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Problem area 
One of the challenges in the design 
of high bandwidth control systems 
is the development of a global 
model, suitable for high perfor-
mance controller synthesis, while 
concomitant with both high model 
fidelity in Open-Loop, e,g. for 
trajectory planning, and high com-
putational efficiency for on-line 
processing. It is the purpose of this 
paper to present such a modeling 
structure, anchored in the realm of 
affine quasi- Linear Parameter-
Varying (LPV) systems, for the 
specific case where a plant’s 
complex nonlinear model is already 
available. 
 
Description of work 
We propose a novel LPV modeling 
method, having the following 
characteristics: 1) rather than fitting 
the LPV model within the popular 
H2 norm framework, as is invariably 
the case for procedures the like of 
Prediction Error Methods (PEM), it 
forms the LPV model in the H∞ 
norm paradigm, much better suited 
for subsequent robust control 
design; 2) it allows the user to 

specify an input-signal frequency 
range of interest, in which the LPV 
model fidelity should be best; 3) it 
is not restricted to either, simple, or 
to specific subclasses of first-
principles-based plant models, as it 
does not require for the availability 
of such white-box representations, 
and rather applies to any nume-
rically-based model; 4) it is not 
restricted to equilibrium points, 
rather it captures the non-stationary 
and transient dynamical behavior; 
and 5) it is not limited by practical 
implementation constraints such as 
state differentiation or model-order 
increase. 
 
Results and conclusions 
We have presented a compre-
hensive affine quasi-LPV modeling 
method: 1) suitable for high-
performance controller design, over 
the complete system operating 
regime; 2) having high model 
fidelity in Open-Loop; while 3) 
retaining high computational 
efficiency. 
 
Applicability 
System modeling and design of 
(flight) control systems. 
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Affine LPV Modeling: An H∞ Based Approach

Skander Taamallah, Xavier Bombois and Paul M. J. Van den Hof

Abstract— One of the challenges in the design of high-
bandwidth control systems is the development of a global
model, suitable for high-performance controller synthesis, while
concomitant with both high model fidelity in Open-Loop (OL),
e,g. for trajectory planning, and high computational efficiency
for on-line processing. It is the purpose of this paper to present
such a modeling structure, anchored in the realm of affine
quasi- Linear Parameter-Varying (LPV) systems, for the specific
case where a plant’s complex Nonlinear Model (NM) is already
available.

I. INTRODUCTION

Our objective can be summed up as follows. Given

an industrial plant for which a high-fidelity, yet complex,

Nonlinear Model (NM) is available, obtained from either

first-principles, empirical knowledge, or hybrid modeling,

and given a simulated Input-Output (IO) signal sequence,

collected under the desired operating conditions, find - for a

user-defined input-signal frequency range of interest - a Re-

duced Complexity Model (RCM), that fulfills the following

specifications

(1) Suitable for high-performance controller design, over the

complete operating regime.

(2) Having high model fidelity in Open-Loop (OL). The

RCM model shall be such that both: (i) accurate OL

optimal trajectories may be obtained, and (ii) adequate

feedforward controllers may be designed.

(3) Retaining high computational efficiency. The RCM shall

be used as a substitute for a computationally intensive

NM. Clearly, this may be the case for on-line use in a

hard real-time environment (e.g. optimal trajectory gen-

eration, fault detection and isolation, estimation, adaptive

control), whenever stringent timing constraints may need

to be met, especially for high-bandwidth systems.

Two aspects within the aforementioned specifications

- a global controller and OL model fidelity - may plead

towards the use of nonlinear modeling, and its traditionally

associated nonlinear control methods, which effectively

respect and exploit the system’s nonlinear structure.

However, both the real-time computational requirement,

and the sometimes endemic difficulty of these nonlinear

approaches to easily handle performance criteria, have led
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us towards the realm of Linear Parameter-Varying (LPV)

systems. Indeed, LPV models are efficiently run on-line, and

LPV control design problems are efficiently solved, by first

expressing the problems as Linear Matrix Inequality (LMI)

optimizations [1] - subsequently formulated as Semi-Definite

Programs (SDP) [2] - for which there are several powerful

numerical solutions [3], [4]. Within this setting, a literature

review shows that twelve methods have been devised to

translate a NM into a LPV one: (M1) direct conversion of

simplified linear or nonlinear dynamics into LPV format,

(M2) extended linearization [5] which is loosely based on

pseudolinearization [6] and global linearization [7] ideas,

(M3) Jacobian linearization [8], (M4) state transformation

[9], (M5) Singular Value based Decompositions (SVD) [10],

(M6) velocity-based formulation [11], (M7) Tensor-Product

polytopic decomposition [12], [13], (M8) automated LPV

model generation [14], [15], (M9) interpolation-based

methods [16], [17], (M10) multivariable polynomial fitting

[18], (M11) H2 norm minimization at sampled data points

[19], and (M12) function substitution [20], [21], see also

[22], [15] and references therein for a comprehensive review

of LPV modeling. For all their benefits, these methods have

also their shortcomings, namely the need for a white-box

representation (M1,M2,M4,M8,M12), the restriction to

simple plants, e.g. excluding non-algebraic forms such as

look-up tables (M1,M2,M8), the lack of a general method

to choose the scheduling variables (M1,M2,M3,M7),

the difficulty in fulfilling the linearizability conditions

(M2), the griding and selection of equilibrium points

(M3,M4,M12), the model validity being only local around

a set of equilibrium points (M4,M9,M10,M12), the misfit

approximation, resulting from local changes of variable,

as to eliminate the remainder terms and thus obtain a

State-Space (SS) representation (M3,M7), the restrictions to

a special class of nonlinear systems (M4,M12), the practical

implementation constraints due to state differentiation and

increase in model order (M6), the attempt to directly match

the coefficients of each linearized SS matrices, since it is

well known that the eigenvalues of some matrices may be

highly sensitive to small, or even infinitesimal, perturbations

of their matrix elements (M7), the practical implementation

constraints, due to the rapid increase in the number of

summands and leafs, together with the exponential growth

of the number of tree routes (M8), the restriction to stable

systems (M11), and the affine nature (in states and inputs)

rather than linear representation (M5).

Hence, for complex, high-order, highly nonlinear,

real-world industrial applications, the existing methods
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of rewriting/approximating the nonlinear plant into LPV

format are at best conservative (over-bounding), often

inaccurate (poor transient performance), at times impractical

(computational cost), and in some cases simply inadequate

(inability to preserve stability). With respect to these LPV

modeling pathologies, we propose a novel LPV modeling

method, virtually eliminating most of these issues, as it is

endowed by the following assets (i) not restricted to either,

simple, or to specific subclasses of first-principles-based

plant models, as it does not require for the availability

of such white-box representations, and rather applies

to any numerically-based model, (ii) not restricted to

equilibrium points, rather it captures the non-stationary and

transient system behavior, and (iii) not limited by practical

implementation constraints such as state differentiation or

model-order increase. In addition our method comes with

the following benefits: (iv) allows the user to specify an

input-signal frequency range of interest, in which the LPV

model fidelity should be best, and (v) rather than fitting

the LPV model within the popular H2 norm framework, as

is invariably the case for procedures the like of Prediction

Error Methods (PEM), it forms the LPV model in the H∞
norm paradigm. Indeed, when spectral mask constraints are

assigned, and compared to the H2 norm, we believe that the

H∞ norm framework provides the best compromise between

modeling for control and modeling for OL simulation [23].

The nomenclature is fairly standard. Vectors are printed

in boldface. MT , M∗, M† denote the transpose, the complex-

conjugate transpose, and the Moore-Penrose inverse of a

real or complex matrix M, whereas He(M) (resp. Sym(M))

is shorthand for M + M∗ (resp. M + MT ). We use ⋆ as

an ellipsis for terms that are induced by symmetry. Matrix

inequalities are considered in the sense of Löwner. Further

λ(M) denotes the zeros of the characteristic polynomial

det(sI − M) = 0. L∞ is the Lebesgue normed space s.t.

‖G‖∞ ≔ ess sup
ω∈R
σ̄(G( jω)) < ∞, with σ̄(G) the largest

singular value of matrix G(·). Similarly, H∞ ⊂ L∞ is the

Hardy normed space s.t. ‖G‖∞ ≔ sup
Re(s)>0

σ̄(G(s)). For ω1 <

ω2, ∆ω = [ω1, ω2], we use ‖G‖∆ω ≔ sup
ω∈∆ω
σ̄(G( jω)). RL∞

(resp. RH∞) represent the subspace of real rational Transfer

Functions (TFs) in L∞ (resp. H∞).

II. Problem Statement

We suppose now that the noise-free NM is given1 by

∀t ≥ 0 ẋ(t) = f
(

x(t), u(t)
)

y(t) = x(t) (1)

with f (·) a deterministic, Continuous-Time (CT),

nonlinear function, which is at least C1, and locally

Lipschitz continuous. This local nature allows us to

consider unstable systems as well. Further, we have

x(t) ∈ Px ⊂ Rnx the plant state, y(t) ∈ Py ⊂ Rny the plant

output, u(t) ∈ Pu ⊂ Rnu the control input, t the time variable,

1Since the nonlinear model (NM) is given, we assume that we have access
to the full state vector.

and (Px,Py,Pu) some compact sets.

Remark 1: As stated earlier, we assume that a simulated

IO signal sequence, collected under the desired operating

conditions, is made available, and that this sequence is

informative enough for the identification of the LPV

model. Now since the notion of informativity has yet to be

formalized within the LPV context, it has been excluded

from our current framework.

Remark 2: In this paper we will encompass our discussion

within the CT framework, since stability and performance

requirements, for controller synthesis, are generally much

more conveniently expressed in this framework. In case

an equivalent LPV Discrete-Time (DT) realization is

needed, this may be easily achieved by, either, discretizing

the obtained CT LPV model through one of the LPV

discretization methods presented in [24], or alternatively,

by using the equivalent DT formulations of the machinery

outlined in this paper.

Now we denote our RCM as the LPV model S(θ(t))

S(θ(t)) ≔



























∀t ≥ 0

ẋ(t) = A0x(t) + B0u(t) + ...
R
∑

r=1

θr(t)
(

Arx(t) + Bru(t)
)

(2)

with θ(t) ≔ [θr(t)]R×1 ∈ RR, the non-stationary scheduling

parameters, not known a priori, but on-line measurable and

defined on the compact set Pθ , known as the scheduling

space, and matrices (A0, B0, Ar, Br), of appropriate sizes,

representing the basis functions. For the case of endogenous

parameter dependence, i.e. θ(x(t), u(t)), the quasi-LPV

prefix is added. Note that in this case, and in the occurrence

of an unstable plant, such quasi parametrization is only licit

if one assumes an upper bound on the sizes of Px and Py, a

priori. Further, we also chose to enclose our analysis within

the affine LPV setting, with static scheduling-parameter

dependence.

Remark 3: It is now well known that equivalent LPV IO

vs. SS representations may generally necessitate dynamic

dependence of the SS realization [25], since neglecting this

fact may result in significant performance losses. However,

as dynamic dependence may lead to difficulties in terms of

controller design and implementation, we chose to limit our

current discussion to static dependence only.

Remark 4: The affine LPV structure does not introduce

any loss of generality, since it is well known that affine LPV

formulations may (i) easily be cast into minimal Linear

Factional Transformations (LFT) forms, and (ii) readily be

transformed into (potentially non-unique) polytopic LPV

forms, through barycentric computation [26].

Next we consider the practical situation where one needs

to build a CT LPV model from sampled measurements

2727
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of the CT signals (y(t), u(t), θ(t)). These DT signals,

subsumed with the sampling period T s > 0, are denoted

u(ti) = u(i.T s), i ∈ Z, as illustrated here for the input

signal u(·). We assume that a simulated IO signal sequence

ZN
≔

{

(u(ti), y(ti))
}N

i=1, collected under the desired operating

conditions, is available. Building a CT LPV model from

samples of measured CT signals has only been addressed

recently in [27]. Our problem is however simpler, since we

are dealing with a noise-free NM, avoiding thus the difficult

question of CT random process modeling from a sampled

CT noise source. Further, for LPV systems with static

dependence, and concomitant to classical discretization

theory [28], if the sampled and free-CT (i.e. inputs and

exogenous parameters) signals can be assumed to be

piecewise constant on a sampling period, then the CT

output trajectory may be completely reconstructed from

its sampled observations [15]. To fulfill this condition we

obtain the following expression for the sampling period

T s = 1/
[

Ks.max( fBu
, fBθ

)
] (

resp. T s = 1/[Ks. fBu
]
)

in case

of LPV system (resp. quasi-LPV), with fBu
and fBθ

the

bandwidth of the input and scheduling-parameter signals

respectively, and Ks ∈ [10 − 20] for all practical purposes.

In order to extend the validity of GS or LPV controllers

to operating regions far from equilibrium points, as to better

capture the transient behavior of the NM, we base our

method upon the idea of non-stationary linearizations of the

NM, along a given trajectory θ ≔ θ(t), as was suggested

for the GS modeling framework in [29], [30], [31], and

for the LPV modeling framework in [11], [32], [10]. These

linearizations may be computed via first-order Taylor-series

expansions, or via classical numerical perturbation methods.

From (1) and set ZN , we create a set of triplet elements

ZN
Lin
≔

{

(Āi, B̄i, di)
}N
i=1

Āi =
δ f (x, u)

δxT

∣

∣

∣

∣

(xi ,ui)
B̄i =

δ f (x, u)

δuT

∣

∣

∣

∣

(xi ,ui)

di = f (xi, ui) − Āixi − B̄iui (3)

with matrices (Āi, B̄i) bounded maps, since based on the

regularity assumptions of f (·), and where we have also used

the shorthand xi ≔ x(ti), ui ≔ u(ti) to streamline notations.

For each operating point (xi, ui), we can approximate the NM

model (1), in a local neighborhood, as

ẋ(ti) = f
(

x(ti), u(ti)
) ≈ Āix(ti)+ B̄iu(ti)+ di i = 1, ...,N (4)

Next, from set ZN
Lin

we can generate a sequence of CT

LTI TFs Ḡi(s) ≔

[

Āi B̄i

C̄ D̄

]

, with matrices C̄ = I, D̄ = 0

of appropriate size. Now, returning to our LPV definition of

(2), we can expand it as

S
(

η(t), ζ(t)
)

≔



















































∀t ≥ 0

ẋ(t) = A0x(t) + B0u(t) + ...
S
∑

s=1

ηs(t)
(

Lsx(t) + Rsu(t)
)

+ ...

W
∑

w=1

ζw(t)
(

Twx(t) + Zwu(t)
)

(5)

for some scheduling parameters η(t) ≔ [ηs(t)]S×1 ∈ RS ,

ζ(t) ≔ [ζw(t)]W×1 ∈ RW , and matrices (Ls,Rs, Tw, Zw), of

appropriate sizes, s.t.
R
∑

r=1

θr(t)Ar =
S
∑

s=1

ηs(t)Ls +
W
∑

w=1

ζw(t)Tw

and
R
∑

r=1

θr(t)Br =
S
∑

s=1

ηs(t)Rs +
W
∑

w=1

ζw(t)Zw.

For each frozen-time trajectory ηsi
≔ ηs(ti), ζwi

≔ ζw(ti),

s = 1, ..., S , w = 1, ...,W, associated with the time indexes

i = 1, ...,N of set ZN , we create both (i) a sequence of

CT LTI TFs Gi(s) ≔





















A0 +
S
∑

s=1

ηsi
Ls B0 +

S
∑

s=1

ηsi
Rs

C D





















,

with matrices C = I, D = 0 of appropriate size, and (ii) a

sequence of vectors
W
∑

w=1

ζwi

(

Twxi + Zwui

)

. From here on, we

also assume C = C̄ = I and D = D̄ = 0.

Remark 5: Note that we restrict our discussion to full-

order LPV modeling, hence matrices (A0, Ls, Tw) and Āi have

same size (resp. (B0,Rs, Zw) and B̄i).

A. The Optimization Problems

The purpose of our work is now twofold. The

first objective consists in using the frozen-time

information available in set ZN
Lin

to identify the unknown

scheduling parameters η(t), ζ(t), and basis functions

(A0, B0, Ls,Rs, Tw, Zw).

Remark 6: Note that we are well aware that LPV

properties cannot in general be inferred from underlying

LTI properties, i.e. frozen-time deductions do not generally

ensure that LPV modeling characteristics will be preserved

with rapid parameter variations [33]. Hence, no formal

proofs of convergence between the NM and our RCM

LPV model may be given via this engineering practice.

Nonetheless, and bestowed by its simplicity and its previous

track record [11], [10], this methodology will be pursued in

the sequel of this paper.

Formalizing the first objective we obtain the following

aggregated optimization problems

Problem 1 For a given frequency range ∆ω = [ω1, ω2],

find

(

Â0, B̂0, L̂, R̂, Π̂
)

= · · ·

arg inf
(

A0∈Rnx×nx ,B0∈Rnx×nu ,Ls∈Rnx×nx ,Rs∈Rnx×nu ,ηsi
∈R

)

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Ḡi(s) −Gi(s)
∣

∣

∣

∣

∣

∣

∣

∣

∆ω

with L̂ ≔ [L̂s]S nx×nx
, R̂ ≔ [R̂s]S nx×nu

, and Π̂ ≔ [η̂si
]S×N �

Problem 2 Find

(

T̂ , Ẑ, Ξ̂
)

= ...

arg inf
(

Tw∈Rnx×nx ,Zw∈Rnx×nu ,ζwi
∈R

)

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣
di −

W
∑

w=1

ζwi

(

Twxi + Zwui

)

∣

∣

∣

∣

∣

∣

∣

∣

2

2728
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with T̂ ≔ [T̂w]Wnx×nx
, Ẑ ≔ [Ẑw]Wnx×nu

, and Ξ̂ ≔ [ζ̂wi
]W×N �

Our second objective is set within the quasi-LPV

framework. We aim to find a relationship between the

here-above computed scheduling parameters, Π̂ ≔ [η̂si
]S×N

and Ξ̂ ≔ [ζ̂wi
]W×N , and the on-line measurable states and

control inputs. In other words, we need to find smooth and

CT nonlinear mappings, g(·) and h(·), s.t. η(t) = g(x(t), u(t)),

ζ(t) = h(x(t), u(t)).

For physically-intuitive plants, one may select the required

states and inputs, based on engineering judgment, and derive

these mappings through popular curve-fitting methods. For

non-transparent systems, exhibiting significant dependences

among variables, one may consider formal/systematic ap-

proaches such as principal component analysis, statistical

analysis, fuzzy tools, or Neural Networks (NNs). Now, NNs

have found a wide range of applications in control theory.

Indeed, under mild assumptions on continuity and bounded-

ness, a network of two layers, the first being hidden sigmoid

and the second linear, can be trained to approximate any

IO relationship arbitrarily well, provided there are enough

neurons in the hidden layer [34], [35]. However, despite their

powerful features, NNs have only seen limited usage in the

LPV field, except for the derivation of quasi-LPV SS models

from NNs representations [36], [37], [38]. Hence, we propose

here to base the g(·) and h(·) modeling on NNs.

III. A Solution to Problem 1

While several approaches, such as [39], [40], may poten-

tially be considered, no efficient solution is currently known.

Consequently, a sub-optimal procedure will be outlined.

We opt for the three-stage philosophy introduced in [10],

consisting in obtaining first (Â0, B̂0), then (L̂, R̂), and finally

Π̂. However, contrary to [10] with the use of Least-Squares

(LS) methods, we proceed here with new approaches in the

H∞ framework.

A. Preliminaries

This section introduces the Kalman-Yakubovich-Popov

(KYP) Lemma [41], with spectral mask constraints.

Lemma 1: Let real scalars ω1 ≤ ω2, ωc = (ω1 + ω2)/2,

and a TF G(s) ≔

[

A B

C D

]

be given, then the following

statements are equivalent.

(i) ∀γ > 0, λ(A) ⊂ C− ∪ C+, ‖G‖2
∆ω
< γ2 (6)

(ii) ∃(P,Q), P = P∗, Q > 0, L(P,Q) + Θ < 0

L(P,Q) = ...
[

A B

I 0

]∗ [ −Q P + jωcQ

P − jωcQ −ω1ω2Q

] [

A B

I 0

]

Θ =

[

C D

0 I

]∗ [
I 0

0 −γ2I

] [

C D

0 I

]

(7)

(iii) ∃(F,K)

∀l ∈ {1, 2} Ml(F,K) + Θ < 0

Ml(F,K) = He

(

[

F

K

]

[

I − jωlI
]

[

A B

I 0

]

)

With Θ given in (7) (8)

Proof: From (6), expand
(

C(sI − A)−1B + D
)∗(

C(sI −
A)−1B + D

) − γ2I < 0 as partitioned matrices, and invoke

the KYP Lemmas with spectral mask constraints, from [42]

and [43], to prove (ii) and (iii) respectively. Note that for

the case where λ(A) ⊂ C
− we need to add the stability

constraint P > 0 in (ii), and for the case where λ(A) ⊂ C0

it is standard practice to perturb A by −ǫI, with 0 < ǫ ≪ 1

[44].

Both approaches (ii) and (iii) of Lemma 1 will be used in

this paper. Now let n be the number of decision variables,

and m the number of rows of LMIs, then comparing (ii) and

(iii) shows that, while both have similar m, they differ in

terms of n, i.e. n2
x + nx versus n2

x + nxnu, respectively. Since

the asymptotic computational complexity, or flop cost, of

SDP solvers is in O(n2m2.5 + m3.5) for SeDuMi [4], and in

O(n3m) for MATLAB LMI-lab [45], the former approach is

more efficient for large problems, however, the latter has the

advantage that, for fixed F and K, it is also affine in the

problem’s A and B matrices.

B. Determination of (Â0, B̂0)

The goal is to find the optimal Ĝ0(s) ≔

[

Â0 B̂0

C D

]

s.t.

(

Â0, B̂0

)

= arg inf
(

A0∈Rnx×nx ,B0∈Rnx×nu
)

N
∑

i=1

‖Ḡi(s) −G0(s)‖∆ω (9)

We propose a non-optimal procedure that restricts the search

space to set ZN
Lin

. For each model Ḡi(s), we get the following

mean, standard-deviation, and extrema

∀i ∈ {1, ...,N} µi = (1/N)

N
∑

j=1

‖Ḡi(s) − Ḡ j(s)‖∆ω

si =

[

(1/N)

N
∑

j=1

(

‖Ḡi(s) − Ḡ j(s)‖∆ω − µi

)2
]1/2

µ
¯

= min
i
µi, µ̄ = max

i
µi, s

¯
= min

i
si, s̄ = max

i
si(10)

where ‖Ḡi(s)−Ḡ j(s)‖∆ω is obtained by minimizing the bound

γ defined in (6). This is computationally done by minimizing

γ subject to the LMIs of (7). Subsequently, the optimal

model Ĝ0(s) is designated as Ĝ0(s) ≔ Ḡî(s), with the index î

resulting from a, readily solved, mean vs. standard-deviation

minimization problem

î = arg min
i∈{1,...,N}

(

(

[µi −µ
¯

]/[µ̄−µ
¯

]
)2
ρ+

(

[si − s
¯
]/[s̄− s

¯
]
)2
)

(11)

with ρ a user-defined weighting parameter.

C. Determination of L̂ ≔ [L̂s]S nx×nx
, R̂ ≔ [R̂s]S nx×nu

To determine these basis functions we will anchor our

approach on Singular Value Decompositions (SVD). Within

the realm of LPV modeling, the use of the SVD machinery

has been independently pioneered by several researchers

[13], [46], [10], and our approach will parallel the results
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of [13], [10]. Let Υ = [1...1] be a row vector of length N.

We define the following Ω and Φ matrices

From set ZN
Lin

define Ω =

[

vec(Ā1) , ..., vec(ĀN)

vec(B̄1) , ..., vec(B̄N)

]

From (9) Φ =

[

vec(Â0)

vec(B̂0)

]

⊗ Υ (12)

Next, obtain a SVD decomposition of the form Ω − Φ =
UΣV∗. Now U1..S , with S ≤ nx(nx + nu), contains the first S

columns of the left singular vectors matrix U. Then L̂ and

R̂ are recovered from the matricization of each column of

U1..S . Note that, for high model fidelity in OL, one could

keep a maximum number of basis functions S , whereas

for controller design, one could cope with fewer ones, and

perform a posteriori stability tests along the lines of [47].

D. Determination of Π̂ ≔ [η̂si
]S×N

The procedure has a two-stage modus operandi: (i) an

initialization stage, followed by (ii) a nonlinear-based refine-

ment stage. The first stage computes reasonable guess values

for η̂si
, from the sum minimization of the L2-induced gains

of two static operators

∀i ∈ {1, ...,N} [η̂si
]S×1 = arg min

(

ηsi
∈R

)

∥

∥

∥XA

∥

∥

∥

2
+

∥

∥

∥XB

∥

∥

∥

2
(13)

with XA = Āi−
(

Â0+
S
∑

s=1

ηsi
L̂s

)

and XB = B̄i−
(

B̂0+
S
∑

s=1

ηsi
R̂s

)

This is readily recast into a standard LMI problem

∀i ∈ {1, ...,N} minimize γA + γB

subject to γA > 0, γB > 0
[

γAI ⋆

XA I

]

> 0

[

γBI ⋆

XB I

]

> 0 (14)

The second stage uses the previously computed

(Â0, B̂0, L̂, R̂) and the start values for [η̂si
]S×1 to solve

∀i ∈ {1, ...,N} [η̂si
]S×1 = · · ·

arg inf
(

ηsi
∈R

)

‖Ḡi(s) −Gi(s)‖∆ω (15)

This is a non-convex problem. To compute

‖Ḡi(s)−Gi(s)‖∆ω we call now upon (8). As stated earlier, the

advantage of (8) is that it is convex in either (F,K) or (A, B)

matrices. These (A, B) matrices are given by: Ḡi(s)−Gi(s) ≔

[

A B

C D

]

=





























Āi 0 B̄i

0 Â0 +
S
∑

s=1

ηsi
L̂s B̂0 +

S
∑

s=1

ηsi
R̂s

I −I 0





























. Our

proposed approach is a simple two-step iterative LMI

search, in spirit reminiscent of µ D − K-iteration synthesis

[48]. The procedure reads as follows: partition F and

K as F =

[

F11 F12

F21 F22

]

and K =

[

K11 K12

K21 K22

]

and

start with the initial value Π̂ obtained from (14). Now

from (8), (i) minimize γ with respect to (F,K), (ii) keep

(F12, F22,K12,K22) from step (i) and minimize γ with

respect to (Π̂, F11, F21,K11,K21), (iii) repeat (i) and (ii) until

convergence or maximum iteration reached.

Remark 7: Aside from D − K-iteration, similar heuristics

appear to work well in practice, such as model order re-

duction [49], LPV-LFR controller with parameter-dependent

scalings [50], or gain scheduled controller with inexact

scheduling parameters [51]. Analogously to D-K iteration

convergence [52], [53] - for which convergence towards a

global optimum, or even a local one, is not guaranteed - the

above iterative method does not inherit any convergence cer-

tificates, however in practice convergence has been achieved

within a few iterations.

IV. A Solution to Problem 2

It is precisely this feature that endows our LPV model with

its global nature. Suppose we can find scheduling parameters

ζwi
and basis functions (Tw, Zw) s.t.

∀i ∈ {1, ...,N} di

[

xi

ui

]†
≈

[

W
∑

w=1

ζwi
Tw

W
∑

w=1

ζwi
Zw

]

(16)

with [·]† the left inverse. Then by right-multiplying both

sides with [xT
i

uT
i

]T we recover di ≈
W
∑

w=1

ζwi

(

Twxi + Zwui

)

.

To determine the basis functions, we will again use SVDs.

First, we construct the matrices Λi and Ψ s.t.

Λi = di

[

xi

ui

]†
Ψ =

[

vec(Λ1) , ..., vec(ΛN)
]

(17)

Then, obtain a SVD decomposition of the form Ψ =

UΣV∗. Now U1..W , with W ≤ nx(nx + nu), contains the first

W columns of the left singular vectors matrix U. Then T̂

and Ẑ are recovered from the matricization of each column

of U1..W . Next, we use LS to compute Ξ̂ ≔ [ζ̂wi
]W×N

∀i ∈ {1, ...,N} [ζ̂wi
]W×1 = · · ·

arg min
(

ζwi
∈R

)

∥

∥

∥

∥

vec(Λi) − U1..W

[

ζ1i
, ..., ζWi

)

]T
∥

∥

∥

∥

2

2
(18)

The solution reduces to ∀i ∈ {1, ...,N} [ζ̂wi
]W×1 =

UT
1..W

vec(Λi) since U1..W is an orthogonal matrix.

V. Quasi-LPV Framework

The aim is now to find suitable representations for g(·) and

h(·), s.t. η(t) = g(x(t), u(t)), ζ(t) = h(x(t), u(t)), by illustrating

the applicability of a two-layer feedforward NNs, the first

being sigmoid and the second linear, with l neurons (l large

enough)

η(t) = g(x(t), u(t)) = Cη.sη(t) ζ(t) = h(x(t), u(t)) = Cζ .sζ(t)

sη(t) = Woη .κ
(

Wxηx(t) +Wuηu(t) +Wbη

)

sζ(t) = Woζ .κ
(

Wxζx(t) +Wuζu(t) +Wbζ

)

(19)

where Woη ∈ RS×l, Woζ ∈ RW×l and Wxη ∈ Rl×nx ,

Wuη ∈ Rl×nu , Wxζ ∈ Rl×nx , Wuζ ∈ Rl×nu contain the output

and hidden layer weights respectively. Further, Wbη ∈ Rl,

Wbζ ∈ Rl contain the sets of biases in the hidden layer,

Cη ∈ RS×S , Cζ ∈ RW×W contain the output linear maps, and

κ(·) is the activation function, taken as a continuous, diagonal,

differentiable, and bounded static sigmoid nonlinearity.
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VI. Numerical Experiment

We compare here the effectiveness of our proposed LPV

modeling strategy with the original nonlinear model, and

with the combined SVD least-squares based LPV model [10],

using the most familiar nonlinear physical system that ex-

hibits harmonic motion, i.e. the simple, driven and damped,

pointmass pendulum, for which the rotational motion is given

by

d

dt

[

x1(t)

x2(t)

]

=

[

x2(t)

−bx2(t) − β2 sin x1(t)

]

+

[

0

α(u(t))

]

with α(u(t)) ≔ u(t)2 sin u(t) (20)

with [x1 x2]T = [θ θ̇]T the states, θ the rotation angle,

u the input torque, β =
√

g/L the angular frequency,

g the acceleration due to gravity, L the pendulum

length, b a measure of the dissipative force, with values:

(β =
√

9.8/9, b = 2), and α(·) a fictional nonlinearity with the

intent of increasing the Nonlinear Model (NM) generality. To

derive the LPV model, we excite the pendulum, from its rest

position, with a 10 s long sine-sweep u(t) = A sin(2π. f .t),

A = 2, f ∈ [0.05−1] Hz, sampled with a period T s = 0.05 s,

resulting in 201 data points. Since we also want to compare

our method with that of [10], we use a wide-band ∆ω with

[ω1, ω2] = [0.005− 20] Hz, as [10] does not handle spectral

mask constraints.

For frequency-domain comparisons, we define the

following cost J∞ ≔
1
N

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Ḡi(s) − Gi(s)
∣

∣

∣

∣

∣

∣

∣

∣∞
, with N the

data length. Further, the LMI problems are solved using

YALMIP with the SeDuMi solver. The optimal model

Ĝ0(s), obtained according to (11) with ρ = 1, was found to

be G59(s). Solving Problem 1, by keeping all bases (S = 2),

with S defined in Section III-C, we get J∞ = 0 with (14).

For S = 1 we get J∞ = 10.17 with (14), and J∞ = 2.05 after

refinement (15).

Next, we use fresh data sets, namely sine-inputs of vari-

ous amplitudes and frequencies, and compare time-domain

outputs in l2[0,∞), with the following two metrics: Best-FiT

(BFT) ≔ 100%. 1
nx

nx
∑

k=1

max
(

1−
∥

∥

∥xk−x̃k

∥

∥

∥

2
∥

∥

∥xk−mean(xk)

∥

∥

∥

2

, 0
)

, and Variance-

Accounted-For (VAF) ≔ 100%. 1
nx

nx
∑

k=1

max
(

1 − var(xk−x̃k)

var(xk)
, 0

)

with xk ∈ RN the kth NM output, x̃k ∈ RN its LPV

equivalent. Now since [10] does not provide a solution for

Problem 2, nor for mappings g(·) and h(·) of Section V,

we extend it with our proposed approaches. For both LPV

models we use W = 3 in Problem 2, keeping all bases in

Section IV, and further a 5-neurons feedforward network,

with the hyperbolic tangent activation TF in the hidden layer,

and backpropagation training for the weights and biases. The

outcomes are presented in Table I and II. For both models,

the accuracy diminishes as the input amplitude is shifted

away from the value used for estimation. For this numerical

experiment, we see that, except for BFT(A = 1.5, f = 1Hz),

TABLE I

Time Resp. For OurModel. Left value is BFT (%), Right value is VAF (%)

Input Input Frequency (Hz)
Amplitude 0.25 0.5 0.75 1

0.5 65 95 48 93 37 91 37 87
1 74 96 71 95 53 95 35 92
1.5 86 98 82 98 68 97 39 94
2 86 99 81 99 92 100 85 99

TABLE II

Time Resp. ForModel [10]. Left value is BFT (%), Right value is VAF (%)

Input Input Frequency (Hz)
Amplitude 0.25 0.5 0.75 1

0.5 5 68 9 61 5 44 2 39
1 32 84 27 84 26 82 26 80
1.5 41 85 75 94 68 93 62 91
2 40 85 71 96 80 96 76 94

our model consistently outperforms the approach of [10]. For

illustration, case (A = 2, f = 0.25Hz) is shown in Fig. 1.

VII. Conclusion

We have presented a novel and comprehensive affine

quasi-LPV modeling method. For high model fidelity in

Open-Loop, one could keep a maximum number of basis

functions, whereas for controller design, one could cope

with fewer ones. Our approach does not incorporate any

information on parameter time-derivatives, hence significant

enhancements could potentially be obtained in this area. Our

preliminary encouraging results invite further applications of

the here-presented approach.

Appendix

Instead of the KYP-based formalism, and by reverting to a

standard weighted H∞ norm minimization, with the obvious

increase in model order and complexity, we can provide an

alternative to (15). Now, for the specific case of having the

control-matrix independent of the time-varying scheduling

parameter, and if we consider retaining all bases S , then

the problem of finding Π̂ ≔ [η̂si
]S×N becomes convex, and

an optimal solution is then computable by this two-step

procedure

∀i ∈ {1, ...,N} [η̂si
]S×1 = · · ·

arg min
(

ηsi
∈R

)

‖W f

(

Ḡi(s) −Gi(s)
)‖∞ (21)

with W f a given, strictly-proper, bandpass filter, centered

at ∆ω. We have now the following result

Lemma 2: Let W f (s) ≔

[

A f B f

C f 0

]

, Ḡi(s) ≔

[

Āi B̄i

I 0

]

, Gi(s) ≔





















Â0 +
S
∑

s=1

ηsi
L̂s B̂0

I 0





















, be given, with

matrices of appropriate size. Let W f

(

Ḡi(s) − Gi(s)
)

≔
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





































A f B f −B f 0

0 Āi 0 B̄i

0 0 Â0 +
S
∑

s=1

ηsi
L̂s B̂0

C f 0 0 0







































=





















A11 A12 B11

0 A22 B̂0

C11 0 0





















,

with A11 =

[

A f B f

0 Āi

]

, A12 =

[

−B f

0

]

, B11 =

[

0

B̄i

]

,

C11 =
[

C f 0
]

, and A22 = Â0 +
S
∑

s=1

ηsi
L̂s, then the following

statements are equivalent.

(i) ∀γ > 0, W f ∈ RH∞,
(

Ḡi(s)−Gi(s)
) ∈ RL∞, ‖W f

(

Ḡi(s)−
Gi(s)

)‖2∞ < γ2 (22)

(ii) ∃(P,Q), P = PT , Q = QT = P−1

P =

[

P11 P12

PT
12

P22

]

, Q =

[

Q11 Q12

QT
12

Q22

]

Γ
(

Xη, P11, P12,Q11,Q12

)

≔




























Sym
(

A11Q11 + A12QT
12

)

⋆

AT
11
+ Xη Sym

(

P11A11

)

BT
11

BT
11

P11 + B̂T
0

PT
12

C11Q11 C11

⋆ ⋆

⋆ ⋆

−γ2I ⋆

0 −γ2I





























< 0 (23)

with Xη = P11A11Q11 + P11A12QT
12
+ P12A22QT

12

Proof: The proof is a straightforward application of the

Bounded Real Lemma (BRL) [54] in LMI form [55], with

further (i) a congruence transformation [56] with diag(J, I, I),

J =

[

Q11 I

QT
12

O

]

, and (ii) a change of variable given by Xη

. For stable systems, i.e.
(

Ḡi(s) −Gi(s)
) ∈ RH∞, one has to

add the condition JT PJ =

[

Q11 I

I P11

]

> 0

Now, (21) reduces to a two-step approach. First, solve

∀i ∈ {1, ...,N} minimize γ

subject to γ > 0, and the LMIs of Lemma 2 (24)

Then compute A22 = P
†

12

(

Xη−P11A11Q11−P11A12QT
12

)

QT †

12
.

Note that P12 and QT
12

are skinny and fat matrices, hence,

by virtue of the respective left and right inverse, A22 is well-

defined. Next, we have the minimization of the L2-induced

gain of the static operator XA22
= A22 −

(

Â0 +
S
∑

s=1

ηsi
L̂s

)

∀i ∈ {1, ...,N} [η̂si
]S×1 = arg min

(

ηsi
∈R

)

∥

∥

∥XA22

∥

∥

∥

2
(25)

which is solved as in (14).
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