
1

8 · 3d
B3h

i,j,k, (16a)

Vi,j,k =
9
8
V h

i,j,k −
1

8 · 3d
V 3h

i,j,k, (16b)

with d the spatial dimension and with superscripts h and 3h indicating the respective control vol-

umes. The balance Bh
i,j,k involves, for example, the flux F h

i+1/2,j,k between control volumes

Ωh
i,j,k and Ωh

i+1,j,k, whereas the balance B3h
i,j,k involves the flux F 3h

i+3/2,j,k between control vol-

umes Ω3h
i,j,k and Ω3h

i+3,j,k. In the basic fourth-order scheme, these fluxes are computed by averag-

ing the dependent variables from the appropriate cell centres. A fourth-order scheme with low

dispersion is obtained by computing the fluxes from the following extended averages:

Uh
i+1/2,j,k =

1− α

2
(Ui,j,k + Ui+1,j,k) +

α

2
(Ui−1,j,k + Ui+2,j,k) , (17a)

U3h
i+3/2,j,k =

1− β

2
(Ui,j,k + Ui+3,j,k) +

β

2
(Ui+1,j,k + Ui+2,j,k) . (17b)

(The basic fourth-order scheme is recovered for α = β = 0.) Fourth-order accuracy requires that

α = −1
9β. (18)

In order to minimize the dispersion of the scheme, the coefficient β is chosen such that the scheme

is equivalent to the finite-difference DRP scheme of Tam & Webb on a uniform, Cartesian grid.

This is the case if

β = −2.00047085298. (19)
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The discretization is based on the full 3D equations. For the test cases considered here, the ge-

ometry and the mean flow field are axisymmetric and the sound field is periodic in the azimuthal

direction if one duct mode is considered. Thus, essentially a 2D problem can be solved per duct

mode. Zhang et al. (Ref. 3) derive a particular 2D form (or 2.5D as they call it) of the linearized

Euler equations for this situation in cylindrical coordinates, using the known frequency and az-

imuthal order of the considered duct mode. These equations, however, are not in conservative

form and are therefore not suitable for a finite-volume method. Nevertheless, it is not necessary

to solve the full 3D problem. Consider an axisymmetric grid. From this grid, only two layers

of grid cells in the azimuthal direction are used (forming a segment of typically 0.2◦). Together

with the azimuthal order, the solution in these two layers is sufficient to determine the depen-

dence of the solution on the azimuth. This allows one to set the solution in ghost cells outside the

considered segment. Finally, these ghost-cell values are used in the discretized equations defined

for the two grid-cell layers.

At the upstream boundary inside the duct, an incident duct mode travelling downstream is given

as boundary condition. Reflections of waves leaving the domain at this boundary may spoil the

solution. In order to reduce these reflections, a buffer zone is defined adjacent to the boundary

(see, e.g., Richards et al. (Ref. 12)). In this zone, a forcing function is added to the linearized

Euler equations that forces the solution towards the incident duct mode. The forcing function

(added to the left-hand side of equation (15)) is given by

σ(d)
τ

(Ui,j,k − Up), (20)

with Up the prescribed duct mode, τ an appropriate time scale taken as τ = lb/c, and lb the width

of the buffer zone. The damping coefficient is defined as a function of the distance d from the

inner (or down-stream) boundary of the buffer zone as follows:

σ(d) = σ1

(
min

{
d

lb
, 1

})2

, (21)

with the damping going smoothly to zero as the inner boundary of the buffer zone is approached.

For all presented computations, a coefficient σ1 = 10 has been used.

At other inflow and outflow boundaries, boundary conditions based on one-dimensional charac-

teristic theory are applied. As these boundary conditions are not perfectly non-reflecting, buffer

zones are also placed adjacent to these boundaries. The same forcing function as above is used,

but with Up ≡ 0.

The solid walls are considered as acoustically hard. Thus, a slip boundary conditions is applied

(normal velocity component equal to zero).
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The equations are integrated in time until a time-periodic solution is reached, where the time

period is determined by the frequency of the incident duct mode. The computations are started

from an acoustic field identical to zero. Thus, initially there is a discontinuity at the upstream

boundary inside the duct between the incident duct mode and the zero acoustic field. This dis-

continuity gives rise to spurious waves of different frequencies and wave numbers. These spuri-

ous waves are damped by the buffer zones. For the computations for the duct mode (0, 1) (plane

wave), these spurious waves are the most pronounced. To improve the convergence towards the

time-periodic solution for this mode, the acoustic field after every time period is averaged with

the field from one time period earlier. This will damp all waves with frequencies that are not

multiples of the frequency of the incident mode.

4 Annular and hollow duct

Two types of semi-infinite cylindrical ducts are considered: a hollow, circular duct (Fig. 2) and

an annular duct with an infinite centre body (Fig. 3), both with an outer radius R1 = 1.212 m

and with a radius R2 = 0.947 m for the centre body. The free-stream and duct flows are both

uniform, with the duct flow continuing downstream from the duct exits as uniform jet. A vortex

sheet separates the free-stream and jet flows.

1

1

2

R

M

M

Fig. 2 Hollow duct

2M
1R

1M

R2

Fig. 3 Annular duct

Two flow conditions are defined, considered representative of a bypass duct at cutback and side-

line engine conditions. These conditions are given in table 1, together with the frequency used

for the incident duct modes (fan blade passing frequency). Incident duct modes are prescribed

with different azimuthal orders (m) and the first radial order (n = 1). The amplitude of the duct

modes is such that the intensity 〈I〉 = 1 W/m2.

4.1 Computational set-up
Grids should be defined that are fine enough to avoid excessive dispersion and dissipation of the

acoustic waves. The high-order finite-volume method requires at least eight grid cells per wave
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Table 1 Flow conditions and blade passing frequency (BPF) for different engine conditions

(Mach number, total pressure, and total temperature for free-stream (1) and duct (2)

flows)
Cutback Sideline

M1 0.269 0.265

Ttot,1 (K) 292.17 292.04

ptot,1 (Pa) 106551 106394

M2 0.737 0.861

Ttot,2 (K) 336.68 348.56

ptot,2 (Pa) 145370 164385

Fan BPF (Hz) 1430 1580

Fan kR1 31.17 34.45

length (similar to the DRP scheme). Three levels of grid resolution are considered with at least

the medium level satisfying this requirement. The fine level is used to check whether the numer-

ical solutions are grid converged. The medium and coarse levels are obtained from the fine level

by coarsening with a factor 2 and 4 in each computational direction.

For both ducts, 2-block grids are used with one block inside the duct and jet and one block out-

side. See figure 4 for an impression. For the annular duct, the block inside the duct and jet has

320 × 32 cells of which 128 × 32 cells inside the duct. The block outside the duct has 384 × 96

cells. The grid is uniform for x ∈ [−1.6 m, 3.2 m] and r ∈ [0.947 m, 1.477 m], with a mesh size

∆x = 0.0125 m. Outside the uniform region, the grid is stretched to the outer boundary at 10R1

from the duct exit.

For the hollow duct, the block inside the duct and jet contains more grid cells: 352× 64 of which

96 × 64 inside the duct. The block outside the duct has 416 × 96 cells. The grid is uniform in a

larger region then for the annular duct, with x ∈ [−1.818 m, 3.636 m] and r ∈ [0.0 m, 1.818 m]

and with a mesh size ∆x = 0.0189 m. The same outer boundary is used as for the annular duct.

Per time period, at least 64 time steps are taken on the fine grid level, with a maximum CFL

number equal to 0.53 (CFL = (ux + c)∆t/∆x). On the medium and coarse levels, the same

CFL numbers are used. For the hollow duct, more than 64 time steps are needed for the incident

duct modes with m > 0 in order to avoid instabilities along the singular line r = 0, where the

mesh size in azimuthal direction goes to zero.
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x

r

-0.5 0 0.5 1 1.51

1.5

2

(a) Annular duct

x

r

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

(b) Hollow duct

Fig. 4 Near-field grid for circular ducts at medium grid level (i.e., coarsened by factor two)

As Kirchhoff surface, a cylinder is used that extends in up and down-stream directions to the

outer boundary of the grid. It has a radius r = 1.345 m for the annular duct and r = 1.515 m for

the hollow duct.

4.2 Instability of vortex sheet
Initially, computations were performed for the annular duct using the uniform free-stream and

duct flows separated by a vortex sheet as mean flow field. On the fine grid, however, an unstable

mode was produced along the vortex sheet in the computations. This mode, which grows both

in space and time, is illustrated in figure 5a (cutback condition, mode (0, 1)). The production of

such a mode is consistent with the intrinsic instability of the vortex sheet. As the unstable mode

is not an acoustic mode, it is still possible to compute the far-field sound by Kirchhoff integra-

tion, if it is based on the solution after a limited time interval. In order to be able to continue the

computations for longer time periods, however, it is desirable to stabilize this mode.

(a) Unstable mode using vortex sheet as mean flow (b) Stabilized solution using artificial shear layer as

mean flow

Fig. 5 Annular duct: Near-field pressure perturbation (dimensionless) for unstable and stabi-

lized computations (cutback condition, mode (0,1))

To remove the unstable mode, the vortex sheet is replaced by a gradually spreading artificial

shear layer. As shown by Michalke (Refs. 8, 9), disturbances in an inviscid shear layer will be
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Fig. 6 Annular duct: Artificial shear layer

stable provided the frequency is large enough. For an incompressible, isothermal, parallel shear

layer between a jet and a fluid at rest, the angular frequency ω of the disturbance should satisfy

ωθm

U0
> 0.25, (22)

with θm the (incompressible) momentum thickness of the shear layer and U0 the the jet velocity,

provided the shear layer is thin (θm < 0.08R with R the jet radius). This criterion is only taken

as an indication here, as a compressible flow with a heated jet and a non-zero free stream is con-

sidered. Michalke (Ref. 9) indicates that the effect of both compressibility and temperature is to

reduce the frequency range of unstable modes, whereas the effect of a free stream is to increase

this range (at least for a thick shear layer with θm = 0.2R). Using the frequency of the incom-

ing duct mode (f = 1430 Hz) and taking the velocity scale equal to the difference of the jet and

free-stream velocities (U0 = 166 m/s), the stability criterion in terms of the momentum thickness

becomes

θm > 4.6 mm. (23)

The artificial shear layer is obtained by solving the non-linear Euler equations with a second-

order finite-volume method including fourth-order artificial diffusion (on the same grid as used

for the LEE computations). This artificial shear layer is illustrated in figure 6 in terms of the

Mach-number profile and the (incompressible) momentum thickness. Clearly, the momentum

thickness satisfies the stability criterion given above. Note that the velocity profile is non-mono-

tonic due to the fact that the artificial diffusion is of fourth order. It is stressed that this artificial
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shear layer should not be compared to a physical shear layer. Its only purpose is to stabilize the

acoustic computations; not to model a physical shear layer.

The LEE solution obtained with the artificial shear layer as mean flow is shown in figure 5b. The

mode that was unstable is still present, but no longer grows in space or time. The far-field sound

pressure levels (SPL), computed from the unstable and stabilized solutions, are shown in fig-

ure 7. Only small differences can be seen. Thus, the artificial shear layer is thin enough to keep

the far-field sound essentially unchanged, allowing comparison to the analytical solutions, while

it is thick enough to stabilize the computations. All results presented in the remainder of this pa-

per have been obtained using the artificial shear layer.

θ

SPL (dB)
0

30

60

90

120

0 20 40 60 80 100

vortex sheet
numerical shear layer

Fig. 7 Annular duct: Far-field sound-pressure level (SPL) computed using either vortex sheet or

artificial shear layer as mean flow (cutback condition, mode (0,1))

4.3 Results
Computations have been performed for both flow conditions and for a selection of incident modes,

with the azimuthal order m ranging from 0 (plane wave) to values close to the cut-off boundary

(and with the radial order n = 1). All these computations were found to be stable. In figures 8

to 13, a selection of near-field and far-field solutions as obtained after a time length of 30 to 60

periods is presented. The near-field solutions show how the incident duct mode is scattered into

different radial modes a the duct exit, some of which are reflected back into the duct. The far-

field solution is given in terms of the sound-pressure level (SPL). It is plotted at a distance of

46 m from the centre of the duct exit and as a function of the polar angle θ.

Overall, the dependence of the solutions on the grid level is weak. Typically, the difference be-

tween the medium-grid and fine-grid solutions is only very small and the fine-grid solution can

be considered grid converged. For the hollow duct, the grid dependence is slightly stronger due

to the slightly larger mesh sizes.
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The numerical solutions are compared to analytical solutions. These analytical solutions (ex-

tended Munt solutions) have been obtained by Demir & Rienstra(Ref. 5) with and without en-

forcing the Kutta condition at the trailing edges of the ducts. Comparisons to the solutions in-

cluding the Kutta condition are made as this condition is effectively also part of the linearized

Euler equations.

Generally, the computed solutions compare well to the analytical solutions. The largest differ-

ences with the analytical solutions are seen for directivity angles between 0 and 30 degrees. This

is the strongest for mode (0,1) (plane wave, Figs. 8 and 10), in particular for the hollow duct. The

near-field solutions show that in these cases there are strong waves travelling inside the jet. To

compute the far-field sound more accurately, these waves have to be captured over a longer dis-

tance, which requires extending the uniform-grid region further downstream. For higher spinning

modes, generally, there are no such waves travelling inside the jet and most sound is radiated

sideways. In those cases, good agreement is found between the numerical and analytical solu-

tions (Figs 9, 11, and 12). An exception is shown in Fig. 13 for mode (48, 1) (sideline condition).

In this case, there is also a wave travelling in the jet, but this time it appears to be fully captured

inside the jet. Thus, most sound energy does not reach the far field, as is consistently shown by

both the analytical and the numerical solutions.

5 Conclusion

A high-order, finite-volume scheme for the linearized Euler equations has been applied suc-

cessfully to the computation of sound propagation from cylindrical ducts. Consistent with the

Kelvin–Helmholtz instability, the computations reveal an unstable mode if the mean flow field

consists of a jet and outer flow separated by a vortex sheet. The computations are stabilized

by replacing the vortex sheet by a gradually spreading, artificial shear layer. This shear layer is

found to be thin enough to leave the far-field solution unchanged. The numerical solutions com-

pare well to analytical solutions for a hollow duct and for an annular duct with an infinite centre

body, in particular for higher spinning modes. If the incident mode is a plane wave, then accurate

computation of the far-field sound at small directivity angles is made more difficult due to strong

waves travelling inside the jet, requiring a uniform grid extending far downstream.
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Fig. 8 Hollow duct: Cutback condition, mode (0,1)

(a) Near-field pressure perturbation

θ

SPL (dB)
0

30

60

90

120

0 20 40 60 80 100

analytical
coarse grid
medium grid
fine grid

(b) Far-field sound-pressure level (SPL)

Fig. 9 Hollow duct: Cutback condition, mode (20,1)

(a) Near-field pressure perturbation

θ

SPL (dB)
0

30

60

90

120

0 20 40 60 80 100

analytical
coarse grid
medium grid
fine grid

(b) Far-field sound-pressure level (SPL)

Fig. 10 Annular duct: Cutback condition, mode (0,1)
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(a) Near-field pressure perturbation
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Fig. 11 Annular duct: Cutback condition, mode (21,1)
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Fig. 12 Annular duct: Sideline condition, mode (32,1)

(a) Near-field pressure perturbation
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Fig. 13 Annular duct: Sideline condition, mode (48,1)
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