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ABSTRACT
The grid generation systems of elliptic quasi-linear second-order partial differential
equations are the familiar so-called Poission systems with control functions to be
specified. In this chapter, a Poisson system is considered as a system of partial
differential equations which the composition of a grid control map and the inverse of a
harmonic map has to obey. The control functions in the Poisson system are then completely
defined by the grid control map. Boundary conforming grids in physical space are computed
by solving the Poisson system with control functions specified by a grid control map.
One of the main advantages of this approach is that the method is non-iterative. If an
appropriate grid control map has been constructed then the corresponding grid control
functions of the Poisson system are computed and their values remain unchanged during the
solution of the Poisson system. Another advantage is that the construction of an
appropriate grid control map can be considered as a numerical implementation of the
constructive proof for the existence of the desired grid in physical space. If the grid
control map is one-to-one then the composition of the grid controlmap and the inverse of
the harmonic maps exist so that the solution of the Poisson system is well defined.
In two dimensions, boundary orthogonality is obtained by applying Dirichlet-Neumann
boundary conditions for the harmonic map. In that case, the harmonic map is quasi-
conformal. This property shows the relation with orthogonal grid generation.
The use of harmonic maps and grid control maps for surface grid generation is also shortly
described. The two-dimensional Poisson systems can be directly extended to surface grid
generation on minimal surfaces (soap films). The extension to volume grid generation is
also given.
The construction of appropriate grid control maps such that the corresponding grid in
physical space has desired properties is the main issue of this chapter. The chosen
examples mainly concern simple well-defined geometries so that the reader is able to
recompute the grids. However, the in this chapter presented elliptic grid generation
methods have been implemented in ENGRID, NLR's multi-block grid generation code [20, 21,
22], and are nowadays used on a routinely basis to construct Euler or Navier-Stokes grids
in blocks and block-faces with complex geometrical shapes.
The construction of appropriate grid control maps for 3
D domains is less far developed than for 2D domains and surfaces. Further investigation is
expected in this direction.



Elliptic Generation Systems

S.P. Spekreijse,National Aerospace Laboratory NLR,The Netherlands

1 Introduction

Since the pioneering work of Thompson on elliptic grid generation it is known that systems of elliptic

second-order partial differential equations produce the best possible grids in the sense of smoothness and

grid point distribution. The grid generation systems of elliptic quasi-linear second-order partial differ-

ential equations are so-called Poisson systems with control functions to be specified. The secret of each

“good” elliptic grid is the method to compute the control functions [3].

Originally Thompson and Warsi introduced the Poisson systems by considering a curvilinear coordi-

nate system which satisfies a system of Laplace equations and which is transformed to another coordinate

system [1, 2]. Then this new coordinate system satisfies a system of Poisson equations with control func-

tions completely specified by the transformation between the two coordinate systems. However Thomp-

son did not advocate to use this approach for grid generation. Instead he proposed to use the Poisson

system with control functions specified directly rather than through a transformation [1]. Since then the

general approach is to compute the control functions at the boundary and to interpolate them from the

boundaries into the field [7, 8]. The standard approach used to achieve grid orthogonality and specified

cell height on boundaries has been the iterative adjustment of the control functions in the Poisson systems,

first introduced by Sorenson of NASA Ames in the GRAPE code in the 80s [5]. Various modifications

of this basic concept have been introduced in several codes, and the general approach is now common

[6, 7, 8]. Although successful, it appears that the method is not easy to apply in practice [4]. Even to-

day, new modifications are proposed to improve the grid quality and to overcome numerical difficulties

in solving the Poisson grid generation equations [6, 9, 16].

In this chapter we describe a useful alternative approach to specify the control functions. It is based

on Thompson’s and Warsi’s original idea to define the control functions by a transformation. The trans-

formation, which we call a grid control map, is a differentiable one-to-one mapping from computational

space to parameter space. The independent variables of the parameter space are harmonic functions in

physical space. The map from physical space to parameter space is called the harmonic map. The com-

position of the grid control map and the inverse of the harmonic map obeys the familiar Poisson systems

with control functions completely defined by the grid control map. The construction of appropriate grid

control maps such that the corresponding grid in physical space has desired properties is the main issue
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of this chapter.

One of the main advantages of this approach is that the method is non-iterative. If an appropriate grid

control map has been constructed then the corresponding grid control functions of the Poisson system are

computed and their values remain unchanged during the solution of the Poisson system. Picard iteration

appears to be a simple and robust method to solve the Poisson system with fixed control functions.

Another advantage is that the construction of an appropriate grid control map can be considered as a

numerical implementation of the constructive proof for the existence of the desired grid in physical space.

If the grid control map is one-to-one then the composition of the grid control map and the inverse of the

harmonic maps exist so that the solution of the Poisson system is well-defined.

This chapter is organized as follows. Section 2 concerns the two-dimensional case. Although pub-

lished earlier [19], the 2D Poisson system together with the expressions to compute the control func-

tions from the grid control map are given for completeness. The solution of the Poisson system by Pi-

card iteration is shortly described. Section 2.3 describes methods to construct appropriate grid control

maps. Boundary orthogonality is obtained by applying Dirichlet-Neumann boundary conditions for the

harmonic map and by applying cubic Hermite interpolation in parameter space. In that case, the harmonic

map is quasi-conformal. This observation leads to the construction of appropriate grid control maps such

that the solution of the Poisson system generates an orthogonal grid in physical space with boundary grid

points fixed on two adjacent edges but moved along the other two opposite edges. This result is similar to

that reported by Kang and Leal [13], although they used the Ryskin-Leal grid generation equations [15]

instead of the Poisson grid generation equations. Section 2.4 shows generated grids in physical space for

well-defined geometries so that the reader is able to recompute the grids (by the methods presented in this

chapter or by his/her own favourite methods for comparison). The corresponding constructed grid control

maps are shown as grids in parameter space.

In Section 3 is shortly described how the same methods to construct appropriate grid control maps

for two-dimensional grids can also be used for grid generation on surfaces in 3D physical space. It is

shown that surface grid generation on minimal surfaces (soap films) is in fact the same as 2D grid gener-

ation. Conceptually, the same methods can also be used for parametrically defined surfaces although the

numerical implementation is completely different.

The extension to volume grid generation is described in Section 4. The construction of appropriate

grid control maps for 3D domains is less well developed than for 2D domains. However, a method to

construct a grid control map has been proposed which works surprisingly well for many applications.

The now-standard procedure in multi-block structured grid generation codes is to first generate surface
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grids on block faces, both boundary and interior block interfaces, from grid point distributions placed on

the face edges by distribution functions. Then volume grids are generated within the blocks. For this rea-

son, the elliptic grid generation methods described in this chapter assume fixed position of the prescribed

boundary grid points.

2 Two-dimensional grid generation

2.1 Harmonic maps, grid control maps and Poisson systems

Consider a simply connected bounded domain D in two-dimensional space with Cartesian coordinates

~x = (x; y)T . Suppose thatD is bounded by four edges E1; E2; E3; E4. Let (E1; E2) and (E3; E4) be the

two pairs of opposite edges as shown in Fig.1.

A harmonic map is defined as a differentiable one-to-one map from D onto a unit square such that

1. the boundary of D is mapped onto the boundary of the unit square,

2. the vertices of D are mapped, in the proper sequence, onto the corners of the unit square,

3. the two components of the map are harmonic functions in the interior of D.

Let ~s : D 7! P be a harmonic map where the parameter space P is the unit square in a two-

dimensional space with Cartesian coordinates ~s = (s; t)T . Assume that

� s � 0 at edge E1 and s � 1 at edge E2,

� t � 0 at edge E3 and t � 1 at edge E4.

The problem of generating an appropriate grid in the physical domain D can be effectively reduced

to a simpler problem of generating an appropriate grid in the parameter space P , which can after that be

mapped into D, by using the inverse of the harmonic map ~x : P 7! D.

Define the computational space C as the unit square in a two-dimensional space with Cartesian coor-

dinates ~� = (�; �)T . A grid control map ~s : C 7! P is defined as a differentiable one-to-one map from C

onto P and maps a uniform grid in C to a non-uniform (in general) grid in P . Assume that

� s(0; �) � 0 and s(1; �) � 1,

� t(�; 0) � 0 and t(�; 1) � 1.

Then the computational coordinates also fulfill
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Figure 1: Composite map from computational (�; �) space to a domain D in Cartesian (x; y) space.

� � � 0 at edge E1 and � � 1 at edge E2,

� � � 0 at edge E3 and � � 1 at edge E4.

The composition of a grid control map ~s : C 7! P and the inverse of the harmonic map ~x : P 7! D

define a map ~x : C 7! D which transforms a uniform grid in C to a non-uniform (in general) grid in

D. The composite map obeys a quasi-linear system of elliptic partial differential equations, known as

the Poisson grid generation equations, with control functions completely defined by the grid control map.

The secret of each “good” elliptic grid generation method is the method of computing appropriate control

functions, which is thus equivalent to constructing appropriate grid control maps.

We will now derive the quasi-linear system of elliptic partial differential equations which the com-

posite mapping ~x = ~x(~s(~�)) has to fulfill. Suppose that the harmonic map and the grid control map are

defined so that the composite map exists. Introduce the two covariant base vectors

~a1 =
@~x

@�
= ~x� ; ~a2 =

@~x

@�
= ~x�; (1)

and define the covariant metric tensor components as the inner product of the covariant base vectors

aij = (~ai;~aj) ; i = f1; 2g; j = f1; 2g: (2)

The two contravariant base vectors ~a1 = r� = (�x; �y)
T and ~a2 = r� = (�x; �y)

T obey

(~ai;~aj) = �ij ; i = f1; 2g; j = f1; 2g; (3)

with �ij the Kronecker symbol. Define the contravariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2g; j = f1; 2g; (4)
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so that 0
B@ a11 a12

a12 a22

1
CA
0
B@ a11 a12

a12 a22

1
CA =

0
B@ 1 0

0 1

1
CA ; (5)

and

~a1 = a11~a1 + a12~a2 ; ~a
2 = a12~a1 + a22~a2;

~a1 = a11~a
1 + a12~a

2 ; ~a2 = a12~a
1 + a22~a

2: (6)

Introduce the determinant J2 of the covariant metric tensor: J2 = a11a22 � a212.

Now consider an arbitrary function � = �(�; �). Then � is also defined in domain D, and the Lapla-

cian of � is expressed as

4� = �xx + �yy =
1

J

��
Ja11�� + Ja12��

�
�
+
�
Ja12�� + Ja22��

�
�

�
; (7)

which may be found in the Appendix of this Handbook and in every textbook on Tensor Analysis and

Differential Geometry (for example see [23]). Take as special cases respectively � � � and � � �. Then

Eq.(7) yields

4� =
1

J

��
Ja11

�
�
+
�
Ja12

�
�

�
; 4� =

1

J

��
Ja12

�
�
+
�
Ja22

�
�

�
: (8)

Thus the Laplacian of � can also be expressed as

4� = a11��� + 2a12��� + a22��� +4��� +4���: (9)

Substitution of respectively � � s and � � t in this equation yields

4s = a11s�� + 2a12s�� + a22s�� +4�s� +4�s�; (10)

4t = a11t�� + 2a12t�� + a22t�� +4�t� +4�t�: (11)

Using these equations and the property that s and t are harmonic in domain D, thus 4s = 0 and

4t = 0, we find the following expressions for the Laplacian of � and �:
0
B@ 4�

4�

1
CA = a11 ~P11 + 2a12 ~P12 + a22 ~P22; (12)

where

~P11 = �T�1

0
B@ s��

t��

1
CA ; ~P12 = �T�1

0
B@ s��

t��

1
CA ; ~P22 = �T�1

0
B@ s��

t��

1
CA ; (13)
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and the matrix T is defined as

T =

0
B@ s� s�

t� t�

1
CA : (14)

The six coefficients of the vectors ~P11 = (P 1
11
; P 2

11
)T ; ~P12 = (P 1

12
; P 2

12
)T and ~P22 = (P 1

22
; P 2

22
)T are

the so called control functions. The six control functions are completely defined and easily computed for

a given grid control map ~s = ~s(~�). Different and less useful expressions of these control functions can

also be found in [1, 2].

Finally, substitution of � � ~x in Eq.(9) yields

4~x = a11~x�� + 2a12~x�� + a22~x�� +4�~x� +4�~x� : (15)

Substituting Eq.(12) into this equation and using the fact that 4~x � 0, we arrive at the familiar Poisson

grid generation system:

a11~x�� + 2a12~x�� + a22~x�� +
�
a11P 1

11 + 2a12P 1

12 + a22P 1

22

�
~x�

+
�
a11P 2

11 + 2a12P 2

12 + a22P 2

22

�
~x� = 0: (16)

Using Eqs.(2),(5) we find the following well-known expressions for the contravariant metric tensor

components:

J2a11 = a22 = (~x�; ~x�) ; J
2a12 = �a12 = �(~x�; ~x�) ; J

2a22 = a11 = (~x�; ~x�): (17)

Thus the Poisson grid generation system defined by Eq.(16) can be simplified by multiplication with

J2. Then we obtain:

a22~x�� � 2a12~x�� + a11~x�� +
�
a22P

1

11 � 2a12P
1

12 + a11P
1

22

�
~x�

+
�
a22P

2

11 � 2a12P
2

12 + a11P
2

22

�
~x� = 0: (18)

This equation, together with the expressions for the control functions P k
ij given by Eq.(13), is the

two-dimensional grid generation system. For a given grid control map, so that the six control functions

in Eq.(18) are given functions of � and �, boundary conforming grids in the interior of domainD are com-

puted by solving this quasi-linear system of elliptic partial differential equations with prescribed bound-

ary grid points as Dirichlet boundary conditions. The discretization and solution method of this Poisson

system is discussed in the next section. The construction of appropriate grid control maps such that the

corresponding grid in physical space has desired properties is discussed in the remaining sections.
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2.2 Discretization and solution method

Consider a uniform rectangular grid of (N + 1)� (M + 1) points in computational space C defined as

�i;j = �i = i=N ; �i;j = �j = j=M ; i = 0 : : : N; j = 0 : : : M: (19)

Assume that ~xi;j is prescribed on the boundary of this grid and consider the computation of ~xi;j in the

interior of the computational grid based on the solution of the Poisson system defined by Eq.(18).

Assume that a grid control map ~s : C 7! P has been constructed. Thus the values si;j and ti;j are

known at each grid point. At each interior grid point (i; j) 2 (1 : : : N � 1; 1 : : : M � 1), the six control

functions P 1
11

,P 2
11

,P 1
12

, P 2
12

,P 1
22

,P 2
22

defined by Eq.(13) are now easily computed using central differences

for the discretization of s��,s��,s�� ,s�,s� and t��,t��,t�� ,t� ,t�.

The iterative solution process of the nonlinear elliptic Poisson grid generation system defined by

Eq.(18) can be simply obtained by Picard iteration. Rewrite the Poisson system as

P~x�� � 2Q~x�� +R~x�� + S~x� + T~x� = 0 (20)

with

P = (~x�; ~x�) ; Q = (~x�; ~x�) ; R = (~x�; ~x�) ;

S = PP 1

11 � 2QP 1

12 +RP 1

22;

T = PP 2

11 � 2QP 2

12 +RP 2

22: (21)

The iterative solution by Picard iteration can be written as

P k�1~xk�� � 2Qk�1~xk�� +Rk�1~xk�� + Sk�1~xk� + T k�1~xk� = 0 (22)

where k is the Picard index and

P k�1 = (~xk�1� ; ~xk�1� ) ; Qk�1 = (~xk�1� ; ~xk�1� ) ; Rk�1 = (~xk�1� ; ~xk�1� ) ;

Sk�1 = P k�1P 1

11 � 2Qk�1P 1

12 +Rk�1P 1

22;

T k�1 = P k�1P 2

11 � 2Qk�1P 2

12 +Rk�1P 2

22: (23)

Thus a current approximate solution

~xk�1 =
n
~xk�1ij ; i = 0 : : : N; j = 0 : : :M

o
(24)

is improved by the following steps:

7



� Compute at interior grid points the coefficients P k�1,Qk�1,Rk�1,Sk�1,T k�1 by applying central

differences for the discretization of ~xk�1� and ~xk�1� . Note that the six control functions remain un-

changed during the iterative procedure.

� Discretize at interior grid points ~xk�� , ~xk�� , ~xk�� , ~xk� ,~xk� using central differences.

� After the discretization of ~xk��, ~x
k
��, ~xk�� , ~xk� , ~xk� we arrive at a linear system of equations for the

unknowns ~xki;j; i = 1 : : : N � 1; j = 1 : : : M � 1. At each interior grid point we have a nine-point

stencil. Boundary grid points are prescribed and remain unchanged.

This linear system can be solved by a black-box multigrid solver. Such a multigrid solver is called

twice to compute the two components xki;j and yki;j of ~xki;j . The solution of the linear system provides

a better approximate solution ~xk.

The following algorithm describes the computation of an interior grid in domain D with prescribed

boundary grid points and a given grid control map.

Algorithm 1. Grid generation.

1. Compute the six control functions from the grid control map.

2. Compute an initial grid in the interior of domain D by a simple algebraic grid generation method.

The quality of the initial grid is unimportant and severe grid folding is allowed. The initial grid is

used as starting solution for the Picard iteration process. The final grid will be independent of the

initial grid.

3. Solve the quasi-linear Poisson grid generation equations iteratively by Picard iteration. The fixed

position of the boundary grid points define Dirichlet boundary conditions. In general, a sufficiently

converged grid is obtained in about 10 Picard iterations. The residual is then typically decreased

by a factor 1000.

2.3 Construction of grid control maps

2.3.1 Laplace grids

The most simple grid control map is the identity map ~s = ~�. The six control functions are identical zero

and the Poisson grid generation system defined by Eq.(18) simplifies to a22~x�� � 2a12~x�� + a11~x�� = 0

which is equivalent with 4� = 0 and 4� = 0 according to Eq.(12). Grids based on this equation are

the so-called Laplace (or Harmonic) grids which were first introduced by Winslow [18]. The inherent
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smoothness of the Laplace operator makes the grid evenly spaced in the interior. Therefore, the quality

of a Laplace grid will only be acceptable as long as the boundary grid points are evenly spaced along the

edges.

This is illustrated in Fig.5 and Fig.6 where a region about a NACA0012 airfoil is subdivided into

four domains. The domains have common edges and more or less evenly spaced boundary grid points

are prescribed. Fig.6 shows Laplace grids in each domain. The result is not bad for this O-type Euler

mesh. Only smooth grids are required for the solution of the Euler equations for non-viscous flow, where

strong gradients near boundaries do not occur. Laplace grids provide no control about the angle distribu-

tion between internal grid lines and the boundary. This causes slope discontinuity of the grid lines across

internal domain boundaries, as shown in Fig.6.

The situation is completely different for Navier-Stokes type of meshes where the grid must contain

a boundary layer grid. Highly stretched grids are required for solutions of the Navier-Stokes equations

for viscous flow, where large gradients occur near boundaries. Fig.9 shows a region about a RAE2822

airfoil also subdivided into four domains. The boundary grid point distribution is highly dense near the

leading and trailing edge of the airfoil. Fig.10 shows the Laplace grids in the four domains. These grids

are unacceptable because the inherent smoothness of the Laplace operator causes evenly spaced grids so

that the interior grid contains no boundary layer at all. Therefore, Laplace grids are in general unusable

in most practice.

2.3.2 Arc length based grids

Consider domain D as shown in Fig.1. Assume that the boundary grid points are prescribed at the four

edges of D. A boundary conforming grid in the interior of domain D with an interior grid point distri-

bution which is a good reflection of the prescribed boundary grid point distribution can be obtained by

constructing a grid control map based on normalized arc length. In order to construct such a grid control

we define

� s � 0 at edge E1 and s � 1 at edge E2,

� s is the normalized arc length along edges E3 and E4,

� t � 0 at edge E3 and t � 1 at edge E4,

� t is the normalized arc length along edges E1 and E2.

For example this means that along edge E3 we define s(u) =
R u
0
k ~xu k du=

R
1

0
k ~xu k du where

~x : u 2 [0; 1] 7! (x; y) 2 R2 is a parametrization of edge E3 in the right direction. Thus ~s : @D 7! @P

9



is defined by these requirements. The two Laplace equations4s = 0 and4t = 0, together with the above

specified Dirichlet boundary conditions, define the harmonic map ~s : D 7! P . Note that this map only

depends on the shape of domain D and is independent of the prescribed boundary grid point distribution.

The boundary grid points are prescribed at the four edges of D. Thus ~x : @C 7! @D is prescribed.

Because ~x : @C 7! @D is prescribed and ~s : @D 7! @P is defined as described above, it follows that

~s : @C 7! @P is also defined.

From the preceding requirements it follows that

s(0; �) = 0 ; s(1; �) = 1 ; s(�; 0) = saE3
(�) ; s(�; 1) = saE4

(�); (25)

where the functions saE3
; saE4

are monotonically increasing, and

t(�; 0) = 0 ; t(�; 1) = 1 ; t(0; �) = taE1
(�) ; t(1; �) = taE2

(�); (26)

where the functions taE1
; taE2

are also monotonically increasing. The superscript a is used to indicate that

these functions measure the normalized arc length at the boundary grid points.

The grid control map ~s : C 7! P is now defined by the following two algebraic equations:

s = saE3
(�)(1� t) + saE4

(�)t; (27)

t = taE1
(�)(1 � s) + taE2

(�)s: (28)

Eq.(27) implies that a coordinate line � = constant is mapped to the parameter space P as a straight

line: s is a linear function of t, and Eq.(28) implies that a grid line � = constant is also mapped to P as a

straight line: t is a linear function of s. For given values of � and �, the corresponding s and t values are

found as the intersection point of the two straight lines. It can be easily verified that the grid control map

is a differentiable and one-to-one because of the positiveness of the Jacobian: s�t� � s�t� > 0.

The discrete computation of the grid control map is straightforward. For a grid of (N +1)� (M+1)

points, the distance between succeeding grid points at the boundary are computed as

�d0;j =k ~x0;j � ~x0;j�1 k ; �dN;j =k ~xN;j � ~xN;j�1 k ; j = 1 : : : M; (29)

�di;0 =k ~xi;0 � ~xi�1;0 k ; �di;M =k ~xi;M � ~xi�1;M k ; i = 1 : : : N: (30)

Define the length of edges E1; E2; E3; E4 by

LE1
=

MX
j=1

�d0;j ; LE2
=

MX
j=1

�dN;j ; LE3
=

NX
i=1

�di;0 ; LE4
=

NX
i=1

�di;M ; (31)
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and the normalized distances as

d0;j = �d0;j=LE1
; dN;j = �dN;j=LE2

; j = 1 : : : M; (32)

di;0 = �di;0=LE3
; di;M = �di;M=LE4

; i = 1 : : : N: (33)

The discrete components si;j and ti;j of the grid control map are computed at the boundary by

s0;j = 0 ; sN;j = 1 ; j = 0 : : : M; (34)

ti;0 = 0 ; ti;M = 1 ; i = 0 : : : N; (35)

and

si;0 = si�1;0 + di;0 ; si;M = si�1;M + di;M ; i = 1 : : : N; (36)

t0;j = t0;j�1 + d0;j ; tN;j = tN;j�1 + dN;j ; j = 1 : : : M: (37)

The interior values are defined according to Eqs.(27),(28) and are thus found by solving simultane-

ously the two linear algebraic equations:

si;j = si;0(1� ti;j) + si;M ti;j; (38)

ti;j = t0;j(1� si;j) + tN;jsi;j; (39)

for each pair (i; j) 2 (1 : : : N � 1; 1 : : : M � 1).

The next algorithm summarizes the computation of arc length based grid in the interior of D.

Algorithm 2. Arc length based grids.

1. Compute the four edge functions taE1
,taE2

,saE3
and saE4

from the boundary grid point distribution.

2. Compute the grid control map according to Eqs.(27),(28).

3. Compute the corresponding interior grid in D as described in Algorithm 1.

Illustrations of boundary conforming grids obtained with this grid control map are shown in Fig.7

and Fig.11. As opposed to Laplace grids, the interior grid point distribution is always a good reflection

of the prescribed boundary grid point distribution. Grid folding hardly ever occurs because both the grid

control map and the harmonic map are one-to-one. When grid folding occurs then it must be caused by

discretization errors [10]. Hence, grid folding will always disappear when the grid is sufficiently refined.

A shortcoming of this grid control map is that there is no control about the angle distribution between

interior grid lines and the boundary edges of the domain. It is often desired that the interior grid lines are

orthogonal at the boundary edges. For example, viscous flow simulations often require orthogonality of

the grid in a boundary layer. This can be achieved with a grid control map as constructed below.
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2.3.3 Grid orthogonality at the boundary

Consider domain D with prescribed boundary grid points. Suppose that it is desired to generate a bound-

ary conforming grid in the interior of D which is orthogonal at all four edges of domain D. This can be

achieved by imposing Dirichlet-Neumann boundary conditions for the harmonic map:

� s � 0 at edge E1 and s � 1 at edge E2,

� @s
@n

= 0 along edges E3 and E4, where n is the outward normal direction,

� t � 0 at edge E3 and t � 1 at edge E4,

� @t
@n

= 0 along edges E1 and E2, where n is the outward normal direction.

The two Laplace equations 4s = 0 and 4t = 0, together with the above specified boundary conditions,

define the harmonic map ~s : D 7! P . Again this map only depends on the shape of domain D and is

independent of the prescribed boundary grid point distribution.

The Neumann boundary conditions @s
@n

= 0 along edges E3 and E4 imply that a parameter line s =

constant in P will be mapped into domain D by the inverse of the harmonic map as a curve which is

orthogonal at those edges. Similarly, a parameter line t = constant in P will be mapped as a curve in D

which is orthogonal at edge E1 and edge E2. These properties can be used to construct a grid control map

such that the interior grid in D will be orthogonal at the boundary.

The boundary grid points are prescribed at the four edges of D. Thus ~x : @C 7! @D is prescribed.

Because ~x : @C 7! @D is prescribed and ~s : @D 7! @P is also defined , it follows that ~s : @C 7! @P is

also defined.

From the preceding requirements it follows that

s(0; �) = 0 ; s(1; �) = 1 ; s(�; 0) = soE3
(�) ; s(�; 1) = soE4

(�); (40)

where the functions soE3
; soE4

are monotonically increasing, and

t(�; 0) = 0 ; t(�; 1) = 1 ; t(0; �) = toE1
(�) ; t(1; �) = toE2

(�); (41)

where the functions toE1
; toE2

are also monotonically increasing. The superscript o is used to indicate that

these functions are constructed in a way to obtain grid orthogonality at the boundary.

The grid control map ~s : C 7! P is now defined by:

s = soE3
(�)H0(t) + soE4

(�)H1(t); (42)

t = toE1
(�)H0(s) + toE2

(�)H1(s): (43)
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where H0 and H1 are cubic Hermite interpolation functions defined as

H0(s) = (1 + 2s)(1� s)2;H1(s) = (3� 2s)s2; 0 � s � 1: (44)

Note that H0(0) = 1, H 0

0
(0) = 0, H0(1) = 0, H 0

0
(1) = 0 and H1(0) = 0, H 0

1
(0) = 0, H1(1) = 1,

H 0

1
(1) = 0. It follows from Eq.(42) that a coordinate line � = constant in C is mapped to parameter space

P as a cubic curve (with t as dependent variable) which is orthogonal at both edge E3 and edge E4 in P .

Such a curve in parameter space P will thus be mapped by the inverse of the harmonic map ~x : P 7! D

as a curve which is orthogonal at both edge E3 and edge E4 in D. Similar observations can be made for

coordinate lines � = constant. Thus the grid will be orthogonal at all four edges in domain D.

Grid orthogonality at boundaries may introduce grid folding. Fortunately, grid folding will not easily

arise. From Eq.(42) it follows that two different coordinate lines � = �1,� = �2, �1 6= �2, are mapped to

parameter space P as two disjunct cubic curves which are orthogonal at both edge E3 and edge E4 in P .

This is due to the fact that soE3
(�) and soE4

(�) are monotonically increasing functions. The same holds for

different coordinate lines � = �1,� = �2, �1 6= �2. For given values of � and �, the corresponding s and

t values are found as intersection point of two cubic curves. However, such two cubic curves may have

more than one intersection point. In that case grid folding will occur. However, in practice we hardly ever

encounter grid folding due to orthogonalization of the grid at the boundary.

We have described a method to obtain an orthogonal grid at all four edges of domain D. In practice,

orthogonality of the grid is often only desired at less than four edges. Suppose for example that it is only

desired to have an orthogonal grid at edge E3. Then take tE1
(�) = taE1

(�), tE2
(�) = taE2

(�), sE4
(�) =

saE4
(�) and sE3

(�) = soE3
(�). Furthermore, the grid control map ~s : C 7! P is such that a coordinate

line � = constant is mapped to P as a straight line and a coordinate line � = constant is mapped to P

as a parabolic curve (with t as dependent variable) which is only orthogonal at edge E3 in P . For given

values of � and �, the corresponding s and t values are then found as intersection point of a straight line

and a parabolic curve.

The discrete computation of the grid control map is more complicated when grid orthogonality is re-

quired. We have seen that for a grid control map based on normalized arc length, the functions taE1
,taE2

,saE3

and saE4
can be directly computed from the prescribed boundary grid points only. However, when grid or-

thogonality is required, the functions toE1
,toE2

,soE3
and soE4

can only be found by solving the Laplace equa-

tions 4s = 0 and 4t = 0 supplied with the above mentioned Dirichlet-Neumann boundary conditions.

The solution of the Laplace equations4s = 0 and4t = 0 supplied with the boundary conditions requires

an initial folding-free grid in the interior of domain D. Therefore, an orthogonal grid at the boundary is
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in general obtained in three steps:

Algorithm 3. Grid orthogonality at boundary.

1. Compute an initial boundary conforming grid in the interior ofD without grid folding. Such a grid

can be computed using the grid control map based on normalized arc length as described in Algo-

rithm 2.

2. Solve on this mesh 4s = 0 and 4t = 0 supplied with the above specified Dirichlet-Neumann

boundary conditions. A solution method is described in [19]. The solution at the boundary defines

the edge functions toE1
,toE2

,soE3
and soE4

.

3. Compute the grid control map according to Eqs.(42),(43).

4. Compute the corresponding interior grid in D as described in Algorithm 1.

Illustrations of boundary conforming grids obtained with this grid control map are shown in Fig.8

and Fig.12. The common interior boundary edges of the four domains can hardly be recognized anymore

because of the excellent grid orthogonality at these edges. The grid spacing of the interior grid is also

good in both cases.

In the next section we will prove that the harmonic map ~s : D 7! P supplied with Dirichlet-Neumann

boundary conditions is quasi-conformal. This observation leads to the construction of appropriate grid

control maps such that the corresponding grid is orthogonal, not only at the boundary but also in the in-

terior of D.

2.3.4 Orthogonal grids

There is a famous theorem in conformal mapping theory which states that each simply connected domain

D can be mapped conformally to a rectangleR in such a way that the vertices of domainD are mapped, in

the proper sequence onto the corners of the rectangle [11, 27]. The ratio of the length of two adjacent sides

of the rectangle is called the conformal module M which is a characteristic and fundamental property of

each domain.

Let ~u : D 7! R be the conformal map where R is the rectangle [0; 1] � [0;M ] in a two-dimensional

space with Cartesian coordinates ~u = (u; v)T . The components of the conformal map obey the Cauchy-

Riemann relations: 0
B@ ux

uy

1
CA =

0
B@ vy

�vx

1
CA (45)
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Hence 4u = 0 and 4v = 0 in the interior of domain D. Furthermore, we may assume that the map

~u : D 7! R obeys

� u � 0 at edge E1 and u � 1 at edge E2,

� v � 0 at edge E3 and v �M at edge E4.

From these boundary conditions and using the Cauchy-Riemann relations we can also conclude that

� @u
@n

= 0 along edges E3 and E4, where n is the outward normal direction,

� @v
@n

= 0 along edges E1 and E2, where n is the outward normal direction.

Thus the conformal map ~u : D 7! R is harmonic and obeys the same set of Dirichlet-Neumann boundary

conditions as the harmonic map ~s : D 7! P . Therefore the two maps are related to each other according

to

s = u ; t =
v

M
(46)

This means that the harmonic map is quasi-conformal and obeys0
B@ sx

sy

1
CA = M

0
B@ ty

�tx

1
CA (47)

Thus the two contravariant vectors are orthogonal but have different lengths. It is not difficult to show,

using the relations between covariant and contravariant vectors given by Eq.(6), that the covariant vectors

fulfill 0
B@ xs

ys

1
CA =

1

M

0
B@ yt

�xt

1
CA (48)

so that the inverse mapping obeys

M2~xss + ~xtt = 0 (49)

which is the well-known partial differential equation for quasi-conformal maps [4],page 96. It can also

be easily verified that the conformal module can be computed from

M =

Z
E2

@s

@n
d� (50)

where n is the outward normal direction and � a line element along edge E2 in D [11].

Conformal maps are angle preserving. The inverse of the conformal map ~u : D 7! R is also confor-

mal and maps an orthogonal grid in the rectangle R to an orthogonal grid in D. Therefore, an algorithm

to compute an orthogonal grid in the interior of D with a prescribed boundary grid point distribution at

all four edges may consist of the following steps
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1. Compute an initial boundary conforming grid in the interior ofD without grid folding. This can be

achieved using the grid control map based on normalized arc length.

2. Solve on this mesh 4s = 0 and 4t = 0 supplied with Dirichlet-Neumann boundary condi-

tions. Compute the edge functions toE1
,toE2

,soE3
and soE4

and the conformal module M according

to Eq.(50).

3. Map the edge functions inP to the rectangleR, using Eq.(46), and compute an orthogonal boundary

conforming grid in R.

4. Map the orthogonal grid inR to P , again using Eq.(46). This grid in P defines a grid control map

that will create an orthogonal grid in the interior of D.

Thus, a difficult problem of generating an orthogonal grid in a domainD can be effectively reduced to

a simpler problem of generating an orthogonal grid in the rectangle R. Unfortunately, there is no simple

algorithm available to generate an orthogonal grid in the interior of a rectangle with prescribed boundary

grid points at all four sides. The question of an existence proof for this problem still remains unanswered

[14]. Numerical experiments indicate that even for a rectangle it is probably not possible to generate an

orthogonal grid for all kinds of boundary grid point distributions [12].

However, if the boundary grid points have fixed positions on two adjacent edges of domain D but

are allowed to move along the boundary of the other two edges, then a simple algorithm does exist to

generate an orthogonal grid in D. This result is similar to that reported by Kang and Leal [13], although

they used the Ryskin-Leal grid generation equations [15] instead of the Poisson grid generation equations.

For example, suppose that the boundary grid points are fixed at edges E1 and E3 and are allowed to move

along edges E2 and E4. Then the algorithm becomes

Algorithm 4. Grid orthogonality.

1. Compute an initial boundary conforming grid in the interior of D without grid folding. Such a grid

can be computed using the grid control map based on normalized arc length as described in Algo-

rithm 2.

2. Solve on this mesh 4s = 0 and 4t = 0 supplied with Dirichlet-Neumann boundary conditions

and compute the edge functions toE1
,toE2

,soE3
and soE4

.

3. The initial position of the boundary grid points at edge E2 corresponds with the edge function toE2
.

Move the boundary grid points along edge E2 in such a way that there new position corresponds
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with toE1
. This is simply a matter of interpolation. The points along edge E4 should be moved such

that there new position corresponds with soE3
.

4. Define the grid control map as s(�; �) = soE3
(�) and t(�; �) = toE1

(�).

5. Compute the corresponding orthogonal grid in D as described in Algorithm 1.

The grid in parameter space P is a simple non-uniform rectangular mesh. Such a mesh also corre-

sponds to a non-uniform rectangular grid in the rectangle R so that the corresponding grid in D will be

indeed orthogonal.

An illustration of this algorithm is shown in Fig.13 which consists of two grids in a channel with a

circular arc. The lower part shows a grid obtained with Algorithm 3. The grid points are prescribed and

there position is fixed while grid orthogonality is obtained at all four edges. The upper part shows an

orthogonal grid obtained by Algorithm 4. The figure clearly demonstrates how the boundary grid points

have to move in order to obtain an orthogonal grid.

2.3.5 Complete grid control at the boundary

In Section 2.3.3 we have described the construction of a grid control map such that grid orthogonality

is obtained at the boundary of D. However, the method provides no precise control of the height of the

first grid cells along the boundary. In general, the cell height distributions of the first grid cell along the

boundary inD is fairly good as illustrated in Fig.8 and Fig.12. However, there are applications, specially

in grid boundary layers for viscous flows, where not only grid orthogonality but also grid spacing should

be precisely controlled. For example, it may be required that the first grid cell height is constant in the

complete grid boundary layer, in spite of convex or concave parts of the boundary shape.

In order to have precise control about both grid orthogonality and grid cell height we have to consider

more general grid control maps. Both the grid control map based on normalized arc length, defined by

Eqs.(27),(28), and the one based on Dirichlet-Neumann boundary conditions, defined by Eqs.(42),(43),

have the form

s = s(�; t) ; t = t(s; �) (51)

Grid control maps of this type have the advantage that the two families of grid lines are independent: a

grid line � = constant in C is mapped to parameter space P as a curve defined by s = s(�; t) which will

be mapped by the inverse of a harmonic map to a curve in domain D. For given values of � and �, the

corresponding grid point in P is found as the intersection point of the two curves s = s(�; t) , t = t(s; �).
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Figure 2: Boundary conditions for both control of orthogonality and first grid cell height.

When the boundary grid point distribution is changed in one set of opposite edges and remains unchanged

in the other set, then one family of grid lines remains unchanged in both P and D.

Suppose that grid orthogonality and first-cell height specification are required at all four edges. Then

the boundary conditions for the grid control map defined by Eq.(51) are shown in Fig.2. The boundary

condition @s=@t = 0 at E3 and E4 in (�; t)-space is needed for grid orthogonality at E3 and E4 in D.

The values of @s=@� at E1 and E2 in (�; t)-space control the cell height of the first grid cells at E1 and

E2 in D. Similarly, the boundary condition @t=@s = 0 at E1 and E2 in (s; �)-space is needed for grid

orthogonality atE1 and E2 inD. The values of @t=@� at E3 and E4 in (s; �)-space control the cell height

of the first grid cells at E3 and E4 in D.

The algorithm for complete control of both grid orthogonality and cell height along the four edges

becomes

Algorithm 5. Complete grid control at boundary.

1. Use Algorithm 3 to compute an initial boundary conforming grid in the interior of D which is or-

thogonal at the boundary. The corresponding grid control map is based on Eqs.(42),(43).

2. Compute @s=@� at E1 and E2 in (�; t)-space from Eq.(42). Compute @t=@� at E3 and E4 in (s; �)-

space from Eq.(43). Adapt @s=@� and @t=@� such that the grid in domain D gets the desired grid

cell height distribution along the corresponding edges. Note that the harmonic map and its inverse

only depend on the shape of domain D. Therefore it is possible to compute how a change, in for

example @s=@� at E1 in (�; t)-space, will change the cell height along edge E1 in D.
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3. Compute s = s(�; t) in (�; t) space such all boundary conditions are satisfied. Also compute t =

t(s; �) in (s; �) space such that all boundary conditions are satisfied. Compute the corresponding

grid control map ~s : C 7! P for given values of � and �. The corresponding grid point inP is found

as the intersection point of the two curves s = s(�; t) , t = t(s; �).

4. Compute the corresponding interior grid in D as described in Algorithm 1.

The question remains how to compute s = s(�; t) and t = t(s; �) such that all boundary conditions

are fulfilled. The boundary data s(0; t), s(1; t),s(�; 0),s(�; 1) and @s=@�(0; t), @s=@�(1; t), @s=@t(�; 0),

@s=@t(�; 1), can be interpolated by using a bicubically blended Coon’s patch [25, 26]. However, the use of

such an algebraic interpolation method has a severe shortcoming because twist vectors have to be spec-

ified at the four corners.In general, the tangent boundary conditions @s=@�, @s=@t, are conflicting at a

corner when the two edges of domain D are not orthogonal at the corresponding vertex. In that case the

twist vector is not well-defined at the corner. Because of the conflicting tangent boundary conditions at

the corners, we prefer to apply an elliptic partial differential equation to interpolate the boundary data.

A fourth-order elliptic operator is needed to satisfy all boundary conditions. Therefore the biharmonic

equations

44s = 0; (52)

where 4 = @2=@�2 + @2=@t2, and

44t = 0; (53)

where 4 = @2=@s2 + @2=@�2 is a proper choice. The advantage of the use of the biharmonic equation

to interpolate the boundary data is that the solution is always a smooth function even when the tangent

boundary conditions are conflicting at the corners. A disadvantage is that the biharmonic operator does

not fulfill a maximum principle. When there is a grid boundary layer along for example edge E1 inD then

the monotonic boundary functions soE3
(�) and soE4

(�) have very small values in a large part of the interval

0� � � 1. In that case, the solution of the biharmonic equation may have small negative values in the

interior, which is of course unacceptable. This problem is solved by applying a change in variables. In

fact we solve44f = 0 where f : s 2 [0; 1] 7! [0; 1] is a monotonic function which maps a unit interval

onto a unit interval. The boundary conditions for s are transferred to corresponding boundary conditions

for f . After solving 44f = 0, we find f values at interior grid points and the corresponding s values

are found using f�1. In practice, we define f : s 2 [0; 1] 7! [0; 1] such that f(1
2
(soE3

(�) + soE4
(�))) � �.

A similar change in variable is used for the grid control function t = t(s; �).
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The biharmonic equations are solved by the black-box biharmonic solver BIHAR [28] which is avail-

able on the electronic mathematical NETLIB library.

Algorithm 5 describes complete boundary control for both grid orthogonality and grid spacing. It is

also possible to have only grid spacing control without boundary grid orthogonality. In that case, Algo-

rithm 2 must be used instead of Algorithm 3 in the first step of Algorithm 5. An illustration of the result

of grid spacing control is shown in Fig.14 through Fig.17. The same test case was also used by Eiseman

[17]. The upper side of the domain is convex, the lower side is concave. The boundary grid points are

prescribed and evenly distributed. Fig.14 shows a Laplace grid with the typical behaviour near the con-

vex and concave parts of the boundary. Fig.15 shows the grid with mesh spacing control at the upper

and lower side. Clearly, the cell height becomes constant at both the convex and concave sides. Fig.16

shows the grid with only grid orthogonality at the convex and concave sides and Fig.17 shows the grid

with combined control of both mesh spacing and grid orthogonality at the convex and concave sides.

2.4 Best practices

In this section we show how the previous discussed algorithms work in practice. The chosen examples

mainly concern simple well-defined geometries so that the reader is able to recompute the generated grids.

In all cases, the boundary grid points are pre-defined and their location is fixed.

Example 1. Triangular domain.

This example illustrates Algorithm 3 to obtain grid orthogonality at the boundary. Fig.19 shows the

grid obtained with Algorithm 2. The corresponding grid control map, based on Eqs.(27),(28), is shown

in Fig.18 as a grid in parameter space P . Notice that the grid lines are straight in P . Fig.21 shows the

grid in parameter space obtained by solving 4s = 0 and 4t = 0 on the grid shown in Fig.19 supplied

with Neumann boundary conditions on the two bottom edges of the triangle. It should be noticed that

although this grid control map is completely different from the grid control map shown in Fig.18, the

corresponding grid in the interior of the triangle will still be the same. Fig.22 shows the new grid control

map based on Eqs.(42),(43). Thus the position of the boundary grid points is the same in both Fig.22

and Fig.21. Notice that the grid is orthogonal at the left and bottom edge of P . These two edges in P

correspond with the two bottom edges of the triangle. The corresponding grid is shown in Fig.23. The

grid is clearly orthogonal at the two bottom edges of the triangle. Fig.24 shows the nice behaviour of the

grid near the O-type singularity.

Example 2. Circular domain.

This example illustrates Algorithm 5 for complete grid control at the boundary. The prescribed
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boundary grid points are evenly spaced as shown in Fig.26. The grid in parameter space P , based on

Eqs.(27),(28), is shown in Fig.25 and is thus uniform so that the corresponding grid in Fig.26 is a Laplace

grid. Fig.27 shows the grid in parameter space obtained by solving 4s = 0 and 4t = 0 supplied

with Neumann boundary conditions at all four sides. Fig.28 shows the new grid control map based on

Eqs.(42),(43). This grid in parameter space is no longer uniform but remains rectangular because of

the symmetry in both geometry and boundary grid. The corresponding grid in physical space, shown in

Fig.29, is thus orthogonal as explained in Section 2.3.4. Notice the bad mesh spacing along the bound-

ary of this orthogonal grid. The adapted grid in parameter space to obtain also a good mesh spacing is

shown in Fig.30. This adapted grid is obtained by the method described in Section 2.3.5. Fig.31 shows

the corresponding grid in physical space and demonstrates the successful combination of boundary grid

orthogonality and good mesh spacing.

Example 3. Domain bounded by semi-circles on the four sides of the unit square.

This geometry is also used by Duraiswami [11] and Eça [12]. The prescribed boundary grid points are

no longer evenly spaced but dense near the four corners of the domain. Fig.32 shows the grid in parameter

space based on Eqs.(27),(28). Fig.33 shows the corresponding grid in physical space. Fig.34 shows the

grid in parameter space obtained by solving 4s = 0 and 4t = 0 supplied with Neumann boundary

conditions at all four sides. Fig.35 shows the new grid control map based on Eqs.(42),(43). This grid

in parameter space is rectangular because of the symmetry in both geometry and boundary grid. The

corresponding grid in physical space, shown in Fig.36, is thus orthogonal as explained in Section 2.3.4.

The adapted grid in parameter space to obtain also a good mesh spacing is shown in Fig.37 and Fig.38

shows the result in physical space.

Example 4. Degenerated domains.

Two degenerated domains are considered: a lune bounded by the curves y = x(1 � x) and y =

�x(1�x2) and a trilateral. The lune has two degenerated edges, the trilateral only one. Both geometries

are also used by Duraiswami [11] and Eça [12].

In case of the lune, an evenly spaced boundary grid point distribution is used so that the grid in param-

eter space based on Eqs.(27),(28) is uniform and the corresponding grid in physical space is harmonic.

See Fig.39 and Fig.40. Fig.41 shows the grid in parameter space obtained by solving4s = 0 and4t = 0

supplied with Neumann boundary conditions at the two non-degenerated edges. Notice the large change

in the position of the boundary grid points in parameter space compared to the initial uniform grid. Fig.42

shows the new grid control map based on Eqs.(42),(43). This grid in parameter space is almost rectangu-

lar. The corresponding grid in physical space, shown in Fig.43, is therefore almost orthogonal.
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For the trilateral, we only show the final grid in parameter space, obtained by Algorithm 5, and the

corresponding grid in physical space. See Fig.44 and Fig.45.

Example 5. Navier-Stokes grid around a complex artificial boundary.

This example is used to demonstrate the robustness of the proposed algorithms. Fig.46 shows the grid

in parameter space based on Eqs.(27),(28) and Fig.47 shows the corresponding C-type Navier-Stokes grid

in physical space. Fig.49 shows the grid in parameter space obtained by solving 4s = 0 and 4t = 0

with Neumann boundary conditions at the lower boundary of the domain (three edges). Fig.50 shows the

new grid in parameter space based on Eqs.(42),(43). The grid is orthogonal at the left,right and lower side

of the parameter space. The corresponding grid in physical space is shown in Fig.51 and Fig.52.

3 Surface grid generation

The concepts of harmonic maps and grid control maps as used for grid generation in 2D domains can also

be used for grid generation on surfaces in 3D.

Consider a surface S bounded by four edges E1; E2; E3; E4. Let (E1; E2) and (E3; E4) be the two

pairs of opposite edges as shown in Fig.3.

A harmonic map is defined as a differentiable one-to-one map from S onto a unit square such that

1. the boundary of S is mapped onto the boundary of the unit square,

2. the vertices of S are mapped, in the proper sequence, onto the corners of the unit square,

3. the two components of the map are harmonic functions on S . This means that the two components

obey the Laplace-Beltrami equations for surfaces (see Section 5, Part II of the Appendix of this

Handbook).

Let ~s : S 7! P be a harmonic map where the parameter space P is the unit square in a two-

dimensional space with Cartesian coordinates ~s = (s; t)T . Thus 4s = 0 and 4t = 0 where 4 is the

Laplace-Beltrami operator for surfaces [23].

The problem of generating an appropriate grid on surface S can be effectively reduced to a simpler

problem of generating an appropriate grid in the parameter space P , which can after that be mapped on

S , by using the inverse of the harmonic map ~x : P 7! S .

Define the computational space C as the unit square in a two-dimensional space with Cartesian coor-

dinates ~� = (�; �)T . A grid control map ~s : C 7! P is defined as a differentiable one-to-one map from C

onto P and maps a uniform grid in C to a , in general, non-uniform grid in P .
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Figure 3: Composite map from computational (�; �) space to a surface S in Cartesian (x; y; z) space.

The composition of a grid control map ~s : C 7! P and the inverse of the harmonic map ~x : P 7! S

defines a map ~x : C 7! S which transforms a uniform grid in C to a, in general, non-uniform grid on

surface S . The same ideas as used for 2D domains can be applied to construct appropriate grid control

maps such that the corresponding surface grid has desired properties.

For example, assume that the boundary grid points are prescribed on surface S and suppose that it

is desired to construct a boundary conforming grid on S which is orthogonal at all four edges. Then the

same Neumann boundary conditions as used in Section 2.3.3. must be used to define the harmonic map.

Furthermore, the grid control map must be defined by Eqs.(42),(43). Then the composite map defines a

boundary conforming grid on S which is orthogonal at all four edges.

However, the numerical implementation of these ideas is different from the 2D case because the com-

posite map no longer fulfills a simple Poisson system as defined by Eq.(18). There is an exception, namely

when S is a minimal surface. A minimal surface has zero mean curvature, and its shape is a soap film

bounded by its four edges. There is a famous theorem in Differential Geometry which states that the

Laplace-Beltrami operator applied on the position vector of an arbitrary surface S obeys

4~x = 2H~n; (54)

where ~n is the unit vector normal to the surface and H is the mean curvature. (see Section 5, Part II of

the Appendix of this Handbook or Dierkes et. al. [24] , Theorem 1, page 71). The requirement of zero

mean curvature implies

4~x = 0: (55)

Thus for minimal surfaces we also have4s = 0,4t = 0 and4~x = 0. Following the same derivation

as in Section 2.1 for 2D domains, we find that the composite map obeys the same Poisson system given by

Eq.(18) (for more details see [19]). Thus an interior grid point distribution on a minimal surface is found
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by solving Eq.(18) with the prescribed boundary grid points as Dirichlet boundary conditions. The only

difference compared to the two-dimensional case is that now ~x = (x; y; z)T instead of ~x = (x; y)T . The

same ideas to construct appropriate grid control maps and their corresponding grids in 2D domains can

also be directly applied to minimal surfaces. In fact, all previous discussed 2D examples are generated as

minimal surface grids where the four boundary edges are lying in a plane in three-dimensional space.

Examples of characteristic minimal surface grids are shown in Fig.53 through Fig.57. Fig.53 is a so-

called square Scherk surface [24]. Fig.54 shows what happens when the boundary edges of the Scherk

surface are replaced by semi-circular arcs. Fig.55 and Fig.56 show the change in the shape of the min-

imal surface when these semi-circular arcs are bend together. Boundary orthogonality is imposed at all

four sides for all these three cases. Because of the symmetry in both geometry and boundary grid point

distribution, the generated surface grids are not only orthogonal at the boundary but also in the interior.

Finally, Fig.57 is Schwarz’s P-surface [24], which is in fact constructed as a collection of connected min-

imal surfaces.

In general, surface S is not a minimal surface but a parametrically defined surface with a prescribed

geometrical shape given by a map ~x : Q 7! S where Q is some parameter space defined as a unit square

in 2D. In order to construct, for example, a boundary conforming grid on S which is orthogonal at all four

edges, we solve on an initial surface grid on S the Laplace-Beltrami equations with the same Neumann

boundary conditions as used in Section 2.3.3. The solution can be written as a map ~s : Q 7! P . The ap-

propriate grid control map, defined by Eqs.(42),(43), defines a non-uniform grid in P . The corresponding

grid in Q can then be found by using the inverse map ~s�1 : P 7! Q. This is done numerically in a way

described in [19]. Once the corresponding grid inQ is found, then the corresponding surface grid on S is

computed using the parametrization ~x : Q 7! S . This new surface grid on S differs from the initial sur-

face grid S . The complete process should be repeated until the surface grid on S (and the corresponding

grids in parameter space P andQ) do not change anymore. In practice, only a few (2-5) iterations appear

to be sufficient. After convergence, the final surface grid will not only be orthogonal at the boundary but

is also independent of the parametrization and only depends on the shape of the surface and the position

of the boundary grid points.

4 Volume grid generation

Consider a simply connected bounded domain D in three-dimensional space with Cartesian coordinates

~x = (x; y; z)T . Suppose thatD is bounded by six faces F1; F2; F3; F4; F5; F6. Let (F1; F2) , (F3; F4) and

24



1 2

3

4

5

6

1 2

3

4

5

6

F
1

F2

F
3

F
4

F
5

F
6

E
9

E
7

E
3

E
1

E
6

E
10

E
5

E
11

E
4

E
2

E
8 E

12

ζ

Computational space C

1

1

1

0

Parameter space P Domain D

1

1

1

0 x

y

z

s

t

u

ξ

η

Figure 4: Composite mapping from computational (�; �; �) space to a domain D in Cartesian (x; y; z)

space.

(F5; F6) be the three pairs of opposite faces. Furthermore, consider the twelve edges fEi; i = 1 : : : 12g

and assume that these edges are related to the six faces as shown in Fig.4

In 3D, a harmonic map is defined as a differentiable one-to-one map from D onto a unit cube such

that

1. the boundary of D is mapped onto the boundary of the unit cube,

2. the vertices,edges and faces of D are mapped onto the corresponding vertices,edges and faces of

the unit cube,

3. the three components of the map are harmonic functions in the interior of D.

Let~s : D 7! P be a harmonic map where the parameter spaceP is the unit cube in a three-dimensional

space with Cartesian coordinates ~s = (s; t; u)T . Inside D the components obey

4s = sxx + syy + szz = 0 ; 4t = txx + tyy + tzz = 0 ; 4u = uxx + uyy + uzz = 0 : (56)

Define the computational space C as the unit cube in a three-dimensional space with Cartesian coordinates

~� = (�; �; �)T . A grid control map ~s : C 7! P is defined as a differentiable one-to-one map from C onto

P and maps a uniform grid in C to a , in general, non-uniform grid in P .

The composition of a grid control map ~s : C 7! P and the inverse of the harmonic map ~x : P 7! D

defines a map ~x : C 7! D which transforms a uniform grid in C to a, in general, non-uniform grid in D.

As in 2D, the composite map obeys a quasi-linear system of elliptic partial differential equations, known

as the Poisson grid generation equations, with control functions completely defined by the grid control

map.
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The derivation of the Poisson grid generation equations can be done along the same lines as for the 2D

case. Suppose that the harmonic map and grid control map are defined so that the composite map exists.

Introduce the three covariant base vectors

~a1 = ~x� ; ~a2 = ~x� ; ~a3 = ~x� : (57)

and the covariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2; 3g; j = f1; 2; 3g: (58)

The three contravariant base vectors~a1 = r� = (�x; �y; �z)
T , ~a2 = r� = (�x; �y; �z)

T and~a3 = r� =

(�x; �y; �z)
T obey

(~ai;~aj) = �ij ; i = f1; 2; 3g; j = f1; 2; 3g: (59)

Define the contravariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2; 3g; j = f1; 2; 3g; (60)

so that 0
BBBB@

a11 a12 a13

a12 a22 a23

a13 a23 a33

1
CCCCA

0
BBBB@

a11 a12 a13

a12 a22 a23

a13 a23 a33

1
CCCCA =

0
BBBB@

1 0 0

0 1 0

0 0 1

1
CCCCA : (61)

Define J2 as the determinant of the covariant metric tensor.

Consider an arbitrary function � = �(�; �; �). Then � is also defined in domain D and the Laplacian

of � can be expressed as

4� =
1

J

��
Ja11�� + Ja12�� + Ja13��

�
�
+
�
Ja12�� + Ja22�� + Ja23��

�
�

+
�
Ja13�� + Ja23�� + Ja33��

�
�

�
: (62)

As in the two-dimensional case, substitution of � � �, � � � and � � � into this equation yields expres-

sions for4�, 4� and 4� . Combining these expressions with Eq.(62) gives

4� = a11��� + 2a12��� + 2a13��� + a22��� + 2a23��� + a33��� +4��� +4��� +4��� (63)

Substitute � = (s; t; u)T in Eq.(63) and use the property that s, t and u are harmonic in domain D, i.e.

4s = 0 ,4t = 0 and4u = 0. Then the following expressions for the Laplacian of � , � and � are found:
0
BBBB@
4�

4�

4�

1
CCCCA = a11 ~P11 + 2a12 ~P12 + 2a13 ~P13 + a22 ~P22 + 2a23 ~P23 + a33 ~P33; (64)
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where

~P11 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ; ~P12 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ; ~P13 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ;

~P22 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ; ~P23 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ; ~P33 = �T�1

0
BBBB@

s��

t��

u��

1
CCCCA ; (65)

and the matrix T is defined as

T =

0
BBBB@

s� s� s�

t� t� t�

u� u� u�

1
CCCCA : (66)

The 18 coefficients of the six vectors ~P11,~P12,~P13; ~P22,~P23,~P33 are so called control functions. Thus the

18 control functions are completely defined and easily computed for a given grid control map ~s = ~s(~�).

Finally, substitution of � � ~x in Eq.(63) and using the fact that 4~x � 0 we arrive at the following

equation

a11~x�� + 2a12~x�� + 2a13~x�� + a22~x�� + 2a23~x�� + a33~x�� +4�~x� +4�~x� +4�~x� = 0: (67)

The final form of the Poisson grid generation system can now be derived from this equation by substitu-

tion of Eq.(64),by multiplication with J2, and by expressing the contravariant tensor components in the

covariant tensor components according to Eq.(61). The result can be written as:

�11~x�� + 2�12~x�� + 2�13~x�� + �22~x�� + 2�23~x�� + �33~x��

+
�
�11P 1

11 + 2�12P 1

12 + 2�13P 1

13 + �22P 1

22 + 2�23P 1

23 + �33P 1

33

�
~x�

+
�
�11P 2

11 + 2�12P 2

12 + 2�13P 2

13 + �22P 2

22 + 2�23P 2

23 + �33P 2

33

�
~x�

+
�
�11P 3

11 + 2�12P 3

12 + 2�13P 3

13 + �22P 3

22 + 2�23P 3

23 + �33P 3

33

�
~x� = 0; (68)

with

�11 = a22a33 � a223 ; �
12 = a13a23 � a12a33 ; �

13 = a12a23 � a13a22 ;

�22 = a11a33 � a213 ; �
23 = a13a12 � a11a23 ; �

33 = a11a22 � a212; (69)

and

a11 = (~x�; ~x�) ; a12 = (~x�; ~x�) ; a13 = (~x�; ~x�) ;

a22 = (~x� ; ~x�) ; a23 = (~x�; ~x�) ; a33 = (~x� ; ~x�) : (70)
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This equation, together with the expressions for the control functions P k
ij given by Eq.(65), forms

the 3D grid generation system. For a given grid control map, so that the 18 control functions in Eq.(68)

are given functions of (�; �; �), boundary conforming grids in the interior of domain D are computed by

solving this quasi-linear system of elliptic partial differential equations with prescribed boundary grid

points as Dirichlet boundary conditions.

The construction of appropriate grid control maps for 3D domains is less well developed than for 2D

domains. In [19], a grid control map has been proposed which works surprisingly well for many applica-

tions. The grid control map is the 3D extension of the 2D grid control map defined by Eqs.(27),(28). The

map ~s : C 7! P is defined by

s = sE1
(�)(1 � t)(1� u) + sE2

(�)t(1� u) + sE3
(�)(1� t)u+ sE4

(�)tu; (71)

t = tE5
(�)(1 � s)(1� u) + tE6

(�)s(1 � u) + tE7
(�)(1 � s)u+ tE8

(�)su; (72)

u = uE9
(�)(1� s)(1� t) + uE10

(�)s(1� t) + uE11
(�)(1� s)t+ uE12

(�)st: (73)

where the twelve edge functions sE1
; : : : ; uE12

measure the normalized arc length along the correspond-

ing twelve edges of domain D (see Fig.4).

Eq.(71) implies that a grid plane � = constant is mapped to the parameter spaceP as a bilinear surface:

s is a bilinear function of t and u. Similarly, Eq.(72) and Eq.(73) imply that grid planes � = constant and

� = constant are also mapped to the parameter space P as bilinear surfaces. For a given computational

coordinate (�; �; �) the corresponding (s; t; u) value is found as the intersection point of three bilinear

surfaces. Newton iteration is used to compute the intersection points. It can be easily verified that two

bilinear surfaces corresponding to two different �-values will never intersect in parameter space P . The

same is true for two different � or � values. This observation indicates that the grid control map is a

differentiable one-to-one mapping.

An illustration of a volume grid computed by solving Eq.(68), with the grid control map defined by

Eqs.(71),(72),(73), is shown in Fig.58 through Fig.61. The domain is a semi-torus. The prescribed bound-

ary grid points on the surface of the semi-torus are shown in Fig.58. Fig.59 shows the surface grid on the

two exterior circular grid planes. Fig.60 shows the computed interior grid depicted on some internal circu-

lar planes. Fig.61 shows the computed interior grid on the circular plane exactly halfway inside the torus.

The mesh spacing of the interior grid is excellent despite the concave boundary. The angles between the

interior grid lines and the boundary surface are reasonable but no longer orthogonal. This is not surprising

because the grid control map provides no control about the angle distribution between interior grid lines

and the boundary of the domain.
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5 Research issues and summary

The grid generation systems of elliptic quasi-linear second-order partial differential equations are the fa-

miliar so-called Poisson systems with control functions to be specified. In this chapter, a Poisson system

is considered as a system of partial differential equations which the composition of a grid control map

and the inverse of a harmonic map has to obey. The control functions in the Poisson system are then

completely defined by the grid control map. Boundary conforming grids in physical space are computed

by solving the Poisson system with control functions specified by a grid control map.

One of the main advantages of this approach is that the method is non-iterative. If an appropriate

grid control map has been constructed then the corresponding grid control functions of the Poisson sys-

tem are computed and their values remain unchanged during the solution of the Poisson system. Another

advantage is that the construction of an appropriate grid control map can be considered as a numerical im-

plementation of the constructive proof for the existence of the desired grid in physical space. If the grid

control map is one-to-one then the composition of the grid control map and the inverse of the harmonic

maps exist so that the solution of the Poisson system is well-defined.

In two dimensions, boundary orthogonality is obtained by applying Dirichlet-Neumann boundary

conditions for the harmonic map. In that case, the harmonic map is quasi-conformal. This property shows

the relation with orthogonal grid generation.

The use of harmonic maps and grid control maps for surface grid generation is also shortly described.

The two-dimensional Poisson systems can be directly extended to surface grid generation on minimal

surfaces (soap films). The extension to volume grid generation is also given.

The construction of appropriate grid control maps such that the corresponding grid in physical space

has desired properties is the main issue of this chapter. The chosen examples concern mainly simple well-

defined geometries so that the reader is able to recompute the grids. However, the elliptic grid generation

methods described in this chapter have been implemented in ENGRID, NLR’s multi-block grid generation

code [20, 21, 22], and are nowadays used on a routinely basis to construct Euler or Navier-Stokes grids

in blocks and block-faces with complex geometrical shapes.

The construction of appropriate grid control maps for 3D domains is less well developed than for 2D

domains and surfaces. Further investigation is expected in this direction.
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6 Further information

The book of Thompson,Warsi and Mastin [1] is still the best introduction to elliptic grid generation sys-

tems. Also the book of Knupp and Steinberg [4] is a valuable source about the fundamentals of structured

grid generation and related topics, like Tensor Analysis and Differential Geometry. The book of Kreyszig

[23] and Dierkes et.al. [24] are excellent textbooks about Differential Geometry and Tensor Analysis.

The proceedings of the grid generation conferences [29, 30, 31], the VKI lecture series about grid

generation [32, 33], and the NASA conference publications [34, 35] contain a lot of useful information

about the application of elliptic grid generation systems, often embedded in multi-block grid generation

systems.

The Journal of Computational Physics provides many good more or less fundamental articles about

elliptic grid generation systems.
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Z

Figure 5: Domain boundaries near NACA0012 air-

foil. The location of the grid points on the domain

boundaries are prescribed and fixed.

XY

Z

Figure 6: Laplace grid. Grid control map is the

identity map.

XY

Z

Figure 7: Arc length based grid.

XY

Z

Figure 8: Grid with boundary orthogonality.

Boundary orthogonality makes the grid smooth

across internal domain boundaries.
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Z

Figure 9: Region about RAE2822 airfoil subdi-

vided into four domains.

XY

Z

Figure 10: Laplace grid near airfoil. Grid control

map is the identity map.
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Z

Figure 11: Arc length based grid.
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Figure 12: Grid with boundary orthogonality.
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Figure 13: Orthogonal grid generation by boundary grid point movement along an edge. The grid in the

lower part is only orthogonal at the boundary. The grid in the upper part is also orthogonal in the interior.
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Figure 14: Laplace grid.
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Figure 15: Grid with cell height control at upper and

lower side.
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Figure 16: Grid with boundary orthogonality at up-

per and lower side.
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Figure 17: Grid with both cell height control and

boundary orthogonality at upper and lower side.
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Figure 18: Initial grid in parameter space based on

normalized arc length.
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Z

Figure 19: Corresponding grid in physical space.
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Figure 20: Blow up near O-type singularity.
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Figure 21: Grid in parameter space obtained by

solving Laplace equations with Neumann boundary

conditions at the two bottom edges of the triangle.
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Z

Figure 22: New grid in parameter space for bound-

ary orthogonality. Position of boundary grid points

are the same as in Fig.21.
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Figure 23: Corresponding grid in physical space.
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Z

Figure 24: Blow up near O-type singularity.
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Figure 25: Initial uniform grid in parameter space

based on normalized arc length.
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Figure 26: Corresponding Laplace grid in physical

space.

X

Y

Z

Figure 27: Grid in parameter space obtained by

solving the Laplace equations with Neumann

boundary conditions at all four sides.

X
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Z

Figure 28: New grid in parameter space for bound-

ary orthogonality at all four sides. Position of

boundary points are the same as in Fig.27.
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Z

Figure 29: Corresponding grid in physical space.

Interior grid is also orthogonal.
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Figure 30: Adapted grid in parameter space for

complete boundary control.
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Figure 31: Corresponding grid in physical space.

41



X

Y

Z

Figure 32: Initial grid in parameter space based on

normalized arc length.
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Figure 33: Corresponding grid in physical space.
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Figure 34: Grid in parameter space obtained by

solving the Laplace equations with Neumann

boundary conditions at all four sides.
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Z

Figure 35: New grid in parameter space for bound-

ary orthogonality. Position of boundary grid points

are the same as in Fig.34.
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Figure 36: Corresponding grid in physical space.

Interior grid is also orthogonal.
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Figure 37: Adapted grid in parameter space for

complete boundary control.
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Figure 38: Corresponding grid in physical space.
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Figure 39: Initial uniform grid in parameter space

based on normalized arc length.
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Figure 40: Corresponding Laplace grid in physical

space.
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Figure 41: Grid in parameter space obtained by

solving Laplace equations with Neumann boundary

conditions at the two non-degenerated edges.
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Figure 42: New grid in parameter space for bound-

ary orthogonality at the two non-degenerated edges.

Position of boundary grid points are the same as in

Fig.41.
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Figure 43: Corresponding grid in physical space.
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Figure 44: Constructed grid in parameter space for

both grid orthogonality and mesh spacing control at

the boundary of a trilateral.
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Figure 45: Corresponding grid in trilateral.
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Figure 46: Initial grid in parameter space map based

on normalized arc length.
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Figure 47: Corresponding grid in physical space.
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Figure 48: Blow up.
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Figure 49: Solution of Laplace equations with

Neumann boundary conditions at the three bottom

edges of the domain.
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Figure 50: New grid in parameter space for bound-

ary orthogonality at the three bottom edges of the

domain. Position of the boundary grid points is the

same as in Fig.49.
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Figure 51: Corresponding grid in physical space.
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Figure 52: Blow up.
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Figure 53: Minimal surface grid (Scherk surface).

Surface grid is orthogonal.
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Figure 54: Minimal surface grid bounded by four

orthogonal circular arcs. Surface grid is orthogonal.
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Figure 55: Change in shape by bending opposite

circular arcs together.
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Figure 56: Projection on xy� plane.
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Figure 57: Schwarz’s P-minimalsurface.

49



X

Y

Z

Figure 58: Boundary surface grid of a semi-torus
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Figure 59: Surface grid on the two exterior circular

planes.
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Figure 60: Interior grid planes inside the torus.
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Figure 61: Interior grid inside the torus on a circu-

lar plane halfway between the two exterior circular

planes.
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