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ABSTRACT N N o _
The grid generation systems of elliptic quasi-linear second-order partial differential
equations are the familiar so-called Poission systems with control functions to be

specified. In this chapter, a Poisson system is considered as a system of partial

differential equations which the composition of a grid control map and the inverse of a
harmonic map has to obey. The control functions in the Poisson system are then completely
defined by the grid control map. Boundary conforming grids in ghysmal space are computed
by solving the Poisson system with control functions specified by a grid control map.

One of the main advantages of this approach is that the method is non-iterative. If an
appropriate grid control map has been constructed then the corresponding grid control
functions of the Poisson system are computed and their values remain unchanged during the
solution of the Poisson system. Another advantage is that the construction of an

appropriate grid control map can be considered as a numerical implementation of the
constructive proof for the existence of the desired grid in physical space. If the grid

control map is one-to-one then the composition of the grid controlmap and the inverse of
the harmonic maps exist so that the solution of the Poisson system is well defined.

In two dimensions, boundary orthogonality is obtained by apﬂlylng Dirichlet-Neumann
boundary conditions for the harmonic map. In that case, the harmonic map is quasi-
conformal. This property shows the relation with orthogonal grid generation.

The use of harmonic maps and grid control maps for surface grid generation is also shor,tCI?/
described. The two-dimensional Poisson systems can be directly extended to surface gri
aneration on minimal surfaces (soap films). The extension to volume grid generation Is
also given.

The construction of appropriate grid control maps such that the corresponding grid in
physical space has desired properties is the main issue of this chapter. The chosen
examples mainly concern simple well-defined geometries so that the reader is able to
recompute the grids. However, the in this chapter presented elliptic grid generation

methods have been implemented in ENGRID, NLR's multi-block grid generation code [20, 21,
22!), and are nowadays used on a routinely basis to construct Euler or Navier-Stokes grids
in blocks and block-faces with complex geometrical shapes.

The construction of appropriate grid control maps for 3

D domains is less far developed than for 2D domains and surfaces. Further investigation is
expected in this direction.
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Elliptic Generation Systems
S.P. Spekreijse,National Aerospace Laboratory NLR,The Netherlands

1 Introduction

Since the pioneering work of Thompson on elliptic grid generation it is known that systems of elliptic
second-order partia differential equations produce the best possible grids in the sense of smoothness and
grid point distribution. The grid generation systems of eliptic quasi-linear second-order partial differ-
ential equations are so-called Poisson systems with control functions to be specified. The secret of each
“good” elliptic grid isthe method to compute the control functions [3].

Originaly Thompson and Warsi introduced the Poisson systems by considering a curvilinear coordi-
nate system which satisfies asystem of L aplace equations and which istransformed to another coordinate
system [1, 2]. Then this new coordinate system satisfies a system of Poisson equations with control func-
tions completely specified by the transformation between the two coordinate systems. However Thomp-
son did not advocate to use this approach for grid generation. Instead he proposed to use the Poisson
system with control functions specified directly rather than through atransformation [1]. Since then the
general approach is to compute the control functions at the boundary and to interpolate them from the
boundaries into the field [7, 8]. The standard approach used to achieve grid orthogonality and specified
cell height on boundaries has been the iterative adjustment of the control functionsin the Poisson systems,
first introduced by Sorenson of NASA Ames in the GRAPE code in the 80s [5]. Various modifications
of this basic concept have been introduced in several codes, and the general approach is now common
[6, 7, 8]. Although successful, it appears that the method is not easy to apply in practice [4]. Even to-
day, new modifications are proposed to improve the grid quality and to overcome numerical difficulties
in solving the Poisson grid generation equations [6, 9, 16].

In this chapter we describe a useful alternative approach to specify the control functions. It is based
on Thompson’s and Warsi’s original ideato define the control functions by atransformation. The trans-

formation, which we call agrid control map, is a differentiable one-to-one mapping from computational

space to parameter space. The independent variables of the parameter space are harmonic functions in
physica space. The map from physical space to parameter space is called the harmonic map. The com-
position of the grid control map and the inverse of the harmonic map obeys the familiar Poisson systems
with contral functions completely defined by the grid control map. The construction of appropriate grid

control maps such that the corresponding grid in physical space has desired properties is the main issue



of this chapter.

One of the main advantages of this approach isthat the method is non-iterative. If an appropriate grid
control map has been constructed then the corresponding grid control functions of the Poisson system are
computed and their values remain unchanged during the solution of the Poisson system. Picard iteration
appears to be a simple and robust method to solve the Poisson system with fixed control functions.

Another advantage is that the construction of an appropriate grid control map can be considered as a
numerical implementation of the constructive proof for the existence of the desired grid in physical space.
If the grid control map is one-to-one then the composition of the grid control map and the inverse of the
harmonic maps exist so that the solution of the Poisson system is well-defined.

This chapter is organized as follows. Section 2 concerns the two-dimensiona case. Although pub-
lished earlier [19], the 2D Poisson system together with the expressions to compute the control func-
tions from the grid control map are given for completeness. The solution of the Poisson system by Pi-
card iteration is shortly described. Section 2.3 describes methods to construct appropriate grid control
maps. Boundary orthogonality is obtained by applying Dirichlet-Neumann boundary conditions for the
harmonic map and by applying cubic Hermite interpolation in parameter space. Inthat case, the harmonic
map is quasi-conformal . This observation leads to the construction of appropriate grid control maps such
that the solution of the Poisson system generates an orthogonal grid in physical space with boundary grid
points fixed on two adjacent edges but moved along the other two opposite edges. Thisresult issimilar to
that reported by Kang and Leal [13], athough they used the Ryskin-Leal grid generation equations [15]
instead of the Poisson grid generation equations. Section 2.4 shows generated gridsin physical space for
well-defined geometries so that the reader is able to recompute the grids (by the methods presented in this
chapter or by his’her own favourite methods for comparison). The corresponding constructed grid control
maps are shown as grids in parameter space.

In Section 3 is shortly described how the same methods to construct appropriate grid control maps
for two-dimensiona grids can also be used for grid generation on surfaces in 3D physical space. It is

shown that surface grid generation on minimal surfaces (soap films) isin fact the same as 2D grid gener-

aion. Conceptually, the same methods can also be used for parametrically defined surfaces although the
numerical implementation is completely different.

The extension to volume grid generation is described in Section 4. The construction of appropriate
grid control maps for 3D domains is less well developed than for 2D domains. However, a method to
construct a grid control map has been proposed which works surprisingly well for many applications.

Thenow-standard procedure in multi-block structured grid generation codesistofirst generate surface



grids on block faces, both boundary and interior block interfaces, from grid point distributions placed on
the face edges by distribution functions. Then volume grids are generated within the blocks. For thisrea
son, the elliptic grid generation methods described in this chapter assume fixed position of the prescribed

boundary grid points.

2 Two-dimensional grid generation

2.1 Harmonic maps, grid control maps and Poisson systems

Consider a simply connected bounded domain D in two-dimensional space with Cartesian coordinates
7 = (z,y)". Supposethat D isbounded by four edges E, Es, E3, E,. Let (Ey, E,) and (E3, E,) bethe
two pairs of opposite edges as shown in Fig.1.

A harmonic map is defined as a differentiable one-to-one map from D onto a unit square such that
1. the boundary of D is mapped onto the boundary of the unit square,

2. the vertices of D are mapped, in the proper sequence, onto the corners of the unit square,

3. the two components of the map are harmonic functions in the interior of D.

Let § : D — P beahamonic map where the parameter space P is the unit square in a two-

dimensional space with Cartesian coordinates 5 = (s, ¢)”. Assume that
e s=0atedge F; ands = 1 at edge E,
e t=0aedge E5andt = 1 at edge E,.

The problem of generating an appropriate grid in the physical domain D can be effectively reduced
to asimpler problem of generating an appropriate grid in the parameter space P, which can after that be
mapped into D, by using the inverse of the harmonicmap £ : P — D.

Define the computational space C as the unit square in atwo-dimensional space with Cartesian coor-

dinates {: (¢,n)T. A grid control map 5': C +— P is defined as a differentiable one-to-one map from C

onto P and maps a uniform grid in C to anon-uniform (in general) grid in P. Assume that
e 5(0,n) =0ands(l,n) =1,
e {(£,0)=0andt(¢, 1) = 1.

Then the computational coordinates aso fulfill
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Figure 1: Composite map from computational (£, n) space to adomain D in Cartesian (z, y) space.

e {=0atedge By and ¢ =1 at edge E»,
e n=0atedge F3 andn = 1 at edge Ej.

The composition of agrid control map s : C +— P and the inverse of the harmonic map z : P — D
defineamap Z : C — D which transforms a uniform grid in C to a non-uniform (in general) grid in
D. The composite map obeys a quasi-linear system of dlliptic partial differential equations, known as

the Poisson grid generation equations, with control functions completely defined by the grid control map.

The secret of each “good” eliptic grid generation method isthe method of computing appropriate control
functions, which is thus equivalent to constructing appropriate grid control maps.

We will now derive the quasi-linear system of elliptic partia differential equations which the com-

—

posite mapping # = Z(5(&)) has to fulfill. Suppose that the harmonic map and the grid control map are

defined so that the composite map exists. Introduce the two covariant base vectors

_ 9% _
=5 =

or
2 = 8_77 = Tnp, (1)

—

ay fﬁ, a

and define the covariant metric tensor components as the inner product of the covariant base vectors
aij = (C_iz,(_i]) y 1= {1,2},j = {1,2}. (2)

The two contravariant base vectors @' = V¢ = (¢, &,)" and @ = Vi = (14, n,)" obey

with 6;'. the Kronecker symbol. Define the contravariant metric tensor components

o = @, a), i ={1,2},j = {1,2}, )



<0 that

alp a2 (ZH a12 10 (5)
= ?
a1 ag a12 a22 0 1
and
at = oa +a'%@y, @ = a'%d + a®as,
- -1 42 o 1 2
a1 = a11G6 + a12a° , Gy = a19a + ax9a”. (6)

Introduce the determinant .J2 of the covariant metric tensor: J2 = aq1a22 — a2,.
Now consider an arbitrary function ¢ = ¢(£,n). Then ¢ is aso defined in domain D, and the Lapla-
cian of ¢ isexpressed as

D = by + byy = % {(Ja11¢§ + Ja12¢ﬂ)§ * (Ja12¢§ + Ja22¢n)77} ’ ¥

which may be found in the Appendix of this Handbook and in every textbook on Tensor Analysis and
Differentiad Geometry (for example see [23]). Take as specia cases respectively ¢ = £ and ¢ = n. Then
Eq.(7) yields

_ 1 11 12 _ 1 12 22
Af—j{(Ja )g—l—(Ja )77 , An—j (Ja )g—l—(Ja )77 . (8
Thus the Laplacian of ¢ can also be expressed as
A = a'lpee + 202 pepy + a2y + DNl + Any. 9)
Substitution of respectively ¢ = s and ¢ = ¢ in this equation yields
Ns = ans& + 2a123§,7 + a223,m + Aése + Ansy, (20
At = altg + 20ty + aPty, + Alte + Anty,. (11)

Using these equations and the property that s and ¢ are harmonic in domain D, thus As = 0 and

At = 0, wefind the following expressions for the Laplacian of £ and #:

N . . .
= CLHPU + 2a12P12 + a22P22, (12)
An
where
— S — S — S
Py =-T1 & , Pp=-T"" & , Py =-T71 " |, (13)
tee ten b



and the matrix 7' is defined as

S S
§ °n (14)

The six coefficients of the vectors Py; = (P, P3)T , Pio = (P, P%)T and Py, = (Ply, P%)T are

the so called control functions. The six control functions are completely defined and easily computed for

—

agiven grid control map 5 = §(&). Different and less useful expressions of these control functions can
dsobefoundin[l, 2].
Finally, substitution of ¢ = Z in EQ.(9) yields

AT = allf& + 2a12£’§,7 + GQann + A&Te + And, . (15)

Substituting Eq.(12) into this equation and using the fact that A% = 0, we arrive at the familiar Poisson
grid generation system:

ana'c'& + 2a12:ﬁ'§n + aQZQE}m + (aHPlll + 2a12P112 + a22P212) Tg

+ (a11P121 +2a"2P% + a22P222) Zy = 0. (16)

Using Egs.(2),(5) we find the following well-known expressions for the contravariant metric tensor

components:
Patt = ay = (#,8,) , 70 = —a = ~(#e,@,) , S0 =an = (@ T). (1D

Thus the Poisson grid generation system defined by Eq.(16) can be simplified by multiplication with

J?2. Then we obtain:

aggf& - 2algf§n + anfm] + (a22P111 - 2a12P112 + a11P212) fg

+ (a22P121 — 2a12P122 + a11P222) :E'n =0. (18)

This equation, together with the expressions for the control functions P,»’j- given by Eq.(13), is the
two-dimensional grid generation system. For agiven grid control map, so that the six control functions
in EQ.(18) are given functions of £ and n, boundary conforming gridsin theinterior of domain D are com-
puted by solving this quasi-linear system of dliptic partial differential equations with prescribed bound-
ary grid points as Dirichlet boundary conditions. The discretization and solution method of this Poisson
system is discussed in the next section. The construction of appropriate grid control maps such that the
corresponding grid in physical space has desired properties is discussed in the remaining sections.



2.2 Discretization and solution method

Consider auniform rectangular grid of (N + 1) x (M + 1) points in computational space C defined as

Assume that ; ; is prescribed on the boundary of this grid and consider the computation of Z; ; in the
interior of the computational grid based on the solution of the Poisson system defined by Eq.(18).
Assume that a grid control map 5 : C — P has been constructed. Thus the values s; ; and ¢; ; are
known at each grid point. At each interior grid point (é,5) € (1...N —1,1... M — 1), the six control
functions P\, ,P3 P}, P%,P),, P2, defined by Eq.(13) are now easily computed using central differences
for the discretization of s¢¢,s¢r,57,5¢,5y @ teg eyt tety.
The iterative solution process of the nonlinear dliptic Poisson grid generation system defined by

Eq.(18) can be simply obtained by Picard iteration. Rewrite the Poisson system as
PZee — 2Q%ey + Ry + ST + T2, =0 (20)
with

P = (fnafn)v Q= (fﬁvfn) , R= (féafé)a
= PP}, —2QP}, + RPy,,

T = PP2% —2QP% + RP5. (21)
The iterative solution by Picard iteration can be written as
PPk — 2R, + RM N + SMEE  TR = 0 (22)

where k isthe Picard index and

Pk_l = (fg_lafg_l) ) Qk_l = (f]gilafg_l) ) Rk_l = (f]gilaf]gil) )
ST = PP =20 Pl + TP,
T = PFIPE —2Q'PL + RMIP,. (23)

Thus a current approximate solution
f’H:{f’?fl,izo...N,jzo...M} (24)

isimproved by the following steps:



e Compute at interior grid points the coefficients P*~1,Q*—1 RF—1 §k—1 Tk=1 by gpplying central
differences for the discretization of 7 *’“ land m’“ 1 Note that the six control functions remain un-

changed during the iterative procedure.
e Discretize at interior grid points & x&, f&n’ 7’3,7, fﬁ,*’“ using central differences.

e After the discretization of 7 x&, f&n’ *ﬁn, f’g Z* we arrive at alinear system of equations for the
unknownSx”, =1...N—1,7=1...M — 1. Ateach interior grid point we have a nine-point
stencil. Boundary grid points are prescribed and remain unchanged.

Thislinear system can be solved by a black-box multigrid solver. Such amultigrid solver iscalled
twiceto computethetwo components =¥ ; and y; of 7 ;. Thesolution of thelinear system provides

abetter approximate solution *.

The following algorithm describes the computation of an interior grid in domain D with prescribed
boundary grid points and a given grid control map.

Algorithm 1. Grid generation.
1. Compute the six control functions from the grid control map.

2. Compute aninitia grid in the interior of domain D by asimple algebraic grid generation method.
The qudlity of theinitial grid is unimportant and severe grid folding is allowed. Theinitia gridis
used as starting solution for the Picard iteration process. The final grid will be independent of the

initia grid.

3. Solve the quasi-linear Poisson grid generation equations iteratively by Picard iteration. The fixed
position of the boundary grid points define Dirichlet boundary conditions. In general, asufficiently
converged grid is obtained in about 10 Picard iterations. The residual is then typically decreased
by afactor 1000.

2.3 Construction of grid control maps
2.3.1 Laplacegrids

The most simple grid control map is the identity map 3 = £. The six control functions are identical zero
and the Poisson grid generation system defined by Eq.(18) simplifiesto a2 Z¢e — 2a127¢, + a11%y, = 0
which is equivalent with A¢ = 0 and An = 0 according to Eq.(12). Grids based on this equation are
the so-called Laplace (or Harmonic) grids which were first introduced by Winsow [18]. The inherent



smoothness of the Laplace operator makes the grid evenly spaced in the interior. Therefore, the quality
of aLaplace grid will only be acceptable as long as the boundary grid points are evenly spaced aong the
edges.

Thisisillustrated in Fig.5 and Fig.6 where a region about a NACAQO012 airfoil is subdivided into
four domains. The domains have common edges and more or less evenly spaced boundary grid points
are prescribed. Fig.6 shows Laplace grids in each domain. The result is not bad for this O-type Euler
mesh. Only smooth grids are required for the solution of the Euler equations for non-viscous flow, where
strong gradients near boundaries do not occur. Laplace grids provide no control about the angle distribu-
tion between internal grid lines and the boundary. This causes slope discontinuity of the grid lines across
internal domain boundaries, as shown in Fig.6.

The situation is completely different for Navier-Stokes type of meshes where the grid must contain
a boundary layer grid. Highly stretched grids are required for solutions of the Navier-Stokes equations
for viscous flow, where large gradients occur near boundaries. Fig.9 shows a region about a RAE2822
airfoil also subdivided into four domains. The boundary grid point distribution is highly dense near the
leading and trailing edge of the airfoil. Fig.10 shows the Laplace grids in the four domains. These grids
are unacceptable because the inherent smoothness of the Laplace operator causes evenly spaced grids so
that the interior grid contains no boundary layer at all. Therefore, Laplace grids are in general unusable

in most practice.

2.3.2 Arclength based grids

Consider domain D as shown in Fig.1. Assume that the boundary grid points are prescribed at the four
edges of D. A boundary conforming grid in the interior of domain D with an interior grid point distri-
bution which is a good reflection of the prescribed boundary grid point distribution can be obtained by
constructing agrid control map based on normalized arc length. In order to construct such agrid control

we define
e s=0aedge F; and s = 1 at edge F,
e sisthenormalized arc length along edges E3 and Ey,
e t=0atedge E3 andt = 1 at edge FEy,
e ¢t isthe normalized arc length along edges £, and Es.

For example this means that dlong edge Es; we define s(u) = [j' || Zu || du/ f01 | Zu || du where

T:u€l0,1] — (x,y) € R? isaparametrization of edge F3 in the right direction. Thus 5': 0D ~ 9P

9



isdefined by these requirements. Thetwo Laplaceequations As = 0 and At = 0, together with theabove
specified Dirichlet boundary conditions, define the harmonic map s : D — P. Note that this map only
depends on the shape of domain D and isindependent of the prescribed boundary grid point distribution.

The boundary grid points are prescribed at the four edges of D. Thus# : 9C — 9D is prescribed.
Because ¥ : 9C — 90D isprescribed and 5 : 9D — 9P isdefined as described above, it follows that
§:0C — OP isaso defined.

From the preceding requirements it follows that

s(0,m) =0, s(L,n) =1, s(£,0) = s4,(£) , s(§,1) = s%,(6), (25)

where the functions s, , s%,, are monotonically increasing, and

t(f,O) =0, t(§7 ]-) =1, t(Oaﬁ) = taEl(n) ) t(lan) = taEg(n)a (26)

where the functions ¢%, , %, are also monotonically increasing. The superscript a isused to indicate that
these functions measure the normalized arc length at the boundary grid points.

The grid control map s': C — P is now defined by the following two algebraic equations:

s = sp (01 —1) + 55,1, (27)

to= (M1 —s)+th,(1n)s. (29)

Eq.(27) implies that a coordinate line ¢ = constant is mapped to the parameter space P as a straight
line: s isalinear function of ¢, and Eq.(28) impliesthat agrid linen = constant is also mapped to P asa
straight line: ¢ isalinear function of s. For given values of £ and 7, the corresponding s and ¢ values are
found as the intersection point of the two straight lines. It can be easily verified that the grid control map

is adifferentiable and one-to-one because of the positiveness of the Jacobian: s¢t, — s,ts > 0.

The discrete computation of the grid control map is straightforward. For agrid of (N +1) x (M +1)

points, the distance between succeeding grid points at the boundary are computed as

doj =l Zoj —Foj1 | , dnj=lZn;—Fnj-1ll,i=1...M, (29

dio = Zio —Ti-10ll » dipg=Zine —Fiam|,i=1...N. (30)

Define the length of edges E+, Es, E5, E4 by

M B M B N _ N B
LEI = Zdo,j ) LE2 = ZdN,j 5 LE‘3 = Zdi,o ) LE‘4 = Zdi’M’ (31)
7j=1 7=1 =1 =1

10



and the normalized distances as

doj=do;/Le, , dnj=dn;/Le,,j=1...M, (32)

dio=dip/Lgs, , dip=dim/Le,,i=1...N. (33)

The discrete components s; ; and ¢; ; of the grid control map are computed at the boundary by

s50j = 0,syj=1,75=0...M, (34
tio = 0,t,mw=1,1=0...N, (35)
and
si0 = Si—1,0+tdio, sim = Si—i,m+dipm, 1 =1...N, (36)
to,j = toj—1+doj,tn;=1tnj—1+dnj,J=1...M. (37)

The interior values are defined according to Egs.(27),(28) and are thus found by solving simultane-

oudy the two linear algebraic equations:

sij = sio(l—1tij) + simtiy, (39)
tij = toj(1—sij)+1tn;sij, (39)

for each pair (7,j) € (1...N —1,1... M —1).
The next algorithm summarizes the computation of arc length based grid in the interior of D.

Algorithm 2. Arclength based grids.

1. Compute the four edge functions t%; ,¢%, ,s%, and s, from the boundary grid point distribution.
2. Compute the grid control map according to Egs.(27),(28).

3. Compute the corresponding interior grid in D as described in Algorithm 1.

Ilustrations of boundary conforming grids obtained with this grid control map are shown in Fig.7
and Fig.11. Asopposed to Laplace grids, the interior grid point distribution is always a good reflection
of the prescribed boundary grid point distribution. Grid folding hardly ever occurs because both the grid
control map and the harmonic map are one-to-one. When grid folding occurs then it must be caused by
discretization errors[10]. Hence, grid folding will always disappear when the grid is sufficiently refined.

A shortcoming of this grid control map isthat there isno control about the angle distribution between
interior grid lines and the boundary edges of the domain. It is often desired that the interior grid lines are
orthogona at the boundary edges. For example, viscous flow simulations often require orthogonality of

the grid in aboundary layer. This can be achieved with agrid control map as constructed below.

11



2.3.3 Grid orthogonality at the boundary

Consider domain D with prescribed boundary grid points. Suppose that it is desired to generate a bound-
ary conforming grid in the interior of D which is orthogonal at all four edges of domain D. This can be

achieved by imposing Dirichlet-Neumann boundary conditions for the harmonic map:
e s=0aedge F; ands = 1 at edge E,
° g—; = 0 dong edges E3 and E4, where n is the outward normal direction,
e t=0atedge E3 andt = 1 at edge FEy,
. % = 0 dong edges F, and E,, where n is the outward normal direction.

Thetwo Laplace equations As = 0 and At = 0, together with the above specified boundary conditions,
define the harmonic map s : D — P. Again this map only depends on the shape of domain D and is
independent of the prescribed boundary grid point distribution.

The Neumann boundary conditions % = 0 dong edges F5 and E4 imply that a parameter line s =
constant in P will be mapped into domain D by the inverse of the harmonic map as a curve which is
orthogonal at those edges. Similarly, a parameter line ¢ = constant in P will be mapped asacurvein D
whichisorthogonal at edge E, and edge E5. These properties can be used to construct agrid control map
such that the interior grid in D will be orthogonal at the boundary.

The boundary grid points are prescribed at the four edges of D. Thus# : 9C — 9D is prescribed.
Because ¥ : OC — 0D isprescribed and 5 : 0D — 0P isaso defined , it followsthat 5: 9C — OP is
also defined.

From the preceding requirements it follows that
s(0,m) =0, s(L,n) =1, s(£,0) = s5,(£) , s(&,1) = s%,(6), (40)
where the functions s, , s, are monotonically increasing, and
t(£,0) =0, t(¢1) =1, t(0,n) =15, (n) , t(1,1) = t%,(n), (41)

where the functions ¢, , t%,, are also monotonically increasing. The superscript o is used to indicate that
these functions are constructed in away to obtain grid orthogonality at the boundary.
The grid control map s': C — P is now defined by:
s = sk, (§)Ho(t) + sk, (§)Hi(2), (42)

t = tg (nHo(s) +tg, (n)Hi(s). 43)

12



where Hy and H; are cubic Hermite interpolation functions defined as
Hy(s) = (1 +2s)(1 —s)%, Hi(s) = (3 —25)s%,0< s < 1. (44)

Note that Hy(0) = 1, H}(0) = 0, Hy(1) = 0, Hj(1) = 0 and H,(0) = 0, H](0) = 0, H,(1) = 1,
Hi(1) = 0. Itfollows from Eq.(42) that a coordinate line = constant in C ismapped to parameter space
P asacubic curve (with ¢ as dependent variable) which is orthogonal at both edge F3 and edge E4 in P.
Such a curve in parameter space P will thus be mapped by the inverse of the harmonic map # : P — D
as acurve which is orthogonal at both edge E'3 and edge E4 in D. Similar observations can be made for
coordinate lines n = constant. Thus the grid will be orthogonal at all four edges in domain D.

Grid orthogonality at boundaries may introduce grid folding. Fortunately, grid folding will not easily
arise. From Eq.(42) it follows that two different coordinate lines & = £1,& = &, & # &9, are mapped to
parameter space P astwo digunct cubic curves which are orthogonal at both edge E3 and edge E4 in P.
Thisisdueto thefact that s%, (£) and s, (§) are monotonically increasing functions. The same holds for
different coordinate linesn = n1,m = 12, m # 2. For given values of ¢ and n, the corresponding s and
t values are found as intersection point of two cubic curves. However, such two cubic curves may have
more than one intersection point. Inthat case grid folding will occur. However, in practice we hardly ever
encounter grid folding due to orthogonalization of the grid at the boundary.

We have described a method to obtain an orthogonal grid at al four edges of domain D. In practice,
orthogonality of the grid is often only desired at less than four edges. Suppose for example that it isonly
desired to have an orthogonal grid at edge 3. Thentake tg, (1) = t%, (1), tr,(n) = tg, (1), sp,(§) =
s, (&) and sp,(€) = s, (£). Furthermore, the grid control map 5 : C ~— 7P is such that a coordinate
line n = constant is mapped to P as a straight line and a coordinate line ¢ = constant is mapped to P
as aparabolic curve (with ¢ as dependent variable) which is only orthogonal at edge E5 in P. For given
values of £ and n, the corresponding s and ¢ values are then found asintersection point of astraight line

and a parabolic curve.

The discrete computation of the grid control map is more complicated when grid orthogonality isre-
quired. Wehave seenthat for agrid control map based on normalized arc length, thefunctions %, ,t%, ,s%,.
and s, can bedirectly computed from the prescribed boundary grid points only. However, when grid or-
thogonality isrequired, the functions t%; ,t%,,s%, and s%;, can only befound by solving the L aplace equa-
tions As = 0 and At = 0 supplied with the above mentioned Dirichlet-Neumann boundary conditions.
Thesolution of the Laplace equations As = 0 and At = 0 supplied with the boundary conditions requires
an initial folding-free grid in the interior of domain D. Therefore, an orthogonal grid at the boundary is
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in general obtained in three steps.
Algorithm 3. Grid orthogonality at boundary.

1. Compute an initial boundary conforming grid in theinterior of D without grid folding. Such agrid
can be computed using the grid control map based on normalized arc length as described in Algo-

rithm 2.

2. Solve on thismesh As = 0 and At = 0 supplied with the above specified Dirichlet-Neumann
boundary conditions. A solution method is described in [19]. The solution at the boundary defines

the edge functions ¢4, ,t%, 5%, and sg, .
3. Compurte the grid control map according to Egs.(42),(43).
4. Compute the corresponding interior grid in D as described in Algorithm 1.

[llustrations of boundary conforming grids obtained with this grid control map are shown in Fig.8
and Fig.12. The common interior boundary edges of the four domains can hardly be recognized anymore
because of the excellent grid orthogonality at these edges. The grid spacing of the interior grid is also
good in both cases.

In the next section wewill provethat the harmonic map 5 : D — P supplied with Dirichlet-Neumann
boundary conditions is quasi-conformal. This observation leads to the construction of appropriate grid
control maps such that the corresponding grid is orthogonal, not only at the boundary but also in the in-

terior of D.

2.34 Orthogonal grids

Thereisafamous theorem in conformal mapping theory which states that each ssimply connected domain
D can be mapped conformally to arectangle R in such away that the vertices of domain D are mapped, in
the proper sequence onto the corners of therectangle[11, 27]. Theratio of thelength of two adjacent sides
of the rectangle is called the conformal module M which is a characteristic and fundamental property of
each domain.

Let @ : D — R bethe conformal map where R isthe rectangle [0, 1] x [0, M] in atwo-dimensional
space with Cartesian coordinates @ = (u,v)” . The components of the conformal map obey the Cauchy-

Riemann relations:

= (45)
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Hence Au = 0 and Av = 0 in the interior of domain D. Furthermore, we may assume that the map

i : D — R obeys
e yu=0aedge F; andu = 1 at edge F»,
e v =0atedge Fs andv = M at edge F,.

From these boundary conditions and using the Cauchy-Riemann relations we can aso conclude that

. g—;ﬁ = (0 dong edges F5 and E,, where n is the outward normal direction,

° g—g = (0 dong edges F; and E5, where n is the outward normal direction.

Thusthe conformal map i : D — R isharmonic and obeys the same set of Dirichlet-Neumann boundary
conditions as the harmonic map 5" : D — P. Therefore the two maps are related to each other according
to

v

s:u,t:M (46)

This means that the harmonic map is quasi-conformal and obeys
(47)

Thus the two contravariant vectors are orthogona but have different lengths. It is not difficult to show,
using the relations between covariant and contravariant vectors given by Eq.(6), that the covariant vectors
fulfill

z 1 Yt
= (48)
Ys — T
so that the inverse mapping obeys
MQfL_:ss + ftt =0 (49)

which is the well-known partia differential equation for quasi-conformal maps [4],page 96. It can also
be easily verified that the conformal module can be computed from

Y (50)
By ON

where n is the outward normal direction and o aline element along edge E» in D [11].

Conformal maps are angle preserving. The inverse of the conforma map @ : D — R is also confor-
mal and maps an orthogonal grid in the rectangle R to an orthogonal grid in D. Therefore, an agorithm
to compute an orthogonal grid in the interior of D with a prescribed boundary grid point distribution at

all four edges may consist of the following steps
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1. Computeaninitia boundary conforming grid in theinterior of D without grid folding. This can be

achieved using the grid control map based on normalized arc length.

2. Solve on thismesh As = 0 and At = 0 supplied with Dirichlet-Neumann boundary condi-
tions. Compute the edge functions %, ,t%,,s%, and sg, and the conformal module M according

to Eq.(50).

3. Maptheedgefunctionsin P totherectangle R, using Eq.(46), and compute an orthogonal boundary

conforming grid in R.

4. Map the orthogonal grid in R to P, again using Eq.(46). Thisgrid in P defines agrid control map
that will create an orthogonal grid in the interior of D.

Thus, adifficult problem of generating an orthogonal grid in adomain D can be effectively reduced to
asimpler problem of generating an orthogonal grid in the rectangle R. Unfortunately, there isno simple
algorithm available to generate an orthogonal grid in the interior of arectangle with prescribed boundary
grid points at all four sides. The question of an existence proof for this problem still remains unanswered
[14]. Numerical experiments indicate that even for arectangle it is probably not possible to generate an
orthogonal grid for al kinds of boundary grid point distributions [12].

However, if the boundary grid points have fixed positions on two adjacent edges of domain D but
are allowed to move along the boundary of the other two edges, then a simple algorithm does exist to
generate an orthogonal grid in D. Thisresult issimilar to that reported by Kang and Leal [13], although
they used the Ryskin-L eal grid generation equations[15] instead of the Poisson grid generation equations.
For example, suppose that the boundary grid points are fixed at edges E; and E'3 and are allowed to move
aong edges F» and E,. Then the agorithm becomes

Algorithm 4. Grid orthogonality.

1. Compute aninitial boundary conforming grid in the interior of D without grid folding. Such agrid
can be computed using the grid control map based on normalized arc length as described in Algo-

rithm 2.

2. Solve on thismesh As = 0 and At = 0 supplied with Dirichlet-Neumann boundary conditions

and compute the edge functions t7; ,t%,,s%, and s, .

3. Theinitial position of the boundary grid points at edge E» corresponds with the edge function ¢, .
Move the boundary grid points along edge F5 in such away that there new position corresponds
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with ¢4, . Thisissimply amatter of interpolation. The points along edge F; should be moved such

that there new position corresponds with sg,. .
4. Definethe grid control map ass(&,n) = s, (&) and (£, n) = t%, (n).
5. Compute the corresponding orthogonal grid in D as described in Algorithm 1.

The grid in parameter space P is a simple non-uniform rectangular mesh. Such a mesh also corre-
sponds to a non-uniform rectangular grid in the rectangle R so that the corresponding grid in D will be
indeed orthogonal.

An illustration of this algorithm is shown in Fig.13 which consists of two grids in a channdl with a
circular arc. The lower part shows a grid obtained with Algorithm 3. The grid points are prescribed and
there position is fixed while grid orthogonality is obtained at al four edges. The upper part shows an
orthogonal grid obtained by Algorithm 4. The figure clearly demonstrates how the boundary grid points

have to move in order to obtain an orthogonal grid.

2.3.5 Completegrid control at the boundary

In Section 2.3.3 we have described the construction of a grid control map such that grid orthogonality
is obtained at the boundary of D. However, the method provides no precise control of the height of the
first grid cells aong the boundary. In generdl, the cell height distributions of the first grid cell along the
boundary in D isfairly good asillustrated in Fig.8 and Fig.12. However, there are applications, specially
in grid boundary layers for viscous flows, where not only grid orthogonality but also grid spacing should
be precisely controlled. For example, it may be required that the first grid cell height is constant in the
complete grid boundary layer, in spite of convex or concave parts of the boundary shape.

In order to have precise control about both grid orthogonality and grid cell height we have to consider
more genera grid control maps. Both the grid control map based on normalized arc length, defined by
Eqgs.(27),(28), and the one based on Dirichlet-Neumann boundary conditions, defined by Egs.(42),(43),

have the form
s=3(E,1), t=1(s,n) (51)

Grid control maps of this type have the advantage that the two families of grid lines are independent: a
grid line ¢ = constant in C is mapped to parameter space P as a curve defined by s = 35(&, t) which will
be mapped by the inverse of a harmonic map to a curve in domain D. For given values of ¢ and 7, the

corresponding grid point in P isfound as the intersection point of thetwo curves s = 5(&,t) , t = t(s, 7).
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Figure 2: Boundary conditions for both control of orthogonality and first grid cell height.

When the boundary grid point distribution is changed in one set of opposite edges and remains unchanged
in the other set, then one family of grid lines remains unchanged in both P and D.

Suppose that grid orthogonality and first-cell height specification are required at all four edges. Then
the boundary conditions for the grid control map defined by Eq.(51) are shown in Fig.2. The boundary
condition 05/0t = 0 a E5 and E4 in (&, t)-space is needed for grid orthogonality at E5 and E, in D.
Thevalues of 95/0¢ a E, and E» in (€, t)-space control the cell height of the first grid cells at £ and
E, in D. Similarly, the boundary condition 9¢/0s = 0 a E; and E5 in (s,n)-space is needed for grid
orthogonality at E; and E5 in D. Thevaluesof 9t/0n a Es and Ey in (s, n)-space control the cell height
of thefirst grid cellsat E3 and E, inD.

The agorithm for complete control of both grid orthogonality and cell height along the four edges
becomes

Algorithm 5. Complete grid control at boundary.

1. Use Algorithm 3 to compute an initial boundary conforming grid in the interior of D which is or-

thogonal at the boundary. The corresponding grid control map is based on Egs.(42),(43).

2. Compute 9s/0¢ a E1 and E5 in (€, t)-space from Eq.(42). Compute 0t /0n a Es and E4in (s, n)-
space from Eq.(43). Adapt 95/0¢ and dt/dn such that the grid in domain D gets the desired grid
cell height distribution along the corresponding edges. Note that the harmonic map and itsinverse
only depend on the shape of domain D. Therefore it is possible to compute how a change, in for

example 0s5/0¢ at E; in (&, t)-space, will change the cell height along edge E; in D.
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3. Compute s = 35(¢,t) in (€, t) space such al boundary conditions are satisfied. Also compute ¢ =
t(s,n) in (s,n) space such that all boundary conditions are satisfied. Compute the corresponding
grid control map s': C — P for given values of £ and n. The corresponding grid point in P isfound

asthe intersection point of thetwo curves s = 5(&,t) , t = (s, ).
4. Compute the corresponding interior grid in D as described in Algorithm 1.

The question remains how to compute s = 5(£,¢) and ¢ = #(s,n) such that all boundary conditions
arefulfilled. The boundary datas(0,¢), 5(1,¢),5(£,0),5(¢, 1) and 95/9¢(0,t), 9s/0¢(1,t), I5/0t(€,0),
05/0t(¢, 1), can beinterpolated by using abicubically blended Coon’spatch [25, 26]. However, the use of
such an algebraic interpolation method has a severe shortcoming because twist vectors have to be spec-
ified at the four corners.In general, the tangent boundary conditions 05/9¢, d5/0t, are conflicting at a
corner when the two edges of domain D are not orthogonal at the corresponding vertex. In that case the
twist vector is not well-defined at the corner. Because of the conflicting tangent boundary conditions at
the corners, we prefer to apply an eliptic partial differential equation to interpolate the boundary data.
A fourth-order dliptic operator is needed to satisfy all boundary conditions. Therefore the biharmonic
eguations

ANs =0, (52)

where A = §%/9¢? + 9% /0t?, and
AN =0, (53)

where A = 9%/9s? + 9% /0n? isaproper choice. The advantage of the use of the biharmonic equation
to interpolate the boundary data is that the solution is always a smooth function even when the tangent
boundary conditions are conflicting at the corners. A disadvantage is that the biharmonic operator does
not fulfill amaximum principle. When thereisagrid boundary layer along for example edge E, in D then
the monotonic boundary functions s, (¢) and s4;, () have very small valuesin alarge part of theinterval
0 < £ < 1. Inthat case, the solution of the biharmonic equation may have small negative valuesin the
interior, which is of course unacceptable. This problem is solved by applying a change in variables. In
factwesolve AAf = 0 where f : 5 € [0, 1] — [0, 1] isamonotonic function which maps aunit interval
onto aunit interval. The boundary conditions for s are transferred to corresponding boundary conditions
for f. After solving AAf = 0, wefind f values at interior grid points and the corresponding s values
arefound using f . In practice, we define f : 3 € [0, 1] ~ [0, 1] such that f(%(s?Eg(g) +5%,(8)) =&

A similar change in variable is used for the grid control function ¢ = #(s, 7).
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The biharmonic equations are solved by the black-box biharmonic solver BIHAR [28] whichis avail-
able on the electronic mathematical NETLIB library.

Algorithm 5 describes complete boundary control for both grid orthogonality and grid spacing. It is
aso possible to have only grid spacing control without boundary grid orthogonality. In that case, Algo-
rithm 2 must be used instead of Algorithm 3inthefirst step of Algorithm 5. Anillustration of the result
of grid spacing control is shown in Fig.14 through Fig.17. The same test case was also used by Eiseman
[17]. The upper side of the domain is convex, the lower side is concave. The boundary grid points are
prescribed and evenly distributed. Fig.14 shows a Laplace grid with the typical behaviour near the con-
vex and concave parts of the boundary. Fig.15 shows the grid with mesh spacing control at the upper
and lower side. Clearly, the cell height becomes constant at both the convex and concave sides. Fig.16
shows the grid with only grid orthogonality at the convex and concave sides and Fig.17 shows the grid

with combined control of both mesh spacing and grid orthogonality at the convex and concave sides.

2.4 Best practices

In this section we show how the previous discussed algorithms work in practice. The chosen examples
mainly concern simple well-defined geometries so that the reader isable to recompute the generated grids.
In al cases, the boundary grid points are pre-defined and their location is fixed.

Example 1. Triangular domain.

This example illustrates Algorithm 3 to obtain grid orthogonality at the boundary. Fig.19 showsthe
grid obtained with Algorithm 2. The corresponding grid control map, based on Egs.(27),(28), is shown
in Fig.18 as a grid in parameter space P. Notice that the grid lines are straight in P. Fig.21 shows the
grid in parameter space obtained by solving As = 0 and At = 0 on the grid shown in Fig.19 supplied
with Neumann boundary conditions on the two bottom edges of the triangle. It should be noticed that
athough this grid control map is completely different from the grid control map shown in Fig.18, the
corresponding grid in the interior of the triangle will still be the same. Fig.22 shows the new grid control
map based on Eqs.(42),(43). Thus the position of the boundary grid points is the same in both Fig.22
and Fig.21. Notice that the grid is orthogonal at the left and bottom edge of . These two edgesin P
correspond with the two bottom edges of the triangle. The corresponding grid is shown in Fig.23. The
gridisclearly orthogonal at the two bottom edges of the triangle. Fig.24 shows the nice behaviour of the
grid near the O-type singularity.

Example 2. Circular domain.

This example illustrates Algorithm 5 for complete grid control at the boundary. The prescribed
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boundary grid points are evenly spaced as shown in Fig.26. The grid in parameter space P, based on
Egs.(27),(28), isshown in Fig.25 and is thus uniform so that the corresponding grid in Fig.26 isa L aplace
grid. Fig.27 shows the grid in parameter space obtained by solving As = 0 and At = 0 supplied
with Neumann boundary conditions at all four sides. Fig.28 shows the new grid control map based on
EQgs.(42),(43). This grid in parameter space is no longer uniform but remains rectangular because of
the symmetry in both geometry and boundary grid. The corresponding grid in physical space, shown in
Fig.29, is thus orthogonal as explained in Section 2.3.4. Notice the bad mesh spacing along the bound-
ary of this orthogona grid. The adapted grid in parameter space to obtain also a good mesh spacing is
shown in Fig.30. This adapted grid is obtained by the method described in Section 2.3.5. Fig.31 shows
the corresponding grid in physical space and demonstrates the successful combination of boundary grid
orthogonality and good mesh spacing.

Example 3. Domain bounded by semi-circles on the four sides of the unit square.

Thisgeometry isalso used by Duraiswami [11] and Eca[12]. The prescribed boundary grid pointsare
no longer evenly spaced but dense near the four corners of the domain. Fig.32 showsthe gridin parameter
space based on Egs.(27),(28). Fig.33 shows the corresponding grid in physical space. Fig.34 showsthe
grid in parameter space obtained by solving As = 0 and At = 0 supplied with Neumann boundary
conditions at al four sides. Fig.35 shows the new grid control map based on Egs.(42),(43). This grid
in parameter space is rectangular because of the symmetry in both geometry and boundary grid. The
corresponding grid in physical space, shown in Fig.36, is thus orthogonal as explained in Section 2.3.4.
The adapted grid in parameter space to obtain also a good mesh spacing is shown in Fig.37 and Fig.38
shows the result in physical space.

Example 4. Degenerated domains.

Two degenerated domains are considered: a lune bounded by the curvesy = z(1 — z) andy =
—z(1 —2?) and atrilateral. Thelune has two degenerated edges, thetrilateral only one. Both geometries
are also used by Duraiswami [11] and Eca[12].

In case of the lune, an evenly spaced boundary grid point distribution isused so that the grid in param-
eter space based on Eqs.(27),(28) is uniform and the corresponding grid in physical space is harmonic.
SeeFig.39 and Fig.40. Fig.41 showsthegrid in parameter space obtained by solving As = 0and At =0
supplied with Neumann boundary conditions at the two non-degenerated edges. Notice the large change
inthe position of the boundary grid pointsin parameter space compared to theinitia uniform grid. Fig.42
shows the new grid control map based on Egs.(42),(43). Thisgrid in parameter space isalmost rectangu-
lar. The corresponding grid in physical space, shown in Fig.43, is therefore almost orthogonal .
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For the trilateral, we only show the final grid in parameter space, obtained by Algorithm 5, and the
corresponding grid in physical space. See Fig.44 and Fig.45.

Example 5. Navier-Stokes grid around a complex artificial boundary.

Thisexampleisused to demonstrate the robustness of the proposed agorithms. Fig.46 showsthegrid
in parameter space based on Egs.(27),(28) and Fig.47 showsthe corresponding C-type Navier-Stokes grid
in physical space. Fig.49 shows the grid in parameter space obtained by solving As = 0 and At = 0
with Neumann boundary conditions at the lower boundary of the domain (three edges). Fig.50 showsthe
new grid in parameter space based on Egs.(42),(43). Thegrid isorthogona at theleft,right and lower side
of the parameter space. The corresponding grid in physical space is shown in Fig.51 and Fig.52.

3 Surfacegrid generation

The concepts of harmonic maps and grid control maps as used for grid generation in 2D domains can also
be used for grid generation on surfacesin 3D.

Consider a surface S bounded by four edges E, Es, Es, E4. Let (Ey, E>) and (Es, E4) be the two
pairs of opposite edges as shown in Fig.3.

A harmonic map is defined as a differentiable one-to-one map from S onto a unit square such that
1. the boundary of S is mapped onto the boundary of the unit square,
2. thevertices of S are mapped, in the proper sequence, onto the corners of the unit square,

3. the two components of the map are harmonic functions on S. This means that the two components
obey the Laplace-Beltrami equations for surfaces (see Section 5, Part 11 of the Appendix of this
Handbook).

Let § : S — P beaharmonic map where the parameter space P is the unit square in a two-
dimensional space with Cartesian coordinates 5 = (s,#)7. Thus As = 0 and At = 0 where A isthe
Laplace-Beltrami operator for surfaces [23].

The problem of generating an appropriate grid on surface S can be effectively reduced to a simpler
problem of generating an appropriate grid in the parameter space P, which can after that be mapped on
S, by using the inverse of the harmonicmap z : P — S.

Define the computational space C as the unit square in atwo-dimensional space with Cartesian coor-

dinates {: (¢,n)". A grid control map 5': C +— P is defined as a differentiable one-to-one map from C

onto P and maps auniform grid in C to a, in general, non-uniform grid in P.
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Figure 3: Composite map from computational (£, 7) spaceto asurface S in Cartesian (x, y, z) space.

The composition of agrid control map s : C — P and the inverse of the harmonicmap z : P — S
definesamap Z# : C — S which transforms a uniform grid in C to a, in general, non-uniform grid on
surface S. The same ideas as used for 2D domains can be applied to construct appropriate grid control
maps such that the corresponding surface grid has desired properties.

For example, assume that the boundary grid points are prescribed on surface S and suppose that it
is desired to construct a boundary conforming grid on S which is orthogona at all four edges. Then the
same Neumann boundary conditions as used in Section 2.3.3. must be used to define the harmonic map.
Furthermore, the grid control map must be defined by Egs.(42),(43). Then the composite map defines a
boundary conforming grid on S which is orthogonal at all four edges.

However, the numerical implementation of these ideasis different from the 2D case because the com-
posite map no longer fulfills asimple Poisson system asdefined by EQ.(18). Thereisan exception, namely
when S is aminimal surface. A minimal surface has zero mean curvature, and its shape is a soap film
bounded by its four edges. There is a famous theorem in Differential Geometry which states that the
Laplace-Beltrami operator applied on the position vector of an arbitrary surface S obeys

AZ = 2H7, (54)

where i is the unit vector normal to the surface and H is the mean curvature. (see Section 5, Part Il of
the Appendix of this Handbook or Dierkes et. a. [24] , Theorem 1, page 71). The requirement of zero
mean curvature implies

AZ = 0. (55)

Thusfor minimal surfacesweasohave As = 0, At = 0 and A% = 0. Following the samederivation
asin Section 2.1 for 2D domains, wefind that the composite map obeys the same Poisson system given by

Eq.(18) (for more details see[19]). Thus an interior grid point distribution on aminimal surface isfound
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by solving Eq.(18) with the prescribed boundary grid points as Dirichlet boundary conditions. The only
difference compared to the two-dimensional caseisthat now # = (z,vy,z)” instead of Z = (x,)”. The
same ideas to construct appropriate grid control maps and their corresponding grids in 2D domains can
aso bedirectly applied to minimal surfaces. Infact, al previous discussed 2D examples are generated as
minimal surface grids where the four boundary edges are lying in a plane in three-dimensional space.
Examples of characteristic minimal surface grids are shown in Fig.53 through Fig.57. Fig.53 isaso-
called square Scherk surface [24]. Fig.54 shows what happens when the boundary edges of the Scherk
surface are replaced by semi-circular arcs. Fig.55 and Fig.56 show the change in the shape of the min-
imal surface when these semi-circular arcs are bend together. Boundary orthogonality isimposed at al
four sides for all these three cases. Because of the symmetry in both geometry and boundary grid point
distribution, the generated surface grids are not only orthogonal at the boundary but also in the interior.
Finally, Fig.57 is Schwarz's P-surface [24], which isin fact constructed as a collection of connected min-

imal surfaces.

In genera, surface S isnot aminimal surface but a parametrically defined surface with a prescribed
geometrica shape givenby amap ¥ : Q — S where Q is some parameter space defined as a unit square
in2D. In order to construct, for example, aboundary conforming grid on S which isorthogonal at all four
edges, we solve on an initia surface grid on S the Laplace-Beltrami equations with the same Neumann
boundary conditions as used in Section 2.3.3. The solution can be writtenasamap s: Q — P. The ap-
propriate grid control map, defined by Egs.(42),(43), defines anon-uniform grid in . The corresponding
grid in Q can then be found by using theinverse map 5! : P — Q. Thisis done numericaly in away
described in [19]. Once the corresponding grid in @ isfound, then the corresponding surface gridon S is
computed using the parametrization 7 : @ — S. Thisnew surface grid on S differs from the initial sur-
face grid S. The complete process should be repeated until the surface grid on S (and the corresponding
gridsin parameter space P and Q) do not change anymore. In practice, only afew (2-5) iterations appear
to be sufficient. After convergence, the final surface grid will not only be orthogonal at the boundary but
is also independent of the parametrization and only depends on the shape of the surface and the position

of the boundary grid points.

4 Volumegrid generation

Consider asimply connected bounded domain D in three-dimensional space with Cartesian coordinates

7 = (z,y,2)". Supposethat D isbounded by six faces Fy, Iy, Fs, Fy, Fs, Fg. Let (Fy, Fy), (Fs, Fy) and
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Figure 4: Composite mapping from computational (£, 7, () space to adomain D in Cartesian (z,y, )

space.

(F5, Fy) be the three pairs of opposite faces. Furthermore, consider the twelve edges {E;,i = 1...12}
and assume that these edges are related to the six faces as shown in Fig.4
In 3D, a harmonic map is defined as a differentiable one-to-one map from D onto a unit cube such

that
1. the boundary of D is mapped onto the boundary of the unit cube,

2. the vertices,edges and faces of D are mapped onto the corresponding vertices,edges and faces of

the unit cube,
3. the three components of the map are harmonic functions in the interior of D.

Lets: D — P beaharmonic map wherethe parameter space P istheunit cubeinathree-dimensiona

space with Cartesian coordinates 5 = (s,t,u)”. Inside D the components obey
AS=Spp+Syy+ 5., =0, At =tgg +tyy+1: =0, Au= gy +Uyy +u;, =0. (56)

Definethe computational spaceC asthe unit cubein athree-dimensional space with Cartesian coordinates

E: (¢,1,¢)T. A grid control map 5 : C +— P is defined as a differentiable one-to-one map from C onto

P and maps auniform grid in C to a, in general, non-uniform grid in P.

The composition of agrid control map s : C — P and the inverse of the harmonic map z : P — D
definesamap # : C — D which transforms a uniform grid in C to g, in general, non-uniform grid in D.
Asin 2D, the composite map obeys a quasi-linear system of elliptic partial differential equations, known
as the Poisson grid generation equations, with control functions completely defined by the grid control
map.
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The derivation of the Poisson grid generation equations can be done along the same lines asfor the 2D
case. Suppose that the harmonic map and grid control map are defined so that the composite map exists.

Introduce the three covariant base vectors

— —

a) = Tg , Gy = &y , A3 = T¢. (57)
and the covariant metric tensor components
a;j = (a;,d;), 1 =1{1,2,3},j = {1,2,3}. (58)

Thethree contravariant base vectors @' = V¢ = (&;,¢,,&.)T, @ = Vn = (ng,ny,n.)T anda@ = V¢ =

(Cas Gy C2)T OBy

(@,a;) =0, i=1{1,2,3},5 = {1,2,3}. (59)

70

Define the contravariant metric tensor components

a = (a,d), i=1{1,2,3},j = {1,2,3}, (60)
S0 that
ailr a12 Aa13 au a12 a13 1 00
a12 G929 a3 a12 a22 a23 = 010 . (61)
ai3 a23 ass a13 a23 a33 0 01

Define .J? as the determinant of the covariant metric tensor.
Consider an arbitrary function ¢ = ¢(&,n, (). Then ¢ isaso defined in domain D and the Laplacian
of ¢ can be expressed as

1

A¢ 7

{(Jau(ﬁg + Ja' %, + Ja13¢4)£ + (Japc + Ta® by + JaP )
n
+ (Jal?’q)6 + JaZB ¢, + Ja33¢¢)c} : (62)
Asin the two-dimensional case, substitution of ¢ = &, ¢ = n and ¢ = ( into this equation yields expres-
sionsfor A¢, An and A¢. Combining these expressions with Eq.(62) gives
Dp = a'l pee + 20" ey + 20 pec + a® by + 2a% dy¢ + 0P e + DEGe + Dy + AP (63)
Substitute ¢ = (s,t,u)” in Eq.(63) and use the property that s, ¢ and « are harmonic in domain D, i.e.
As =0, At =0and Au = 0. Thenthefollowing expressions for the Laplacian of £ , n and ¢ arefound:

Ag
An = auﬁu + 2a12]312 + 2a13]313 + a221322 + 2a23]323 + a33]333, (64)
AQ
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where

See S¢n S¢¢
Py = -1 tee | > Po=-T"" ten | > Py=-T"" tec | >
Uge Ugn Ugg
S Sn¢ S¢¢
Py = -T7! ton | Py =-1"" tne | > Py = -1 tee | (65)
Unn Un¢ U¢e
and the matrix 7" is defined as
S¢Sy 8¢
T=| t t, t |- (66)

Ug  Upy U
The 18 coefficients of the six vectors Py, Pja,Py3, Pye,Pas, P33 are so caled control functions. Thusthe
18 control functions are completely defined and easily computed for a given grid control map 5 = s*({ )
Finally, substitution of ¢ = Z in Eq.(63) and using the fact that A = 0 we arrive at the following
equation

aufgg + 2a12£’§,7 + 2(113:?54 + a22fm7 + 2(123:?,7( + a33fcc + AT + AnZy, + A(Ze = 0. (67)

Thefinal form of the Poisson grid generation system can now be derived from this equation by substitu-
tion of Eq.(64),by multiplication with .J?, and by expressing the contravariant tensor components in the

covariant tensor components according to Eq.(61). The result can be written as:
allf& + 2&12f§n + 204131554 + 0422577,7 + 204231,_"77( + 04335c'§§
P + 2012 Pl + 201 Ply + 0Py + 207 Py + o P 7

+ (a
+ (ozHPfl +2a'2P% + 20 P% + o?2P2, + 202 P2 + a33P323) #
+ (a

NP3 +2a2P3, 4 20" PE + o P, + 20% Py + a33P§3) Ze =0, (68)
with
11 2 12 13
o = Q22033 — 493 , & = (13G23 — (12G33 , O = 412023 — 413422 ,
22 2 23 33 2
(o4 = 4a11as3 — a3, & = a13612 — 011623 , & = 11022 — Q19, (69)
and
a1 = (Te,T¢) , a1 = (T, 7y) , ar13 = (Te, T¢)
agy = (fn,fn) , A23 = (fn,fg) , A33 = ((L‘g,(L‘g) . (70)
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This equation, together with the expressions for the control functions Pi’g- given by Eq.(65), forms
the 3D grid generation system. For agiven grid control map, so that the 18 control functions in Eq.(68)
are given functions of (£, 7, ¢), boundary conforming gridsin the interior of domain D are computed by
solving this quasi-linear system of eliptic partia differential equations with prescribed boundary grid
points as Dirichlet boundary conditions.

The congtruction of appropriate grid control maps for 3D domainsisless well developed than for 2D
domains. In[19], agrid control map has been proposed which works surprisingly well for many applica
tions. Thegrid control map isthe 3D extension of the 2D grid control map defined by Eqgs.(27),(28). The
map 5 : C — P isdefined by

s = sp Q)1 — 1)1 —u) + s, (1 —u) + s, (§) (1 — t)u + sp, (§tu, (71)
t = tp; (1 —5)(1—u)+ig(n)s(l —u)+te ()1 —s)u+ tp(n)su, (72)
U = UE, (C)(l - 8)(1 - t) + uElo(C)S(l - t) +tug, (C)(l - S)t T UE, (C)St' (73)
where the twelve edge functions sg, , . . . , ug,, measure the normalized arc length along the correspond-

ing twelve edges of domain D (see Fig.4).

Eq.(71) impliesthat agrid plane ¢ = constant ismapped to the parameter space P asabilinear surface:
s isabilinear function of ¢t and ». Similarly, Eq.(72) and Eq.(73) imply that grid planes » = constant and
¢ = constant are also mapped to the parameter space P as bilinear surfaces. For a given computational
coordinate (£,7,¢) the corresponding (s, ¢, u) value is found as the intersection point of three bilinear
surfaces. Newton iteration is used to compute the intersection points. It can be easily verified that two
bilinear surfaces corresponding to two different £-values will never intersect in parameter space P. The
same is true for two different  or ¢ values. This observation indicates that the grid control map is a
differentiable one-to-one mapping.

Anillustration of avolume grid computed by solving Eq.(68), with the grid control map defined by
Eqgs.(71),(72),(73), isshownin Fig.58 through Fig.61. Thedomainisasemi-torus. The prescribed bound-
ary grid points on the surface of the semi-torus are shown in Fig.58. Fig.59 shows the surface grid on the
two exterior circular grid planes. Fig.60 showsthe computed interior grid depicted on someinterna circu-
lar planes. Fig.61 showsthe computed interior grid on the circular plane exactly halfway inside the torus.
The mesh spacing of the interior grid is excellent despite the concave boundary. The angles between the
interior grid lines and the boundary surface are reasonabl e but no longer orthogonal. Thisisnot surprising
because the grid control map provides no control about the angle distribution between interior grid lines

and the boundary of the domain.
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5 Researchissuesand summary

The grid generation systems of elliptic quasi-linear second-order partial differential equations are the fa-
miliar so-called Poisson systems with control functions to be specified. In this chapter, a Poisson system
is considered as a system of partial differential equations which the composition of a grid control map
and the inverse of a harmonic map has to obey. The control functions in the Poisson system are then
completely defined by the grid control map. Boundary conforming gridsin physical space are computed
by solving the Poisson system with control functions specified by agrid control map.

One of the main advantages of this approach is that the method is non-iterative. If an appropriate
grid control map has been constructed then the corresponding grid control functions of the Poisson sys-
tem are computed and their values remain unchanged during the solution of the Poisson system. Another
advantage isthat the construction of an appropriate grid control map can be considered asanumerical im-
plementation of the constructive proof for the existence of the desired grid in physical space. If the grid
control map is one-to-one then the composition of the grid control map and the inverse of the harmonic
maps exist so that the solution of the Poisson system is well-defined.

In two dimensions, boundary orthogonality is obtained by applying Dirichlet-Neumann boundary
conditions for the harmonic map. In that case, the harmonic map isquasi-conformal. This property shows
the relation with orthogonal grid generation.

The use of harmonic maps and grid control mapsfor surface grid generation is also shortly described.
The two-dimensional Poisson systems can be directly extended to surface grid generation on minimal
surfaces (soap films). The extension to volume grid generation is also given.

The construction of appropriate grid control maps such that the corresponding grid in physical space
has desired properties isthe main issue of thischapter. The chosen examples concern mainly smple well-
defined geometries so that the reader is able to recompute the grids. However, the dlliptic grid generation
methods described in this chapter have been implemented in ENGRID, NLR’smulti-block grid generation
code [20, 21, 22], and are nowadays used on a routinely basis to construct Euler or Navier-Stokes grids
in blocks and block-faces with complex geometrical shapes.

The construction of appropriate grid control maps for 3D domainsisless well developed than for 2D

domains and surfaces. Further investigation is expected in this direction.
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6 Further information

The book of Thompson,Warsi and Mastin [1] is still the best introduction to eliptic grid generation sys-
tems. Also the book of Knupp and Steinberg [4] isavaluable source about the fundamental s of structured
grid generation and related topics, like Tensor Analysisand Differential Geometry. The book of Kreyszig
[23] and Dierkes et.al. [24] are excellent textbooks about Differential Geometry and Tensor Analysis.

The proceedings of the grid generation conferences [29, 30, 31], the VKI lecture series about grid
generation [32, 33], and the NASA conference publications [34, 35] contain alot of useful information
about the application of eliptic grid generation systems, often embedded in multi-block grid generation
systems.

The Journal of Computational Physics provides many good more or less fundamental articles about

elliptic grid generation systems.
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map is the identity map.

vided into four domains.

Figure 12: Grid with boundary orthogonality.

Figure 11: Arc length based grid.
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Figure 17: Grid with both cell height control and

boundary orthogonality at upper and lower side.
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Figure 24: Blow up near O-type singularity.
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Figure 25: Initial uniform grid in parameter space Figure 26: Corresponding Laplace grid in physical

based on normalized arc length. space.
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solving the Laplace equations with Neumann ary orthogonality at all four sides. Position of

boundary conditions at al four sides. boundary points are the same asin Fig.27.
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Figure 39: Initial uniform grid in parameter space Figure 40: Corresponding Laplace grid in physical

space.
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Fig.41.
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Figure 44. Constructed grid in parameter space for
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Figure 50: New grid in parameter space for bound- Figure 51: Corresponding grid in physical space.
ary orthogonality at the three bottom edges of the
domain. Position of the boundary grid pointsisthe

same as in Fig.49.
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Figure 53: Minimal surface grid (Scherk surface).
orthogonal circular arcs. Surfacegridisorthogonal.
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Figure 58: Boundary surface grid of a semi-torus
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Figure 60: Interior grid planes inside the torus.

planes.

Figure 61: Interior grid inside the torus on a circu-
lar plane halfway between the two exterior circular

planes.
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